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We present a recursive construction for difference sets which unifies the Hadamard,
McFarland, and Spence parameter families and deals with all abelian groups
known to contain such difference sets. The construction yields a new family of dif-
ference sets with parameters (v, k, *, n)=(22d+4(22d+2&1)�3, 22d+1(22d+3+1)�3,
22d+1(22d+1+1)�3, 24d+2) for d�0. The construction establishes that a McFarland
difference set exists in an abelian group of order 22d+3(22d+1+1)�3 if and only if
the Sylow 2-subgroup has exponent at most 4. The results depend on a second
recursive construction, for semi-regular relative difference sets with an elementary
abelian forbidden subgroup of order pr. This second construction deals with all
abelian groups known to contain such relative difference sets and significantly
improves on previous results, particularly for r>1. We show that the group order
need not be a prime power when the forbidden subgroup has order 2. We also show
that the group order can grow without bound while its Sylow p-subgroup has fixed
rank and that this rank can be as small as 2r. Both of the recursive constructions
generalise to nonabelian groups. � 1997 Academic Press

1. INTRODUCTION

A k-element subset D of a finite multiplicative group G of order v is
called a (v, k, *, n)-difference set in G provided that the multiset of
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``differences'' [d1d&1
2 | d1 , d2 # D, d1{d2] contains each nonidentity ele-

ment of G exactly * times; we write n=k&*. For example, D=[x, x2, x4]
is a (7, 3, 1, 2)-difference set in Z7=(x | x7=1). It is easy to check that
[ y, x, xy, xy2, x2y, x3y3], [z, xz, z2, yz2, z3, xyz3] and [z, xz, w, yw, zw,
xyzw] are examples of (16, 6, 2, 4)-difference sets in the abelian groups
Z2

4=(x, y | x4=y4=1) , Z4_Z2
2=(x, y, z | z4=x2=y2=1) and Z4

2=
(x, y, z, w | x2=y2=z2=w2=1) respectively.

Difference sets arise in a wide variety of theoretical and applied contexts.
They are important in design theory because a (v, k, *, n)-difference set
in G is equivalent to a symmetric (v, k, *, n)-design with a regular auto-
morphism group G [32]. The study of difference sets is also deeply
connected with coding theory because the code, over a field F, of the
symmetric design corresponding to a (v, k, *, n)-difference set may
be considered as the right ideal generated by D in the group algebra
FG [29, 32]. Difference sets in abelian groups are the natural solution to
many problems of signal design in digital communications, including
synchronisation [25], radar [1], coded aperture imaging [23, 52], and
optical image alignment [41]. For a recent survey of difference sets see
Jungnickel [29].

The central problem is to determine, for each parameter set (v, k, *, n),
which groups of order v contain a difference set with these parameters.
An extensive literature has been devoted to this problem, exposing con-
siderable interplay between difference sets and such diverse branches of
mathematics as algebraic number theory, character theory, representation
theory, finite geometry and graph theory. Nonetheless the central problem
remains open, both for abelian and nonabelian groups, except for heavily
restricted parameter sets. One of the most popular techniques for con-
structing a difference set or for ruling out its existence is to consider the
image of a hypothetical difference set under mappings from the group G to
one or more quotient groups G�U (see Ma and Schmidt [40] for a recent
example).

By a counting argument the parameters (v, k, *, n) of a difference set are
related by k(k&1)=*(v&1). We can assume that k�v�2 because D is a
(v, k, *, n)-difference set in G if and only if the complement G"D is a
(v, v&k, v&2k+*, n)-difference set in G. The trivial cases k=0 and k=1
are usually excluded (although we shall use trivial examples as the initial
case of some recursive constructions). Besides these constraints, difference
sets are classified into families according to further relationships between
the parameters. A great deal of research on difference sets has focussed on
two particular families of parameters: the Hadamard family given by

(v, k, *, n)=(4N 2, N(2N&1), N(N&1), N 2) (1)

14 DAVIS AND JEDWAB
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for integer N�1 (see Davis and Jedwab [13] for a survey), and the
McFarland family given by

(v, k, *, n)=\qd+1 \qd+1&1
q&1

+1+ , qd \qd+1&1
q&1 + , qd \qd&1

q&1 + , q2d+ (2)

for q a prime power and integer d�0 (see Ma and Schmidt [39] for a sum-
mary and new results). The Hadamard family derives its name from the fact
that D is a Hadamard difference set if and only if the (+1, &1) incidence
matrix of the design corresponding to D is a regular Hadamard matrix [29,
55]. The Hadamard and McFarland families intersect in 2-groups: the
Hadamard family with N=2d corresponds to the McFarland family with
q=2. The most recent discovery of a new family of parameters for which
difference sets exist was given by Spence [54] in 1977:

(v, k, *, n)=\3d+1 \3d+1&1
2 + , 3d \3d+1+1

2 + , 3d \3d+1
2 + , 32d+ (3)

for integer d�0. Other families of difference set parameters include the
projective geometries, the Paley�Hadamard family, and the twin prime
power family [4].

