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North Dakota 58202

Communicated by Walter Feit
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Nontrivial difference sets in groups of order a power of 2 are part of the family
of difference sets called Hadamard difference sets. In the abelian case, a group of
order 22 tq2 has a difference set if and only if the exponent of the group is less

tq2 Žthan or equal to 2 . In a previous work R. A. Liebler and K. W. Smith, in
‘‘Coding Theory, Design Theory, Group Theory: Proc. of the Marshall Hall Conf.,’’

.Wiley, New York, 1992 , the authors constructed a difference set in a nonabelian
group of order 64 and exponent 32. This paper generalizes that result to show that
there is a difference set in a nonabelian group of order 24 tq2 with exponent 23 tq2.
Thus a nonabelian 2-group G with a Hadamard difference set can have exponent
< < 3r4G asymptotically. Previously the highest known exponent of a nonabelian

< <1r22-group with a Hadamard difference set was G asymptotically. We use repre-
sentation theory to prove that the group has a difference set. Q 1998 Academic Press

1. INTRODUCTION

Let G be a multiplicative group of order ¨ and D be a k-subset of G;
Ž .then D is called a ¨ , k, l; n -difference set in G provided that the

differences dd9y1 for d, d9 g D, d / d9 contain every nonidentity element

* The author thanks Hewlett]Packard for their generous support during his sabbatical year
1995]1996. This work is also partially supported by NSA Grant MDA 904-94-H-3057.
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HADAMARD DIFFERENCE SETS 63

of G exactly l times. The parameter n s k y l is included in the list of
parameters for future convenience. Difference sets are equivalent to

w xsymmetric designs with regular automorphism groups: see 12 for back-
Ž 2 tq2 2 tq1 t 2 t tground on difference sets. We shall consider 2 , 2 " 2 , 2 " 2 ;

2 t. Ž2 -difference sets known as Hadamard, or alternatively as Menon,
.difference sets . In the abelian case, the existence question was completely

w x w xanswered by the following theorem due to Kraemer 11 , Jedwab 9 , and
w xTuryn 18 .

THEOREM 1.1. An abelian 2-group G of order 22 tq2 has a Hadamard
difference set if and only if the exponent of the group is less than or equal
to 2 tq2.

The nonabelian case has also been studied, and there are both existence
w xand nonexistence results. McFarland 17 provided a construction that was

w xgeneralized by Dillon 7 , and they both have applications in nonabelian
w xgroups. Davis 4 showed how the constructions that solved the abelian

case can be generalized to include some nonabelian cases. Davis and
w x w xSmith 6 showed that the example in Liebler and Smith 15 could be

extended to an infinite family of difference sets in groups of order 22 tq2

and exponent 2 tq3, thus exceeding the exponent bound from the abelian
case. As for nonexistence, there are two known results. The first one is due

w xto Turyn 18 .

THEOREM 1.2. Let G be a 2-group of order 22 tq2, and H a normal
< < tsubgroup so that GrH is cyclic. If H - 2 , then G does not ha¨e a

Hadamard difference set.

w x w xThe second result, generalized by Ma 16 , is due to Dillon 7 .

THEOREM 1.3. Let G be a 2-group of order 22 tq2, and H a normal
< < tsubgroup so that GrH is dihedral. If H - 2 , then G does not ha¨e a

Hadamard difference set.

Existence of Hadamard difference sets has been exhaustively studied for
w x w xgroups of order 16 10 and groups of order 64 8 . In both cases Theorems

1.2 and 1.3 prove sufficient as well as necessary.
The aim of this paper is to construct difference sets, similar to the

Liebler and Smith example, in groups of very high exponent. In particular,
Ž 4 tq2 4 tq1 2 t 4 t 2 t 4 t.we will construct a 2 , 2 y 2 , 2 y 2 , 2 -difference set in the

group

² 2 3 tq2 2 t y1 2 2 tq2q1:G s x , y N x s y s 1, yxy s x , for any t G 1.t

Note that G has no dihedral quotient group, and its largest cyclic quotientt
2 t ² 2 2 tq2 :group has order 2 , and is formed modulo the subgroup H s x ,’y .
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The size of H is the boundary value for the cyclic nonexistence condition.
By constructing a difference set in G , we demonstrate that asymptoticallyt

< < 3r4the exponent of a 2-group with a Hadamard difference set can be G ,
< <where G is the order of G. Previously the highest known exponent was

< <1r2G asymptotically.
In order to build the difference set, we first translate our problem from

a combinatorial one to an algebraic one}we abuse notation by equating a
subset of the group with the sum of its elements in the group ring. A
difference set is then an element of the integral group ring with coeffi-
cients 0 and 1 which satisfies a certain equation for every irreducible
representation in a decomposition of the right regular representation. This
is discussed in more detail in Section 2.

The third section provides the background for constructing one subset
D j of G for every conjugacy class C s F j of nonlinear irreducible2 , b 2 , b
representations.

In Section 4 we show that each subset D j has the added property that2 , b
it is annihilated by any nontrivial irreducible representation in our decom-
position of ZG which is not in C. Also the union, P, of these subsets is

Žshown to be a disjoint union since we want a difference set and not a
. Ž .difference multiset . Finally the linear degree 1 irreducible representa-

tions for G are dealt with. Specifically we construct a subset L of G ,t t
w xwhich is disjoint from P, using the K-matrix construction of Davis 3 , and

w xa scheme of McFarland 17 . L is annihilated by any nonlinear irreducible
representation of G .t

As a consequence we prove

THEOREM 4.1. The set D [ P j L is a Hadamard difference set in Gt
Ž 4 tq2 2 tŽ 2 tq1 . 2 tŽ 2 t . 4 t.with parameters 2 , 2 2 y 1 , 2 2 y 1 ; 2 .

Naturally there is quite a bit of combinatorial bookkeeping to be done.
To help with this our difference set is broken down into subsets of cosets

² 2 tq1 : < <1r2 2 tq1of the subgroup H [ x , y of order G . There are 2 cosetst t
of H in G . One of the cosets will have an empty intersection with thet t
difference set. All of the other cosets will intersect the difference set in a
subset with 22 t elements. Each subset is in turn a union of cosets of
subgroups of H .t

The final section gives examples of difference sets in a group of order
1024 and exponent 256 as well as a group of order 16,384 and exponent
2048.

The only known nonexistence results for Hadamard difference sets in
2-groups are Theorems 1.2 and 1.3. Our result lends credence to the

Conjecture 1.1. Theorems 1.2 and 1.3 are sufficient as well as necessary.
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The authors gratefully acknowledge many helpful suggestions from the
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2. REPRESENTATION THEORETIC PRELIMINARIES

Consider the group ring ZG. If A is a subset of G, we will abuse
notation by writing A as a member of the group ring, A s Ý a.ag A
Similarly, we will define the group ring element AŽy1. s Ý ay1. If D isag A
a difference set in G, then the definition of a difference set immediately
yields the group ring equation

DDŽy1. s k y l q lG.

Now consider a representation of G, call it f. A representation is a
Ž .homomorphism from G to GL m, C , the multiplicative group of m = m

matrices over C. The degree of the representation is m. We can always
choose our basis so that the representation is unitary; namely, the inverse

Ž . Ž w x.of the matrix f g will be the conjugate transpose see 2 . This homo-
morphism can be extended to a ring homomorphism from the group ring

Ž .ZG to M C , the ring of all m = m matrices over C. We will use them= m
Ž . Ž .notation f A s Ý f a , where f is a representation and A is aag A

subset of G. This is known as a representation sum of the subset. Note
Ž .that G the group ring element that is the sum of the elements of G is in

the center of the complex group algebra CG. Thus for any irreducible
Ž . Ž .representation f of G, we have that f G is in the center of M C .m= m

Ž .Hence f G is a scalar matrix. A representation f is called nontrï ial if
Ž .there is an x g G with f x / I , where I is the m = m identity matrixm m

and m is the degree of f. When f is a nontrivial irreducible representa-
Ž . Ž . Ž . Ž . Ž .tion for G and f x / I , then f G s f xG s f x f G implies thatm

Ž .f G s 0.
To generalize this slightly, for any subgroup H of G the restriction of f

to H is a representation of H. Let h g H generate a normal cyclic
Ž .subgroup of H. Then if f N h / I and f does not have the trivialH m

Ž .representation of H as a direct summand, then we also get f H s 0. We
will use this property extensively in Section 4 by displaying an element h of
a particular subgroup H. The existence of h with the above property will
ensure that the representation sum over the subgroup will be zero. For

w xmore background on representation theory see 2 .
If we apply an irreducible nontrivial representation f to the difference

set equation, we get

f DDŽy1. s f D f DŽy1. s f k y l q lf G s nI .Ž . Ž . Ž . Ž . Ž . m
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This fact and the next theorem explain why we want to look at represen-
tation sums over D.

THEOREM 2.1. Let D be a subset of size k of a group G. Let S be a
complete set of distinct, inequï alent, nontrï ial, irreducible representations for

Ž . Ž Žy1.. Ž .G. If f D f D s nI for all f g S, then D is a ¨ , k, l; n -differencem
set in G.

Proof. Any subset D of G is completely determined by its image under
the regular representation. The regular representation decomposes as the
direct sum of a complete set of distinct, inequivalent, irreducible represen-
tations for G. Since D has size k, D satisfies the difference set equation
for the trivial representation. If in addition, D satisfies the difference set
equation for all f g S, then D satisfies the difference set equation for the

Ž w x.right regular representation. Therefore D is a difference set see 13 .

In the following sections, our strategy will be to use this result to build
the difference set a piece at a time. We will find a subset of the group
which will give us the correct representation sum for every representation
of a certain degree, and then we will show that the pieces put together
have the correct representation sum.

As mentioned in the Introduction, we will be working with the group Gt
² 2 3 tq2 2 t y1 2 2 tq2q1:defined as G s x, y N x s y s 1, yxy s x . In order to listt

the irreducible representations on this group, we need to establish some
notation. All irreducible representations are induced from characters on
the cyclic normal subgroup of order 23 tq2, so we need to list the characters
of this subgroup.

² : u Ž . 2p i r2 u
uLet C s z be the cyclic group or order 2 . Define x z s e .2

lŽ . Ž Ž .. l
uAll characters of C are of the form x z [ x z , where l s2

0, 1, . . . , 2u y 1. When l is even, x l is nonfaithful and can be viewed as a
character of the cyclic group of order 2uy1. Define F u to be the character2
table of C u. The rows of F u are indexed by the characters. We first list2 2
the rows corresponding to the nonfaithful characters. We order these
inductively as characters of C uy 1. Then we list the rows labeled by x , x 3,2
x 5, . . . , x 2 uy1 . The columns are indexed by group elements. The group
elements can be ordered in such a way that the first 2uy1 rows of F u form2
two copies of F uy 1 next to each other.2

Now let h be a primitive 2 s root of unity, and let t F s y 2. For each
w 2 j xj s 0, 1, . . . , t, form the number ring Z h . We induce an automorphism

ty j w 2 j x s j 2 sy Ž ty j.q1s of order 2 on Z h by h s h . We use s to define anj j
algebra R of 2 ty j = 2 ty j matrices generated by matrices B whose firstty j

Ž . Ž . s i
jty jrow is the vector b , b , . . . , b and whose i, k entry is b , where0 1 2 y1 kyi

ty j w 2 j xty jk y i is read modulo 2 , and b , b , . . . , b g Z h . For conve-0 1 2 y1
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Ž .ty jnience, we will use the notation m b , b , . . . , b for the matrix B,0 1 2 y1
that is,

b b b ??? b ty j0 1 2 2 y1
s sj js sj jty j ty jb b b ??? b2 y1 0 1 2 y2

. . . . .ty jm b , b , . . . , b s B s .Ž .0 1 2 y1 . . . . .. . . . .
j j j j� 02 y1 2 y1 2 y1 2 y1s s s sj j j jb b b ??? b1 2 3 0

Ž . Ž .ty jIf the matrix is of the form m b, 0, . . . , 0 , we will write it as m b for2
w 2 j x 2 ty jy1 w 2 j xb g Z h . Finally, the automorphism s on Z h will be denotedj

by t .j
Ž .u uLet a s a , a , . . . , a denote the lth row of F . We thenl l, 0 l, 1 l, 2 y1 2

Ž .udefine E [ m a , a , . . . , a . By character orthogonality, E E sl l, 0 l, 1 l, 2 y1 i k
u T Ž .d 2 E . We also note that E s E as long as u F sr2 .i k k i i

With the notation established, we are now in a position to define a
complete set of distinct, inequivalent, irreducible representations for our
groups G . All of our representations are induced from linear representa-t

² :tions of K [ x .
We let h be a 23 tq2 nd root of unity. When a linear character of K sends

x to an odd power of h, the resulting induced representation f is of
degree 2 t. We can define f simply by presenting the images of x and y.
The following lemma describes all irreducible representations of degree 2 t.

LEMMA 2.1. The set of inequï alent irreducible representations of degree
2 t is

2 fq1 2 tq2qk2 Ž2 iq1.
t tF s f N f x s m h , f y s h m 0, 1, 0, . . . , 0 ,Ž . Ž . Ž . Ž . Ž .�2 , 0 2

tyk 4k s 1, . . . , t ; i s 0, 1, . . . , 2 y 1, i s 0 when k s 0 ,

where 0 F f F 23 tq1 y 1, and f 2 fq1 denotes replacing h by h 2 fq1.
y2 2 tq2qkŽ2 iq1. Ž . Ž .Up to replacing y by x y we can take f y s m 0, 1, 0, . . . , 0 .

Also f is equivalent to f 2 fq1 whenever h 2 fq1 s h s e
0 for any power e.

Since h s0 s h 2 2 tq2q1, we have that the first 22 tq1 values of f run through
all the inequivalent representations in this set. Thus F t contains 22 tq1

2 , 0
Ž t.2 2 tq1 4 tq1distinct, inequivalent representations. These cover 2 2 s 2 di-

mensions of the group ring.
In general, there will be 2 j conjugacy classes of irreducible representa-

tions of degree 2 ty j. We will use two subscripts to describe each class of
irreducible representations. The first subscript will be the degree of a
representation. The second subscript will indicate which conjugacy class
the representation belongs to. The second subscript, b, will have values
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ranging from 0 to 2 j y 1. For convenience we will write b s 2 ab where
� jya 40 F a F j y 1 and b g 1, 3, . . . , 2 y 1 . We make the convention that

the b s 0 case corresponds to a s j and b s 1. When a linear character
of K sends x to an odd power of h 2 j

the resulting induced representations
will have degree 2 ty j. These classes of representations are listed in the
following lemma.

LEMMA 2.2. The inequï alent irreducible representations of degree 2 F
m - 2 t are contained in conjugacy classes of the form

2 fq1 j2
ty j a ty jF s f N f x s m h ,Ž . Ž . Ž .½2 , 2 b 2

f y s h eŽ2 a b . m 0, 1, 0, . . . , 0Ž . Ž .Ž .
e 2 ab s 22 tq2qa 2 jyaq1 i q b q n2 jya ,Ž . Ž .Ž .

i s 0, 1, . . . , 2 ty jy1 y 1,

� a 40 F a F j y 1, b g 1, 3, 5, . . . , 2 y 1 , n s 0, 14
2 fq1 j2 eŽ0.

ty j ty jF s f N f x s m h , f y s h m 0, 1, 0, . . . , 0Ž . Ž . Ž . Ž .Ž .Ž .½2 , 0 2

e 0 s 22 tq2qj 2 i q 1 q n ,Ž . Ž .Ž .
ty jy1 4i s 0, 1, . . . , 2 y 1, n s 0, 1 .

where 0 F f F 23 tq1yj y 1 for each F ty j .2 , b

As before, the inequivalent representations in these sets use the first
2 tq1 Ž ty j.2 2 tq1 4 tq1y2 j2 values of f. Thus, each set uses up 2 ? 2 s 2 dimen-

sions of the group ring, and there are 2 j classes. The degree 2 ty j represen-
tations collectively account for 24 tq1yj dimensions of the regular repre-
sentation, half as many as the degree 2 ty jq1 representations.

Lastly, when j s t we get the linear representations for G which aret
defined in the following lemma.

LEMMA 2.3. The inequï alent linear representations ha¨e the form

m a2 bt 2 tq22 2x x s h , x y s h ,Ž . Ž .Ž . Ž .m , a , b m , a , b

for 0 F m F 22 tq2 y 1, 0 F 2 ab F 2 t y 1, b s 1, 3, . . . , 2 tya y 1.