For each of these parameter families, difference sets have been constructed
for infinitely many values of the parameters, but not necessarily in all
possible groups of each order. A notable exception is abelian 2-groups, for
which Kraemer [31] completely solved the central problem: a Hadamard
difference set exists in an abelian group G of order 22d+2 if and only if
exp(G)�2d+2. (The exponent of a group G with identity 1G , written
exp(G), is the smallest integer : for which g:=1G for all g # G.)

A powerful stimulus to the discovery of new results on difference sets has
been the identification of open cases in groups of relatively small order. For
example, Dillon [18] led a research programme to examine constructions
and nonexistence results for Hadamard difference sets in all 267 groups of
order 64, which highlighted a single outstanding case. The solution of this
last case by Liebler and Smith [35] demonstrated that Turyn's exponent
bound [55] of 2d+2 for Hadamard difference sets in abelian groups of
order 22d+2 can be exceeded in the nonabelian case. A subsequent
collaborative effort to examine Hadamard difference sets in groups of order
100 led to Smith's surprising discovery [53] of a nonabelian group of order
100 which contains a Hadamard difference set even though no abelian
group of this order does so! Another example is the table of existence of
difference sets in abelian groups with k�50 produced by Lander [32], of
which the last open cases have recently been settled by J. E. Iiams [private
communication, 1994]. In 1992 Jungnickel [29] modified the parameter
range of this table to n�30 and listed three open cases, the last of which

15DIFFERENCE SETS CONSTRUCTION
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was settled when Arasu and Sehgal [3] exhibited a (96, 20, 4, 16)
McFarland difference set in Z2

4_Z2_Z3 , having q=4 and d=1. This was
the first example of a McFarland difference set having q=2r>2 in a group
whose Sylow 2-subgroup does not have the form Z (d+1) r+1

2 , as constructed
by McFarland [42], or Z4_Z (d+1) r&1

2 , as constructed by Dillon [20].
Arasu and Sehgal's discovery sparked a search for a similar McFarland dif-
ference set in a larger group, for which the most likely candidate was
generally presumed to be a (640, 72, 8, 64)-difference set in Z2

4_Z3
2_Z5 or

Z3
4_Z2_Z5 , having q=8 and d=1. We were unable to settle these cases

but managed to construct new difference sets by transferring partial results
from one of these groups to a group of order 320. This new example led
to many insights and eventually to the results reported in this paper. In
retrospect we believe that the natural generalisation of Arasu and Sehgal's
example has q=4 and d>1 rather than q>4 and d=1.

In this paper we present a recursive construction for difference sets
which, for the first time, unifies the Hadamard, McFarland, and Spence
families. No abelian group known to contain a difference set with param-
eters from one of these families lies outside the scope of this result
(although certain initial examples required for the Hadamard family must
be constructed separately). The construction also yields the new parameter
family

(v, k, *, n)=\22d+4 \22d+2&1
3 + , 22d+1 \22d+3+1

3 + ,

22d+1 \22d+1+1
3 + , 24d+2+ (4)

for integer d�0, for which the smallest previously unknown abelian
examples occur in the groups Z6

2_Z5 , Z4_Z4
2_Z5 and Z2

4_Z2
2_Z5 with

parameters (320, 88, 24, 64). This family of difference sets also represents
a new family of symmetric designs with the same parameters (4). In addi-
tion, the construction establishes that a McFarland difference set with q=4
exists in an abelian group of order 22d+3(22d+1+1)�3 if and only if the
Sylow 2-subgroup has exponent at most 4. This necessary and sufficient
condition is analogous to Kraemer's [31] result for the case q=2. The
smallest previously unknown examples occur in the groups Z2

4_Z3
2_Z11

and Z3
4_Z2_Z11 with parameters (1408, 336, 80, 256). The essential idea

of the construction is to combine multiple copies of a difference set with a
semi-regular relative difference set to generate a difference set in a larger
group. A preliminary announcement of these results was given in [12].