By Theorem 2.1 if we can find a subset of G so that the representationt
sum over the subset times its conjugate transpose is 24 t times the identity,
and this is true for every nontrivial, inequivalent, irreducible representa-
tion, then the subset will be a difference set. The next section includes
several technical lemmas that will be used both to help in determining the
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elements to include in the subset as well as to ultimately prove that
the subset has the appropriate representation sum in all cases.

3. KEY LEMMAS

Let s s 3t q 2, for t G 1 and 0 F j F t. The ring R is the image ofty j
Ž . j

ty j ty j ty jZG in M C under f g F for some 0 F b F 2 y 1. Thet 2 =2 2 , b
following three lemmas display a method for generating a possible image
of a difference set under f. The first lemma constructs an element of

w 2 j xZ h which satisfies a number theoretic equation: the fact that such an
element exists is a crucial step in the construction of a difference set in G .t

LEMMA 3.1. Let h be a primitï e 2 snd root of unity and let a and d bek k
Ž 2 d1q1 . a1integers for 1 F k. Let l s m s 1, g s l q h m h . Also, for l an1 1 1 1 1

l2'integer, let j s y 1 h , and for k ) 2, let j s j . Finally for k G 2'2 k ky1
define the three quantities l s l q j m , m s yl q j m ,k ky1 k ky1 k ky1 k ky1

2 d q1 a tk k jŽ . Ž .and g s l q h m h . Then as long as k F l q 2, g g q g g sk k k k k k k

2 kq1.
kProof. We show by induction that l l q m m s 2 . The k s 1 case isk k k k

obvious, so suppose that the claim is true for k y 1.

l l s l l q m m q j m l q j m lk k ky1 ky1 ky1 ky1 k ky1 ky1 k ky1 ky1

and

m m s l l q m m y j m l y j m l .k k ky1 ky1 ky1 ky1 k ky1 ky1 k ky1 ky1

So
ky1 kl l q m m s 2 l l q m m s 2 2 s 2 .Ž .Ž .k k k k ky1 ky1 ky1 ky1

The lemma follows a similar argument, using the fact that t sends anyj
odd power of h to its negative. We only need k F l q 2 so that the k th

w xroot of j still lies in Z h .2

In order to apply this lemma, let s s 3t q 2, l s 2 t q j, k s 2 t y 2 j y
1, a s 2 jq1, and d s 2 j y 1. Put z s h 2 sy k

h 2 ty kq2
. Then the expressionk k k

2 ky1y1
Ž .q m mkl s y1 zŽ .Ýk k

ms0

Ž .defines a binary string q whose mth entry is q m , where l is thek k k
element defined in Lemma 3.1. Similarly

2 ky1y1
Ž .r m mm s y1 zŽ .Ýk k

ms0
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defines r , where m is the element defined in Lemma 3.1. Recursivelyk k
q s r s 0, q s 00, r s 10, and for k G 3,1 1 2 2

Ž . Ž . Ž . ky1i q m s q mr2 , m s 0, 2, . . . , 2 y 2.k ky1

Ž . Ž . ŽŽ . . ky1ii q m s r m y 1 r2 , m s 1, 3, . . . , 2 y 1.k ky1

Ž . Ž . Ž . ky1iii r m s 1 q q mr2 modulo 2, m s 0, 2, . . . , 2 y 2.k ky1

Ž . Ž . ŽŽ . . ky1iv r m s r m y 1 r2 , m s 1, 3, . . . , 2 y 1.k ky1

We now define two elements of ZG whose representation sums havet
terms that match g from Lemma 3.1. Let h s 23 tq1yj and l s 2 jq1 y 1.k
We set

ky12 y1 mŽ . Ž .jq 1 tq3q j 3q2 jq m r mk k2 h l h 2 q2
ty jA s x x q x x xŽ . Ž . Ž .Ý2 ½ 5

ms0

and

ky12 y1 mŽ . Ž .jq 1 tq3q j 3q2 jq m r mk ky2 yh yhyl yh yŽ2 q2 .
ty jB s x x q x x x .Ž . Ž . Ž .Ý2 ½ 5

ms0

LEMMA 3.2. Let A ty j and B ty j be defined as abo¨e. Then A ty j and B ty j2 2 2 2
each consist of 22 ty2 jy1 distinct powers of x. Moreo¨er the exponent of any
power of x in A ty j is congruent to 2 jq1 or 2 jq2 y 1 modulo 23q2 j, while the2

jq1 Ž jq2 .ty jexponent of any power of x in B is congruent to y2 or y 2 y 12
modulo 23q2 j.

Proof. Let z be a primitive 23 tq2 nd root of unity, and x a character of
² : Ž . 2 j Ž . Ž .ty j ty jx so that x x s z s h. Then x A s g and x B s2 2 ty2 jy1 2

2 ty2 jy1t jg , as in Lemma 3.1. By construction, g consists of 22 ty2 jy1 2 ty2 jy1
distinct roots of unity, for our specific choices of s, l, and k. The moreover
part is obvious by inspection.

When 0 F j - t, a character x as in the proof of the previous lemma
induces an irreducible representation f for G of degree 2 ty j. By Lemmat
3.1,

2 ty2 j
ty j ty j ty j ty j ty jf A f A q f B f B s 2 I .Ž . Ž . Ž . Ž .2 2 2 2 2

It is important to note that A ty j and B ty j denote subsets of G . The2 2 t
following lemma demonstrates that the combination of the representation
values for A u and B u together with matrices associated to the character2 2
table F u will satisfy a matrix equation. This matrix equation will be used2
in the next section to show that certain subsets can be used to construct a
difference set in G .t
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LEMMA 3.3. Let g be as in Lemma 3.1. Let z generate the cyclic group ofk
u l Ž 2 sy u.eiuorder 2 and let x be the lth character of C . Let c s h g for2 i k

sy uuy1 2 e t uy1 uy1i jŽ . Ž .i s 0, 1, . . . , 2 y 1, e g Z, and c s h g for i s 2 , 2 qi i k
uu 2 y1 TŽ .u1, . . . , 2 y 1, e g Z. If u F sr2, and S s Ý m c E , then SS si is0 2 i i

22 uqkI u.2

Proof. We freely use the orthogonality properties for the character
table of a group.

2uy1 2 uy1
T

u uSS s m c E E m cŽ . Ž .Ý Ý2 i i i 2 i
is0 is0

2uy1
u

u us 2 m c E m cŽ . Ž .Ý 2 i i 2 i
is0

uy1 uy12 y1 2 y1u2 us y1u l 0 l 2 y1s 2 m g g x z , . . . , g g x zŽ . Ž .Ý Ýk k k kž /ls0 ls0

u u2 y1 2 y1
tt t 2 y1 uj jt l 0 t s l 2 y1j jqm g g x z , . . . , g g x zŽ . Ž .Ý Ýk k k kž /uy1 uy1ls2 ls2

t ju uy1 uy1s 2 m 2 g g , 0, . . . , 0, 2 g g , 0, . . . , 0Ž .k k k k

t tj juy1 t uy1jqm 2 g g , 0, . . . , 0, y2 g g , 0, . . . , 0Ž .k k k k

t ju uy1
us 2 m 2 g g q g gŽ .Ž .ž2 k k k k

s 22 uqkI u .2

The last equality comes from the first lemma.
T 2 uqkq1'Ž . uNote that A s 1 q y 1 S satisfies AA s 2 I .2

4. CONSTRUCTION

² 2 3 tq2 2 t y1 2 2 tq2q1:Recall that G s x, y N x s y s 1, yxy s x and definet

² 2 2 tq1 :the subgroup H s x , y . We will define a subset D of G with thet t
property that every coset of H intersects D in 22 t elements with onet
exception which has empty intersection. The subset D will be the differ-
ence set in G . We will show that it is a difference set by using representa-t
tion theory together with the lemmas proved in the previous section.
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We construct D by building a subset B of G for each conjugacy class C
of irreducible representations for G , where each f g C is nontrivial ont
H . These subsets are shown to be pairwise disjoint. We also show thatt TŽ . Ž . Ž .they have the special properties that f D s f B and f B f B sŽ .

4 t Ž .2 I. In other words, f annihilates D y B. Moreover B and therefore D
satisfies the difference set equation with respect to f.

Since all but one coset of H in G intersects D in 22 t elements, anyt t
< Ž . < 2 tnontrivial character x of G which is principal on H satisfies x D s 2t t

w x17 . Thus D satisfies the difference set equation with respect to x .
In the first subsection we concentrate on the nonlinear irreducible

representations for G . Since each piece will be associated to a particulart
conjugacy class of nonlinear representations, we will label a piece D ty j if2 , b
it is associated to the conjugacy class of representations F ty j .2 , b

In the second subsection we deal with the linear representations for Gt
which are nonprincipal on H . The corresponding subsets are known ast

w xK-matrices in the literature 3 .
In the final subsection we prove the main theorem using Theorem 2.1

and the results from the previous subsections.

4.1. The Nonlinear Pieces

In this subsection we use Lemmas 3.2 and 3.3 to help build the pieces of
our difference set which correspond to conjugacy classes of nonlinear
irreducible representations for G . First, we list the pieces. Next, we provet
that the union of the pieces is a set. Finally, we show that the representa-
tion sums are correct.

For the single conjugacy class of irreducible degree 2 t representations
for G we set k s 2 t y 1 in Lemma 3.1. We also select a s 2 andt 2 ty1
d s 0. Set h s 2 t q 1. Then the degree 2 t piece of our difference set2 ty1
is

ty12 y1 i3 t h 2 tq32 2 y2 i² :t tD s 1 q x A x x yŽ . Ž .Ý2 , 0 2
is0

ty12 y1 ih 2 tq22 y2 Ž2 iq1.² :tqB x x y .Ž .Ý2
is0

We have written this as an element of the group ring, and we first need
to establish that this group ring element is associated to a subset of G :t
namely, we need to show that D t has only 0 and 1 for coefficients.2 , 0

LEMMA 4.1. The group ring element D t is associated to a subset of G .2 , 0 t

Proof. In the definition of D t , the expressions A t and B t consist of2 , 0 2 2
distinct powers of x which lie in distinct cosets of H . These obviouslyt
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won’t overlap. So suppose there are elements from different cosets which
are the same group element. Because all of the subgroups are generated

y2 2 tq3 i Ž y2 2 tq2Ž2 iq1. .by elements of the form x y the x y case is similar and
the powers of y must be the same, the two elements are of the form
Ž 2 2 tq1. iŽ y2 2 tq3 i . j Ž 2 2 tq1. i9Ž y2 2 tq3 i9 . j 2 3 t k ty1x x y and x x y x where 0 F i, i9 F 2 y
1, k s 0, 1. Matching the exponents of x, we get that 22 tq1 i y 22 tq3 ij y

2 tq1 2 tq3 3 t Ž .Ž .2 i9 q 2 i9 j ' 0 mod 2 . This implies that i y i9 1 y 4 j ' 0
ty1 Žmod 2 , so i s i9. Thus, the elements were not really distinct they are

.from the same coset .

For future discussions, any group ring element with coefficients 0 or 1
will be considered equivalent to the subset of G to which it is associated.t
Thus, we will be able to make sense out of statements which claim that two
group ring elements are disjoint. This simply means that the sets associ-
ated to those group ring elements are disjoint.

Note that there are 2 ty1 cosets in each sum making up D t , each with2 , 0
t Ž 2 3 t. 2 t2 elements. The total is multiplied by 1 q x , so there are 2 elements

k Ž .in each coset x H where k ' "2 and "3 mod 8 .t
For j s 1, . . . , t y 1, G has 2 j conjugacy classes of irreducible represen-t

tations of degree 2 ty j. There will be a piece of the difference set for each.
Let D ty j denote the piece of the difference set which corresponds to the2 , b
conjugacy class of F ty j . Let A ty j and B ty j be as in Lemma 3.2 where2 , b 2 2
a s 2 jq1 and d s 2 j y 1.2 ty2 jy1 2 ty1y2 j

When b / 0 let b s 2 ab. Set

2 ty1y jy1
2 tq1 2 tq2y Ž jya . jyaq1 tya2 i y2 Ž2 iqb . 2² :ty jS s x x y , yÝ2 , b

is0

and
2 ty1y jy1

2 tq1 2 tq2y Ž jya . jyaq1 jya tya2 i y2 Ž2 iqb .q2 2² :ty jT s x x y , y .Ý2 , b
is0

Then
3 ty j jq3qa jq3qa2 2 y2

ty j ty j ty j ty j ty jD s 1 q x x A S q x B T .Ž .2 , b 2 2 , b 2 2 , b

When b s 0, set
ty1yj ky12 y1

3 tq2y j 3 ty jyk 3 tq2y jyk ky2 2 Ž2 iq1. y2 Ž2 iq1. 2² : ² :ty jS s x , y q x x y , yÝ Ý2 , 0
ks1 is0

and
2 ty1y jy1

2 tq1 2 tq2 ty j2 i y2 Ž2 iq1. 2² :ty jT s x x y , y .Ý2 , 0
is0
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Then

2 3 ty j w xty j ty j ty j ty j ty jD s 1 q x A S q B T .Ž .2 , 0 2 2 , 0 2 2 , 0

The union of these pieces will make up most of the different set. Of
course it must be shown that the union will be disjoint so that we build a
set and not a multi-set.

We first argue that the sets D ty j and D ty j9 will not intersect if2 , b 2 , b9

j / j9. By Lemma 3.2 the subset D ty j intersects all cosets of H in G2 , b t t
which are labeled by powers of x whose exponents are congruent to

jq1 jq3 Ž jq2 . jq3 3q2 j"2 q 2 b or " 2 y 1 q 2 b modulo 2 , and similarly for
j9. Without loss of generality say j - j9. Then none of exponents for the
coset labels for D ty j are zero modulo 2 j9q1 while all of them are zero2 , b
for D ty j9 . Thus these pieces must be disjoint.2 , b9

The next lemma shows that D ty j and D ty j are disjoint if b / b9.2 , b 2 , b9

LEMMA 4.2. Let 0 F j F t y 1 and b / b9. The sets D ty j and D ty j2 , b 2 , b9

are disjoint.

Proof. Suppose that there is an element g in the intersection of D ty j2 , b
and D ty j . Write b s 2 ab and b9 s 2 a 9b 9. It suffices to consider the case2 , b9

� 4 ty jwhere 2 t q 2 y j q min a , a 9 - 2 j q 3. Otherwise D will only in-2 , b
tersect those cosets of H labeled by powers of x whose exponents aret
congruent to 2 jq3b mod 22 jq3, and D ty j will intersect cosets labeled by2 , b9

powers of x whose exponents are congruent to 2 jq3b9 mod 22 jq3. The two
cosets are disjoint, so D ty j and D ty j are disjoint in this case.2 , b 2 , b9

So consider the powers of x mod 22 jq3. Since 2 j q 3 F 2 t q 1, the only
2 jq 3 b Ž . 2 2 tq2y j bkterms we need worry about are the terms x resp. b9 and x

Ž . Ž .resp. b9k9 where k resp. k9 is the power that appears in expressing the
Ž .ty jfirst generator of a subgroup in the sum for D resp. b9 . Our concern2 , b

is that two of these describe the same element g. If so, then

2 jq3 b y b9 ' 22 tq2yj bk y b9k9 mod 22 jq3 .Ž . Ž . Ž .

Now since j F t y 1, j q 3 F 2 t q 2 y j. The right hand side of the
above congruence is 0 mod 22 tq2yjqmin�a , a 94, so

b ' b9 mod 22 ty2 jy1qmin�a , a 94 .

Because 2 t y 2 j y 1 G 1, we have b ' b9 mod 21qmin�a , a 94. Without loss
of generality a F a 9. So b9 s 2 ab q r21qa for some r. This implies that
b9 is divisible by 2 a but not by 21qa. By our convention for writing the
subscripts b, we see that a s a 9.