A k-element subset R of a finite multiplicative group G of order mu
containing a normal subgroup U of order u is called a (m, u, k, *)
relative difference set (RDS) in G relative to U provided that the multiset

16 DAVIS AND JEDWAB
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[r1r&1
2 | r1 , r2 # R, r1{r2] contains each element of G"U exactly * times

and contains no element of U. The subgroup U is sometimes called the for-
bidden subgroup. (We have not used the conventional notation N for the
normal subgroup and n for its order to avoid confusion with the difference
set parameter n.) For example, R=[1, x, y, xy3, z, xy2z, x2y3z, x3y3z] is
a (8, 4, 8, 2) RDS in Z2

4_Z2=(x, y, z | x4=y4=z2=1) relative to
(x2, y2) $Z2

2. A (m, u, k, *) RDS in G, relative to some normal sub-
group U, is equivalent to a square divisible (m, u, k, *)-design whose
automorphism group G acts regularly on points and blocks [28]. For a
recent survey of RDSs see Pott [48]. The central problem is to determine,
for each parameter set (m, u, k, *), the groups G of order mu and the nor-
mal subgroups U of order u for which G contains a RDS relative to U with
these parameters.

By a counting argument the parameters (m, u, k, *) of a RDS are related
by k(k&1)=u*(m&1). If k=u* then the RDS is called semi-regular and
the parameters are (u*, u, u*, *). In contrast to the situation for difference
sets, the complement G"R of a RDS R is not in general a RDS. The trivial
cases k=0 and k=1 are usually excluded. A difference set can be con-
sidered as a RDS with u=1. Furthermore, the image of a (m, u, k, *) RDS
in G relative to U under the quotient mapping from G to G�U is a (m, k,
u*, k&u*)-difference set in G�U. In particular, the image of a semi-regular
(u*, u, u*, *) RDS in G relative to U is a trivial (u*, u*, u*, 0)-difference
set in G�U. A great deal of attention has been paid to semi-regular RDSs
in p-groups, whose parameters have the form ( pw, pr, pw, pw&r) for p prime.
Indeed, Pott [48] calls the central problem for these RDSs ``one of the
most interesting questions about RDSs.'' Ma and Schmidt [37] have
recently solved the central problem for r=1 in the abelian case, with some
exceptions when w and p are odd, but describe the case r>1 as ``much
more difficult.''

In this paper we present a recursive construction for semi-regular RDSs
in a group G relative to a subgroup U$Zr

p, where the Sylow p-subgroup
of G has rank at least 2r. The essential idea is to combine semi-regular
RDSs in pr quotient groups of G to form a semi-regular RDS in G. This
RDS construction produces the families of RDSs needed for the recursive
difference set construction. It also establishes an extensive pattern of exist-
ence for semi-regular RDSs relative to subgroups U$Zr

p, for each r�1.
This significantly improves on the previous state of knowledge for semi-
regular RDSs, particularly when r>1. The position of the subgroup U
within the group G is of crucial importance in these results. We show that
the order of G can grow without bound while its Sylow p-subgroup has
fixed rank and that this rank can be as small as 2r. In the case pr=2 we
obtain results for groups G whose order need not be a prime power, so that
the RDS parameters have the form (2*, 2, 2*, *) where * need not be a

17DIFFERENCE SETS CONSTRUCTION
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power of 2. In all other cases our results are for p-groups G and so the
RDS parameters have the form ( pw, pr, pw, pw&r) for p prime. In particular,
we improve on Ma and Schmidt's result [37] to show that there exists a
( pw, p, pw, pw&1) semi-regular RDS in any abelian group G of order pw+1

relative to any subgroup U of order p except possibly when p is odd,
w=2d+1 is odd, and either G=Z 2

p d+1 or G=U_Zpd+1_Zp d . We are not
aware of any abelian groups G known to contain semi-regular RDSs
relative to an elementary abelian subgroup which are not covered by our
results.

Difference sets are usually studied in the context of the group ring Z[G]
of the group G over the ring of integers Z. The definition of a (v, k, *, n)-
difference set D in G is equivalent to the equation DD(&1)=n1G+*G in
Z[G], where by an abuse of notation we have identified the sets D, D(&1),
G with the respective group ring elements D=�d # D d, D(&1)=�d # D d &1,
G=�g # G g, and 1G is the identity of G. Similarly the definition of a
(m, u, k, *) RDS R in G relative to U is equivalent to the equation
RR(&1)=k1G+*(G&U ) in Z[G].