So since b / b9 it must be that b / b9. Continuing under the assump-
tion that g is an element in both sets, we now compare the powers of y
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appearing in g. Use k and k9 as the powers of the first generator of the
subgroups where g exists. Because a s a 9, the second generators must be
y2 ty a

. Thus y kq2 ty a l s y k 9q2 ty a l9, for some l, l9. So k ' k9 mod 2 tya.
Now read the powers of x modulo 22 jq3. We get

2 jq3qa b y b9 ' 22 tq2yjqa b k y b9k9 mod 22 jq3 .Ž . Ž . Ž .
a5Ž .Say 2 b y b9 where 1 F a F j y a y 1 - t y a . Since k y k9 ' 0

Ž tya . Ž a. Ž .mod 2 , k y k9 ' 0 mod 2 . Thus b k y b9k9 ' b k y k9 ' 0
Ž a.mod 2 . Furthermore j F t y 1 implies 2 t q 2 y j q a q a G j q 4 q

jq3qa Ž . jq4qaqaa q a. Then 2 b y b9 is not congruent to zero modulo 2
2 tq2yjqa Ž . jq4qaqawhile 2 b k y b9k9 is congruent to zero modulo 2 . This

contradiction demonstrates that g cannot exist.

The next lemma shows that there is no internal overlap.
2 tŽ < < < <.ty j ty jLEMMA 4.3. There are exactly 2 A q B elements of G in2 2 t

D ty j .2 , b

Proof. Each subgroup used to build D ty j has order 2 tq j. There are2 , b
ty jy1 Ž 2 3 ty j.ty j ty j2 subgroups attached to each of A and B . The factor 1 q x2 2

doubles the number of elements from the rest of the expression, so there
tq j tyjy1 Ž < < < <. 2 tŽ < < < <.ty j ty j ty j ty jare 2 ? 2 ? 2 ? A q B s 2 A q B elements in2 2 2 2

the expression. To prove the lemma, we must show that there are no
duplicated elements.

Suppose that there is an element g g G that appears twice. Wet
Žty jconsider the case that g appears in the A piece twice the other cases2

. aqe kq2 ty a m a9qf k 9q2 ty a m9are similar , so that we can write g s x y s x y ,
where both x a and x a9 appear in A ty j, and2

e s 22 tq1 i q 22 tq2yŽ jya . 2 jyaq1 i q b k ,Ž .
f s 22 tq1 i9 q 22 tq2yŽ jya . 2 jyaq1 i9 q b k9.Ž .

Equate the exponents on y to see that k ' k9 mod 2 tya. Write k y
k9 s 2 tyad for some d . Then the two expressions for g imply a y a9 '

Ž 3 tq2 . 2 tq1Ž . 2 tq3Že y f mod 2 . But e y f simplifies to 2 i y i9 y 2 ik y
. Ž 3 tq2yj .i9k9 y b 2 d , and x raised to this power is seen to be in H .t

Therefore x aya9 g H . Whence a s a9.t
r r 5Ž .Next write i y i9 s 2 c, where 0 F r F t y j y 2, and 2 i y i9 so

that c is odd. We examine the exponents of x in the expressions for g
2 tq2qr Ž 2 3 ty j.modulo 2 . Because 2 t q 2 q r F 3t y j the term 1 q x at the

beginning of D ty j is of no concern here. Also, the case j s t y 1 has2 , b
one subgroup in each part of the block so there is no chance of intersec-
tion there. Therefore we are interested in those values of j between 0 and

Ž .t y 2. The j s t case comes later.
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Since a F j, t y a G t y j, which combined with r F t y j y 2 implies
that t y a ) r. Thus k ' k9 mod 2 r. Also i ' i9 mod 2 r, so ik '

r Ž . 2 tq2qri9k9 mod 2 . Therefore ik y i9k9 ' 0 mod 2 . Thus by equating ex-
ponents of x in the two expressions for g

22 tq1qrc s 22 tq1 i y i9 ' 22 tq2yŽ jya .b k y k9 mod 22 tq2qr .Ž . Ž .

We first consider the case b / 0. This forces a - j so that 2 t q 2 y
Ž .j y a F 2 t q 1 q r. Divide both sides of the previous congruence by
22 tq2yŽ jya . to get

2 jyay1qrc ' b k y k9 mod 2 jyaqr .Ž .

Since b and c are odd, this implies that k y k9 ' 2 jyay1qr mod 2 jyaqr.
Since r F t y j y 2, we have that j y a q r F t y a y 2, so k y k9 '
2 jyaq1qr q c92 jyaqr mod 2 tya, for some c9. However, this contradicts
the fact that k y k9 ' 0 mod 2 tya. This establishes the lemma for b / 0.

When b s 0 we adapt the previous arguments to reduce to the case
where g appears twice in

ty1yj ny12 y1
3 tq2y j 3 ty jyn 3 tq2y jyn n2 2 Ž2 iq1. y2 Ž2 iq1. 2² : ² :ty jA x , y q x x y , y .Ý Ý2 ž /ž ns1 is0

Now viewing the exponents of x in two expressions for g modulo 23 tyjy1

shows that k s k9. Thus we obtain

3 tyjynq1 3 tyjynq22 i y i9 ' 2 2 i q 1 m y 2 i9 q 1 m9Ž . Ž . Ž .

mod 23 tyjynq2qr ,

where r is as above. We argue as before to show that im ' i9m9 mod 2 r

by using the exponents on y in the two expressions for g and restrictions
on m.

Then because m y m9 is at most divisible by 2 ny2 we get that m y
ry1 r Ž .m9 ' 2 mod 2 r G 1 But now n ) n y 2 G r which implies that

m y m9 is not zero modulo 2 n. Examination of the exponents of y in
the two expressions for g shows that m y m9 must be zero modulo 2 n. So
again we reach a contradiction.

Finally when r s 0 the above argument leads to the contradiction that
1 ' 0 mod 2.

As a consequence of Lemmas 4.1 through 4.3 we have

COROLLARY 4.1. The set P [ Ýty1 Ý2 jy1 D ty j intersects a coset of Hjs0 bs0 2 , b t
in either 22 t elements, or not at all. Moreo¨er, the cosets of H which Pt
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misses are exactly those labeled by powers of x where the exponents are
congruent to 0, " 1 and 2 tq1 modulo 2 tq2.

Proof. The choices of a and d yield the fact that the2 ty2 jy1 2 ty2 jy1
powers of x appearing in A ty j and B ty j are congruent to "2 jq1,2 2
"2 jq2 y 1 modulo 23q2 j, 0 F j F t y 1.

For the cosets which P intersects nontrivially there are two cases,
namely 2 t q 2 y j q a G 2 j q 3 or 2 t q 2 y j q a q s s 2 j q 3 for
s G 1.

In the first case, D ty j fills each coset x kH with 22 t elements where x k
2 , b t

appears in x 2 jq 3 bA ty j or xy2 jq 3 bB ty j.2 2
In the second case, each subgroup used to build D ty j a is partitioned2 , 2 b

among 2 s cosets x k1 H , . . . , x k ’s H , where all the x k ’s appear int t
x 2 jq 3qa bA ty j or they all appear in xy2 jq 3qa bB ty j. This is also true for2 2
D ty j a jyays for 0 F r F 2 s y 1. Since the D’s do not overlap, each2 , 2 Ž bqr 2 .

coset x kH intersects P in the proper number of elements in this case.t
Collectively P intersects each coset x kH in 22 t elements where x k

t
appears in x 2 jq 3qa bA ty j or xy2 jq 3qa bB ty j. The cosets of H which do not2 2 t
intersect P are precisely those listed in the final claim of the corollary.

We now prove that any nonlinear irreducible representation applied to
P will give the proper representation sum. The next lemma shows that
whenever a nonlinear irreducible representation is applied to P, it sums to
zero except on its corresponding piece.

LEMMA 4.4. Let f g F ty j be a nonlinear irreducible representation for2 , b
Ž . Ž .ty jG . Then f P s f D .t 2 , b

Ž . Ž .ty j9Proof. 1 First we show that if j / j9, then f D s 0.2 , b9

If j - j9 then each subgroup in the definition of D ty j9 has an element2 , b9

Ž a .2 ty aŽ 2 ty a .y1 c 2 tq2yŽ j9ya 9.Ž ty j9ya 9of the form x y y s x , where a s 2 2 i q
. 3 tq2yj9Ž ty j9ya 9 .b9 , and c s 2 2 i q b9 . This element is mapped by f to

Ž . j9yj
ty jm z where z is a primitive 2 nd root of unity. By the special fact2

mentioned prior to Theorem 2.1, the sum of a representation over a
subgroup is zero whenever there is an element of this form. Hence f is
zero on D ty j9 .2 , b9

If j ) j9, then there are two cases two consider.
Ž 3 tyj9. Ž . Ž .ty j ty j9First if j s j9 q 1, then f 1 q x s 1 y 1 I s 0. So f D2 2 , b9

Ž 3 tyj9. ty j9s 0 since 1 q x is a factor of D .2 , b9

Second, if j G j9 q 2, then we consider cosets of two subgroups used to
ty j Žty j9define D which are indexed by i and i9 where i y i9 s 2 . j G2 , b9

.j9 q 2 implies t y j F t y j9 y 2 so we can do this. For the subgroups
involved the second generators are the same, so f maps those generators
to the same matrix. The first generators differ by x e where e s
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22 tq2yŽ j9ya 9.qŽ j9ya 9q1.q tyj s 23 tq3yj. This group element is mapped to
the identity matrix by f, so f takes the same value on the first generators.
Since f takes the same values for both generators of the subgroups, the
sum over the two subgroups must be the same. The coset representatives
of the subgroups differ by x p, where p s 23 tq1yj. So the representation

Ž p.sum of the two cosets collectively is zero, since f x s yI .m
All subgroups are paired in this manner. The sum of the cosets of the

subgroups under f is zero, which implies that the sum of D ty j9 under f2 , b9

is zero.

Ž . a2 Now suppose that j s j9 and b / b9. Write b s 2 b and b9 s
a 9 ² : ty j2 b9. Let K s h, g be a subgroup used to define D , where2 , b9

a 2 ty a 2 tq2yjqa Ž jyaq1 .h s x y, g s y and a s y2 2 i q b . There are three
cases to consider.

Ž . Ž 2 ty j. Ž .ty ja If a ) a 9, then f h s m z , where z is a primitive2
2 jya 9nd root of unity. Using the special fact prior to Theorem 2.1, this

Ž . Ž .ty jimplies that f K s 0, so f D s 0.2 , b9

Ž . a 9yay1 Ž a. Ž .n
ty jb If a - a 9, set a s 2 . Then f g s y1 I for some2

Ž .odd n. Summing over the powers of g in K we get f K s 0, so again
Ž .ty jf D s 0.2 , b9

Ž . dc When a s a 9 but b / b9, write b y b9 s 2 r, where r is
odd. By the restrictions on b we get that 0 F d F j y a y 1. Set

2 tq2qa Ž jyaq1 . 2 tq2yŽ jya .Ž jyaq1 .c s 2 2 i q b9 , a s y2 2 i q b9 , and e s
2 tq2qa Ž jyaq1Ž . d .y2 2 i9 y i q 2 r . Then

aja 2 c e
ty j ty jf x y s h h m 0, 1, 0, . . . , 0 s h m 0, 1, 0, . . . , 0 .Ž . Ž . Ž .Ž . 2 2

The 2 ty jnd power of this matrix is a diagonal matrix. The j, j entry will
be h f, where f s y23 tq2qaqdyjr. Since d F j y a y 1, 3t q 2 q a q d y
j F 3t q 1. As in the previous cases, this combined with the special fact
prior to Theorem 2.1 implies that the representation sum over K yields

Ž .ty jzero. So once again we get f D s 0.2 , b9

The last lemma of this section shows that the remaining representation
sums are correct.

LEMMA 4.5. Let f g F ty j be a nonlinear irreducible representation for2 , b
t 4 tŽ .ty j ty jG . Then M [ f D satisfies MM s 2 I .t 2 , b 2

j 'Ž .Proof. It suffices to show that M corresponds to 2 1 q y 1 S where
S is as in Lemma 3.2, with k s 2 t y 2 j y 1.

Ž . Ž .ty j ty jFirst, by construction f A s m g . Similarly we see that2 2 2 ty2 jy1
jq 3qa 2 tq1t 2 b 2 kjŽ . Ž .ty j ty jf B s m g . Next, the elements x x corre-2 2 2 ty2 jy1

sy t2 y 3 tyjj 'Ž . Ž . Ž . ty jspond to the numbers h . Third, f 1 q x s 1 q y 1 I .2



HADAMARD DIFFERENCE SETS 79

Finally, each subgroup K of G used in the definition of D ty j getst 2 , b
mapped by f to 2 jE for some m. Moreover each 2 jE has a subgroup Km m

ty j
ty jas pre-image in D , m s 0, 1, . . . , 2 y 1.2 , b

4.2. The Linear Piece

In this section we define the part of the difference set which corre-
Ž .sponds to the linear representations for G i.e., those of degree 1 .t

We begin with some remarks on the behavior of the characters. First,
Ž 2 2 tq1. Ž 2 2 tq1.when m is odd, x x s y1 and when m is even, x xm , a , b m , a , b

s 1. Second, the linear representations of G which are not principal ont
H fall into conjugacy classes. These classes are indexed by their sharedt
kernels when viewed as characters of H .t

Ž .For convenience we set p m to be the remainder of m after dividing by
2. The kernel of x restricted to H is denoted by K . Form , a , b t pŽm., a

a F t y 1 this is the group generated by x 2 2 tq1
y2 ty aypŽm .

and y2 ty a

. When
² 2 2 tq2 :a s t, we have K s x , y , and K s H .1, t 0, t t

Ž Ž . . Ž .For each p m , a / 0, t we define a subset D . This is the piecepŽm., a

of our difference set which corresponds to the conjugacy class of linear
representations indexed by K .pŽm., a

These subsets are defined as

D s K x j?2 tq 2qa

y iqŽ2 iy1. jÝ1, a 1, a
tyay10Fi , jF2 y1

and

D s K x j?2 tq 2qa

y iqŽ2y2 i. j.Ý0, a 0, a
tyay10Fi , jF2 y1

w xThere are referred to as K-matrices in the literature 3 . We stress the fact
Žthat these are sets. Also we note that D is defined to be empty if we0, t

chose it to be H , then the corresponding subset would be the complementt
.of a Hadamard difference set as defined in the Introduction .

The coset representatives x j?2 tq 2qa

y iqŽ2 iy1. j form a relative difference set
² 2 tq 2qa : ² 2 ty ay1 :in the quotient group x , y rK relative to y KpŽm., a pŽm., a

Ž 2 ty2y2 a 2 ty2y2 a 2 ty3y2 a .with parameters 2 , 2, 2 , 2 . This leads to the
following lemma concerning linear representation sums of the D ’s.pŽm., a

LEMMA 4.6. Let x [ x be a linear representation for G which ism , a , b t
not principal on H . Thent

2 t2 if p m s p m9 and a s a 9Ž . Ž .
x D sŽ .pŽm9. , a 9 ½ 0 otherwise.
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Proof. We prove the last part of the lemma first.

Ž . Ž . Ž .1 To begin with let us suppose that p m / p m9 . We show the
Ž . Ž .argument for the case where p m s 0 and p m9 s 1. The case where

Ž . Ž .p m s 1 and p m9 s 0 is similar.
The first generator of K s K is x 2 2 tq1

y2 ty a 9y1
. If a F a 9,pŽm9., a 9 1, a 9

Ž 2 2 tq1. Ž 2 ty a 9y1.then x x s 1 but x y / 1. So x is nonprincipal on K pŽm9., a 9

Ž .and therefore x D s 0. If a ) a 9, then x is principal onpŽm9., a 9

K . The corresponding representation on the quotient grouppŽm9., a 9

² 2 tq 2qa 9 : ² 2 ty a 9y1 :x , y rK is principal on the forbidden subgroup y K .1, a 9 1, a 9

Therefore

x x j?2 tq 2qa

y iqŽ2y2 i. j s 0.Ýž /
tyay10Fi , jF2 y1

Ž . Ž . Ž .2 Secondly, let us suppose that p m s p m9 and a - a 9. Then
Ž 2 ty a 9. 2 3 tq2qaya 9 b a 9yax y s h . This is a primitive 2 nd root of unity. So x is

Ž .nonprincipal on K . Thus x D s 0.pŽm9., a 9 pŽm9., a 9

Ž . Ž . Ž . Ž .3 Next, let us suppose that p m s p m9 and a ) a 9. If p m9 s
Ž 2 2 tq1 2 ty a 9y1. Ž . Ž .1, then x x y s y1. Therefore x K s x D s 0. If1, a 9 pŽm9., a 9

Ž .p m9 s 0, then x is principal on K . We now consider the correspond-0, a 9

ing representation on the quotient group G rK . In particular we focust 0, a 9

on the restriction of the corresponding representation to the subgroup
² 2 tq 2qa : ² 2 ty a 9y1:x , y rK . Since a ) a 9, x is principal on y . So the fact0, a 9

that we have a relative difference set in the quotient group implies that the
Žrepresentation sum will be zero. This corresponds to saying that the

.representation sums to zero down a column of the K-matrix.
Ž . Ž . Ž .4 Finally, if p m s p m9 and a s a 9, then x is by construction

principal on K . Moreover the corresponding representation on thepŽm9., a 9

quotient group in this case is nonprincipal on the forbidden subgroup.
Ž .The existence of our relative difference set assures us that x D pŽm9., a 9

has the proper modulus.