An alternative viewpoint for considering difference sets and RDSs,
predominant in engineering papers, is via the correlation properties of
binary arrays [27]. The (1, 0) binary array A corresponding to a subset
D of G is (ag | g # G) defined by ag=1 if g # D and ag=0 if g � D.
Then DD(&1)=�g # G RA(g)g in Z[G], where RA(g)=�h # G ahagh is the
autocorrelation of the array A at displacement g. The (+1, &1) binary
array B=(bg | g # G) is given by the linear transformation bg=1&2ag .
When G is abelian the binary arrays A and B can be represented as
matrices. Although binary arrays do not appear in this exposition we have
found the (+1, &1) matrix representation to be an invaluable tool for
visualisation.

We now give some definitions and results which will be used freely
throughout the paper without further reference. We shall follow the prac-
tice (standard in the difference set literature) of abusing notation by iden-
tifying sets with group ring elements, as described above. Since we shall be
concerned principally with abelian groups, all groups will be implicitly
abelian unless otherwise stated. We write >r

i=1 Z:i
for the direct product

Z:1
_Z:2

_ } } } _Z:r
. For w a positive integer and p prime, we call p self-

conjugate modulo w if pi#&1 (mod wp) for some integer i, where wp is the
largest divisor of w coprime to p. In the abelian case, a character of the
group G is a homomorphism from G to the multiplicative group of com-
plex roots of unity. Under pointwise multiplication the set G* of characters
of G forms a group isomorphic to G. The identity of this group is the prin-
cipal character that maps every element of G to 1. The character sum of a
character / over the group ring element C corresponding to a subset of G
is /(C )=�c # C /(c). It is well-known that the character sum /(C ) is 0 for

18 DAVIS AND JEDWAB
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all nonprincipal characters / of G if and only if C is a multiple of G
(regarded as a group ring element), and that �/ # G* /(g) is nonzero if and
only if g=1G . If a character / is nonprincipal on G and principal on a sub-
group U then / induces a nonprincipal character � on G�U defined by
�(gU )=/(g). (� is well-defined because if g1U=g2U then g1=ug2 for
some u # U and /(u)=1 for every element u of U.)

The use of character sums to study difference sets in abelian groups was
introduced by Turyn in his seminal paper [55] and subsequently extended
to RDSs:

Lemma 1.1. (i) The k-element subset D of an abelian group G of order
v is a (v, k, *, n)-difference set in G if and only if |/(D)|=- n for every non-
principal character / of G.

(ii) The k-element subset R of an abelian group G of order mu con-
taining a subgroup U of order u is a (m, u, k, *) RDS in G relative to U if
and only if for every nonprincipal character / of G

|/(R)|={- k
- k&u*

if / nonprincipal on U
if / principal on U.

The existence of a subset D or R in Lemma 1.1 with the character
properties described forces the implicitly defined parameters n and * respec-
tively to be integer. Lemma 1.1 indicates a general strategy for constructing
difference sets and RDSs, namely to choose a group subset for which all
nonprincipal character sums have the correct modulus. In Section 2 we
show that the determination of character sums can be greatly facilitated by
selecting the group subset as a collection of ``building blocks'' which inter-
act in a simple way. This formalises many ideas which have been used
implicitly in previous papers. At the end of Section 2 we give an overview
of the paper in terms of the concepts introduced.

2. BUILDING SETS

Many of the key ideas in this paper were developed from studying a con-
struction due to McFarland [42], and a modification given by Dillon
[20], for difference sets with parameters (2). The construction regards the
elementary abelian group G of order qd+1 as a vector space P of dimension
d+1 over GF(q), where q is a prime power. There are h=(qd+1&1)�
(q&1) subspaces H0 , H1 , ..., Hh&1 of P of dimension d, called hyperplanes.
Let G$ be any group (not necessarily abelian) containing G as a central

19DIFFERENCE SETS CONSTRUCTION
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subgroup of index h+1 and let g$0 , g$1 , ..., g$h # G$ be coset representatives
of G in G$. Then �h&1

i=0 g$i Hi is a McFarland difference set in G$. The con-
struction can be viewed as depending crucially on the following property:
for any nonprincipal character of G there is exactly one hyperplane Hi

having a nonzero character sum, and this nonzero character sum always
has the same modulus qd. The difference set is comprised of h+1 subsets
of G, namely the hyperplanes together with the empty set. In the case when
G$ is abelian, Lemma 1.1(i) can be used to verify that the construction
produces a difference set, as follows. For characters of G$ which are non-
principal on G, the required character sum modulus of - n=qd is provided
by a contribution of qd from one subset and 0 from all the other subsets.
For nonprincipal characters of G$ which are principal on G, we shall see
that the required character sum modulus of qd follows easily as a conse-
quence of the subset sizes.