Our difference set D will be the union of P from Corollary 4.1 and
shifts of the subsets D . It remains to be shown that this union will bepŽm., a

Ž .disjoint. We must also prove that x P s 0 for any linear representation
Ž .of G that is nonprincipal on H and that f D s 0 for any nonlin-t t pŽm., a

ear irreducible representation f and any subset D . That is thepŽm., a

subject of the following two lemmas.

LEMMA 4.7. Let f g F ty j be an irreducible representation for G of2 , b t
ty j Ž .degree 2 , where 0 F j - t. Then f D s 0 for any D .pŽm., a pŽm., a
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Proof. Each subgroup K contains the element g s x 2 2 tq2
, wherepŽm., a

Ž 2 2 tq2 . Ž 2 2 tq2q j.ty jf x s m h . Since j - t this is a diagonal matrix with en-2
tries which are primitive 2 ty jnd roots of unity. By the special fact prior to
Theorem 2.1, this implies that the representation sum over the subgroups
is 0 for each K . This implies the lemma.pŽm., a

LEMMA 4.8. Let x [ x be a linear representation for G which ism , a , b t
nonprincipal on H . Also let D ty j a 9 be a subset associated to a conjugacyt 2 , 2 b 9

class of irreducible nonlinear representations for G as in Subsection 4.1. Thent
Ž . Ž .ty j a 9 ty j a 9 ty j a 9either x D s 0 or for some b0, x D q D s 0.2 , 2 b 9 2 , 2 b 9 2 , 2 b 0

Proof. The proof naturally breaks into cases.
Ž . Ž .1 If p m s 1, then the argument will be similar to that for the

Ž 2 2 tq1.previous lemma. If j s t y 1, then x 1 q x s 0 and we’re done. So
suppose that j - t y 1. For a fixed a 9 and b9, x is either principal on
each of the subgroups used to define D ty j a 9 or it is principal on none2 , 2 b 9

of them. When x is nonprincipal on each subgroup, then clearly
Ž .ty j a 9x D s 0. If x is principal on each subgroup, the image of any2 , 2 b 9

tq j Ž 2 2 tq1.subgroup under x is its size 2 . In this case x x s y1. The sum
Ž .ty j a 9over the subgroups is zero under x , so x D s 0.2 , 2 b 9

Ž . Ž . Ž .2 Suppose that p m s 0. Since x is nonprincipal on H , x y / 1. Ast
before x is either principal on all the subgroups defining D ty j a 9 or2 , 2 b 9

nonprincipal on them all.

Ž .a If x is nonprincipal on a subgroup, that subgroup maps to zero.
So D ty j a 9 would map to zero.2 , 2 b 9

Ž .b If x is principal on all of the subgroups, each subgroup under x
tq j Ž 2 2 tq1. 2 2 jq3 sgets sent to 2 . Moreover x x s 1. We turn our attention to x

where 0 F s F 22Ž2yjy1. y 1. These group elements are the powers of x
which separate elements of A ty j and B ty j. There are now three cases to2 2
consider.

Ž . Ž 2 2 jq 3 . Ž . Ž .ty j ty ji If x x / 1 then x A s x B s 0. So2 2
Ž .ty j a 9x D s 0.2 , 2 b 9

Ž . Ž 2 2 jq3.ii If x x s 1 and 2 j q 3 F 2 t q 2 y j q a 9, then the first
generator of every subgroup used to define D ty j a 9 will get sent to2 , 2 b 9

Ž .x y / 1. Thus the subgroup will go to zero under x .
Ž . Ž 2 2 jq3.iii If x x s 1 and 2 j q 3 ) 2 t q 2 y j q a 9, then the only

subgroups which do not map to zero under x are those for which
Ž 2 2 tq2y jqa 9. Ž .Ž .x x s x y / 1 .

Note that since j F t y 1, that j q 3 q a 9 - 2 t q 2 y j q a 9. There-
Ž 2 jq 3qa 9.fore x x / 1. Let s be the power of this group element which gets

Žmapped to y1 under x . This group element is the separator for the
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elements appearing in A ty j and B ty j for any subset D ty j a 9 as v2 2 2 , 2 v

. Ž jya 9.varies. Let b0 satisfy b9 y b0 s s read modulo 2 .
Next consider the behavior of x on the subgroups used to define

D ty j a 9 . The first generator of a subgroup here differs from a first2 , 2 b 0
2 2 tq2y jqa 9 s Ž 2 jq 3qa 9 s.ty j a 9generator of a subgroup for D by x . Since x x s2 , 2 b 9

Ž 2 2 tq2y jqa 9 s.y1 and 2 t q 2 y j q a 9 ) j q 3 q a 9 we see that x x s 1.
The second generators of any subgroup have the same image under x
because a 9 has been fixed. Therefore for any subgroup used to define
D ty j a 9 there is a corresponding subgroup used to define D ty j a 92 , 2 b 9 2 , 2 b 0

which has the same image under x . Thus the fact that b9 y b0 s s
Ž .ty j a 9 ty j a 9implies that x D q D s 0.2 , 2 , b 9 2 , 2 , b 0

Next we describe how to shift the subsets D to ensure theirpŽm., a

disjointness from P and subsequently to ensure that the representation
sums will be correct for all linear representations of G which are principalt
on H .t

The conclusion of Corollary 4.1 says that the cosets of H in G whicht t
are labeled by powers of x whose exponents are congruent to 0, "1, and
2 tq1 modulo 2 tq2 do not intersect P. We shift the D ’s to fill each ofpŽm., a

these cosets with 22 t elements of the difference set, with one exception
which is empty. We can do this by multiplying D by 1, D by x 2 tq 1

, D0, 0 1, 0 0, 1

by x1, D by x 2 tq 2q1, D by xy1, and D by xy1q2 tq 3
. Finally, for1, 1 0, 2 1, 2

3 F a F t set § s Ýay3 2 tq2qi and multiply D by xy1qpŽm.2 tq aq1q§a.a is0 pŽm., a

Ž . Ž . y1qpŽm.2 tq aq1q§aLEMMA 4.9. If p m / p m9 or a / a 9, then x D pŽm., a

and xy1qpŽm9.2 tq a 9q1q§a 9D ha¨e empty intersection.pŽm9., a 9

Ž . Ž .Proof. We show only the case where p m s p m9 s 1. The other
cases are similar. Also without loss of generality we take a - a 9. The set
xy1qpŽm.2 tq aq1q§aD contains elements from the cosets of H whosepŽm., a t
representatives are powers of x whose exponents are

y1 q § q 2 tqaq1 q 2 tq2qa ja

for 0 F j F 2 ty1ya y 1. For the second set these exponents are

y1 q § q 2 tqa 9q1 q 2 tq2qa 9j9a 9

for 0 F j9 F 2 ty1ya 9 y 1.
The nonzero part of the first set modulo 2 tqaq1 is y1 q § whicha

Ž tqaq1.clearly cannot equal y1 q § modulo 2 . So the two sets never liea 9

in the same coset of H in G . Therefore they are disjoint.t t
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4.3. The Main Theorem

Now let us define the linear part of D to be

tq 1 tq2 tq32 1q2 y1 y1q2L [ D q x D q xD q x D q x D q x D0, 0 1, 0 0, 1 1, 1 0, 2 1, 2