A construction for semi-regular RDSs depending on the same property,
in the case d=1, is due to Davis [10]. Let G$ be any group (not
necessarily abelian) containing G as a central subgroup of index h&1=q
and let g$1 , g$2 , ..., g$h&1 be coset representatives of G in G$. Then �h&1

i=1 g$i Hi

is a (q2, q, q2, q) semi-regular RDS in G$ relative to H0 . The RDS is com-
prised of h&1 subsets of G, namely h&1 of the h hyperplanes. In the case
when G$ is abelian, Lemma 1.1(ii) can be used to verify that the construc-
tion produces a RDS, as follows. If a nonprincipal character / of G is prin-
cipal on H0 then each subset provides a contribution to the character sum
modulus of 0, and if / is nonprincipal on H0 then one subset contributes
- k=q and the rest contribute 0. This gives the required character sum
modulus for characters of G$ which are nonprincipal on G. For nonprin-
cipal characters of G$ which are principal on G, the required character sum
modulus of 0 is again a consequence of the subset sizes. [10] reports an
observation of Pott's that, in the case d>1, the same construction
produces a (q(h&1), qd, qd (h&1), qd+1((qd&1&1)�(q&1)), qd ((qd&1)�
(q&1))) semi-regular divisible difference set in G$ relative to H0 because of
the mutual character properties of the hyperplanes (see Jungnickel [28] for
a definition and discussion of divisible difference sets).

Motivated by these examples, we define a building block in a group G
with modulus m to be a subset of G such that all nonprincipal character
sums over the subset have modulus either 0 or m. Here and subsequently
in the paper, all groups will be implicitly assumed to be abelian unless
otherwise stated. Some examples of building blocks are a coset of a sub-
group of G, a semi-regular RDS in G relative to a subgroup U, and a dif-
ference set in G. For integers a�1 and t�1 we define a (a, m, t) building
set (BS) on a group G relative to a subgroup U to be a collection of t
building blocks in G with modulus m, each containing a elements, such
that for every nonprincipal character / of G

20 DAVIS AND JEDWAB
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(i) exactly one building block has nonzero character sum if / is non-
principal on U and

(ii) no building block has nonzero character sum if / is principal
on U.

It follows immediately from Lemma 1.1(ii) and the relationship between
RDS parameters that, for a>1, a (a, - a, 1) BS on a group G relative to
a subgroup U of order u is equivalent to a (a, u, a, a�u) semi-regular RDS
in G relative to U. (A trivial (1, 1, 1) BS is equivalent to a (1, u, 1, 0) RDS.)

We now show that a BS on a group G relative to a subgroup U can be
used to construct a BS on larger groups containing G as a subgroup. In
particular we shall construct a semi-regular RDS as a single building block
on a group containing G.

Lemma 2.1. Suppose there exists a (a, - at, t) BS on a group G relative to
a subgroup U. Then there exists a (as, - at, t�s) BS on G$ relative to U, where
s divides t and G$ is any group containing G as a subgroup of index s.

Proof. Let [B1 , B2 , ..., Bt] be a (a, - at , t) BS on G relative to U. For
each j=1, 2, ..., t�s define the subset Rj=� s

i=1 g$i Bi+( j&1)s of G$, where
g$1 , g$2 , ..., g$s # G$ are coset representatives of G in G$. Let / be a non-
principal character of G$ and consider the character sum /(Rj)=
�s

i=1 /(g$i) /(Bi+( j&1)s). We distinguish three cases: / is principal on G and
nonprincipal on G$; / is principal on U and nonprincipal on G; and / is
nonprincipal on U. In the first case, when / is principal on G and nonprin-
cipal on G$ (so s>1), /(Bi+( j&1) s)=|Bi+( j&1) s |=a for each ordered pair
(i, j ) and so /(Rj )=a �s

i=1 /(g$i )=0 for each j. The last equality uses the
fact that / induces a nonprincipal character on G$�G, and the associated
character sum over this group is 0. In the second case, when / is principal
on U and nonprincipal on G, by assumption /(Bi+( j&1) s)=0 for each
ordered pair (i, j ) and so again /(Rj)=0 for each j. In the third case, when
/ is nonprincipal on U, by assumption |/(Bi+( j&1) s)| equals - at for
exactly one ordered pair (i, j ) (say (I, J )) and equals 0 for all other ordered
pairs (i, j). Therefore |/(RJ)|=|/(g$I)| |/(BI+(J&1) s)|=- at and |/(Rj )|=0
for each j{J.