1 t
tq aq1y1qpŽm.2 q§aq x D .Ý Ý pŽm. , a

Ž . as3p m s0

Ž 4 tq2 2 tŽ 2 tq1 . 2 tTHEOREM 4.1. The set D [ P q L is a 2 , 2 2 y 1 , 2
Ž 2 t . 4 t.? 2 y 1 , 2 Hadamard difference set in G .t

Proof. The previous lemma shows that, after these shifts, only the coset
of H labeled by xy1q2 2 tq1y2 tq 2

has trivial intersection with all of the setst
we have defined for t G 3. Every other coset of H in G intersects thet t
union of our sets in exactly 22 t elements. Since there are 22 tq1 cosets of Ht

< < 2 tŽ 2 tq1 .in G , we have that D s k s 2 2 y 1 .t
Let f be any representation from our complete list of distinct, inequiva-

lent, irreducible representations for G .t
Ž . Ž .ty j ty jIf f g F is nonlinear, then f D s f D by Lemmas 4.4 and2 , b 2 , b

Ž .ty j4.7. f D satisfies the difference set equation under f by Lemma 4.5.2 , b
Ž .If f s x is nonprincipal on H , then by Lemma 4.8, f P s 0.m , a , b t

< Ž . < < Ž . < 2 tLemma 4.6 implies that f D s f D s 2 as required.pŽm., a

Ž .Finally, if f s x is principal on H , then f D has proper modu-m , a , b t
lus because D intersects every coset of H in 22 t elements with onet
exception, so the character sum has modulus 22 t.

In all cases the representation sums are correct. Therefore by Theorem
2.1 D is a difference set.

Note that the order of the group G is 24 tq2 and the exponent is 23 tq2.t
Asymptotically, this demonstrates that the exponent of the group can be at

< < 3r4least G as claimed in the abstract.

5. EXAMPLES

5.1. t s 1

² 32 2 17:When t s 1, G s x, y N x s y s 1, yxy s x the modular group of1
Ž .order 64. In our construction of a 64, 28, 12 -difference set in this group

² 8 :we use H s x , y . We get1

8 2 3 ² : 8 30 13 ² 16 : ² 8:D s 1 q x x q x y q 1 q x x q x x y q xŽ . Ž . Ž . Ž .
4² 8 : 9² 16 :q x x y q x x , y .
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< 7 <Note here that D is empty, and that D l x H s 0. This is similar to0, 1 1
w xthe difference set found by Liebler and Smith 15 .

5.2. t s 2

² 256 4 y1 65:When t s 2, G s x, y N x s y s 1, yxy s x and H s2 2
² 32 :x , y .

For the degree 4 part of the difference set

A s x 2 q x131 q x170 q x171 q x82 q x 211 q x122 q x123
4

B s x 254 q x 253 q x86 q x 213 q x174 q x173 q x134 q x 5
4

Ž 64 .w� w² 128 : 32² :x4 � w² 64 :and D s 1 q x A x y q x y q B x y q4, 0 4 4
32² 192 :x4xx x y .
For the degree two part of the difference set

A s x 4 q x7 and B s x 252 q x185.2 2

Ž 32 .w ² 64 2: ² 128 :xSo D s 1 q x A x y, y q B x , y and2, 0 2 2

32 16 32 240 96² : ² :D s 1 q x x A x y q x B x y .Ž .2, 1 2 2

The linear part of the difference set is
8 24 ² 32 2: 16 3 ² 32:L s x q x x y 1 q y q 1 q x y x 1 q yŽ . Ž . Ž .Ž .

31² 64 : 17² 32 2: ² 32 2:q x x , y q x x y , y q x x , y .
< 15 <Note that D is empty, and that D l x H s 0.0, 2 2

Here P s D q D q D and D s P q L.4, 0 2, 0 2, 1

5.3. t s 3

² 2048 8 y1 257:When t s 3, G s x, y N x s y s 1, yxy s x and H s3 3
² 128 :x , y .

For the degree eight part of the difference set we put h s 1024.
15

l2 hq Ž l . 72 hŽ ly1.5A s x x x 1 q x xŽ . Ž .Ý8
ls0

15
y2 hq Ž l . y72 hl5B s x x x 1 q x x ,Ž . Ž .Ý8

ls0

where q s 0111101101110100 and x 2048 s 1.5

512 128 y512 256 y1024² : ² : ² :D s 1 q x A y q x x y q x x yŽ . �8, 0 8

384 y1536² :qx x y

y256 128 y768 256 y1284 384 y1796² : ² : ² : ² :qB x y q x x y q x x y q x x y .48



HADAMARD DIFFERENCE SETS 85

The degree four part of D uses

A s x 4 q x 519 q x 324 q x839 q x676 q x679 q x 484 q x 487
4

B s x 2044 q x1017 q x1724 q x697 q x1372 q x857 q x1564 q x1049.4

This part consists of

256 1024 128 y512 2² : ² :D s 1 q x A x , y q x x y , yŽ . �4, 0 4

y256 4 128 y768 4² : ² :qB x y , y q x x y , y 44

and

256 16 y128 128 y640² : ² :D s 1 q x x A x y q x x yŽ . �4, 1 4

2032 y384 128 y896² : ² :qx B x y q x x y .44

The degree two part consists of A s x8 q x15, B s x 2040 q x1777
2 2

128 ² 512 : ² y256 2:D s 1 q x A x , y q B x y , yŽ . � 42, 0 2 2

128 32 ² y64 : y32 ² y320 :D s 1 q x x A x y q x B x yŽ . � 42, 1 2 2

128 64 ² y128 4: y64 ² y384 4:D s 1 q x x A x y , y q x B x y , yŽ . � 42, 2 2 2

128 96 ² y192 : y96 ² y448 :D s 1 q x x A x y q x B x y .Ž . � 42, 3 2 2

159 31² 256 :The linear part of D consists of x D s x x , y1, 3

2047 63² 128 2:x D s x x , y0, 2

63 95² 128 2:x D s x x y , y1, 2

² 128 4: 64 2 64xD s x x , y 1 q y q x y q x yŽ .0, 1

33 33² 128 2 4: 64 7 64 2x D s x x y , y 1 q y q x y q x yŽ .1, 1

² 128: 2 3 32 2 32 32 32 7D s x 1 q y q y q y q x y q x y q x q x yŽ0, 0

qx64 y4 q x64 y q x64 y6 q x64 y3 q x96 y6 q x96 y q x96 y4 q x96 y7 .
16 16² 128 4: 2 3 32 7 32 2 32 5 32x D s x x y 1 q y q y q y q x y q x y q x y q xŽ1, 0

qx64 y6 q x64 y3 q x64 q x64 y5 q x96 y5 q x96 y4 q x96 y3 q x96 y2 ..

The coset x95H does not intersect any of the sets listed above.3
Here follows the intersection pattern of D with cosets of H labeled by3

the powers of x, x 0, . . . , x127. Each entry signifies which part of the
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difference set intersects the coset. A negative sign indicates that the part
of the difference set which intersects the coset comes from a B ty j part.2
The subscript denotes the conjugacy class. So y4 in the position labeled1
by x j will denote that a coset representative of H x j appears in the B3 4
piece of D .4, 1

Cosets x 0, . . . , x15 and x64, . . . , x79

1 1 8 8 4 y8 y8 4 2 y4 8 8 y4 y8 y8 200 01 0 0 0 1 1 0

1 1 8 8 4 y8 y8 4 2 y4 8 8 y4 y8 y8 200 01 0 0 2 1 1 2

Cosets x16, . . . , x 31 and x80, . . . , x95

1 y2 8 8 4 y8 y8 4 y2 y4 8 8 y4 y8 y8 110 3 1 1 3 0 0 13

1 y2 8 8 4 y8 y8 4 y2 y4 8 8 y4 y8 y810 1 1 1 1 0 0

Cosets x 32 , . . . , x 47 and x96, . . . , x111

1 1 8 8 4 y8 y8 4 2 y4 8 8 y4 y8 y8 200 01 0 0 1 1 1 1

1 1 8 8 4 y8 y8 4 2 y4 8 8 y4 y8 y8 200 01 0 0 3 1 1 3

Cosets x 48, . . . , x63 and x112, . . . , x127

1 y2 8 8 4 y8 y8 4 y2 y4 8 8 y4 y8 y8 110 2 1 1 2 0 0 12

1 y2 8 8 4 y8 y8 4 y2 y4 8 8 y4 y8 y8 110 0 1 1 0 0 0 02
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