The character sums for the three cases show that [R1 , R2 , ..., Rt�s] is a
(as, - at , t�s) BS on G$ relative to U. K

Note that, in the proof of Lemma 2.1, the building blocks Bi can have
non-empty intersection but by definition no set Rj contains repeated
elements. We next show that in the case s=t of Lemma 2.1 we can obtain
a semi-regular RDS in G$ from a BS on G, and we shall exploit this result
in Section 8 to deduce the existence of semi-regular RDSs from BSs.
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Theorem 2.2. Suppose there exists a (a, - at, t) BS on a group G
relative to a subgroup U of order u, where at>1. Then there exists a
(at, u, at, at�u) semi-regular RDS in G$ relative to U, where G$ is any group
containing G as a subgroup of index t.

Proof. Apply Lemma 2.1 with s=t to obtain a (at, - at , 1) BS on G$
relative to U. For at>1, this is equivalent to a (at, u, at, at�u) semi-regular
RDS in G$ relative to U. K

For example, the hyperplane construction of Davis [10] and Pott
(reported in [10]) discussed at the beginning of this section can be inter-
preted as a (qd, qd, h&1) BS [H1 , H2 , ..., Hh&1] on G relative to H0 ,
where G is the elementary abelian subgroup of order qd+1 and h=
(qd+1&1)�(q&1). By Theorem 2.2, the case d=1 implies the existence of
a (q2, q, q2, q) semi-regular RDS in any group G$ containing G as a sub-
group of index q. We shall develop a powerful generalisation of this hyper-
plane construction in Section 4.

In this paper we consider only the case m=- at of a (a, m, t) BS. We
have given the more general definition because of the apparent connection
with divisible difference sets. It seems that many other known constructions
for divisible difference sets can be analysed in terms of BSs.

A second example, due to Arasu and Sehgal [3], is a (8, 4, 2) BS on
Z2

4_Z2=(x, y, z | x4=y4=z2=1) relative to (x2, y2)$Z2
2, where the

building blocks are [1, x, xz, x2z, x2yz, xy, xy3z, y3] and [1, x3, x3y2z,
x2y2z, yz, xy3z, xy3, x2y]. By Theorem 2.2, this implies the existence of a
(16, 4, 16, 4) semi-regular RDS in each of the groups Z8_Z4_Z2 , Z3

4, and
Z2

4_Z2
2 relative to a subgroup isomorphic to Z2

2 contained within two of
the largest direct factors of the group.

Given a (a, - at , t) BS [B1 , B2 , ..., Bt] on a group G relative to a sub-
group U of order u we can find several constraints on the parameters a, t,
u and |G |. Theorem 2.2 implies that u | at for at>1 (which derives from the
condition that * be integer in Lemma 1.1(ii)). Theorem 2.2, together with the
trivial case at=1, also implies that |G |=ua. Furthermore we can show that
t | a(u&1), as we now outline. Let G* be the group of characters of G. For
any building block Bi , �/ # G* |/(Bi )| 2=�/ # G* �g1 # Bi

�g2 # Bi
/(g1) /(g2)=

�/ # G* �g1 # Bi
�g2 # Bi

/(g1g&1
2 )=�g1 # Bi

�/ # G* /(1G)=|Bi | } |G |. Therefore if
wi is the number of nonprincipal characters of G giving a nonzero character
sum over Bi then a2+atwi=ua2, so that wi=a(u&1)�t for all i.

We have seen how to construct a semi-regular RDS from a BS. We now
define a modification of a BS for the purpose of constructing difference
sets in an analogous way. For integers a�0, m�1, and h�1, we define a
(a, m, h, +) extended building set (EBS) on a group G with respect to a sub-
group U to be a collection of h building blocks in G with modulus m, of
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which h&1 contain a elements and one contains a+m elements, such that
for every nonprincipal character / of G

(i) exactly one building block has nonzero character sum if / is
principal on U and

(ii) no building block has nonzero character sum if / is nonprincipal
on U.

We define a (a, m, h, &) EBS on G with respect to U in the same way,
with a+m replaced by a&m. We shall treat both cases simultaneously by
referring to a (a, m, h, \) EBS. Notice that the role of principal and non-
principal characters on U is the reverse of that used in the definition of
a BS. Notice also that for a EBS we must have m integer, because one
building block contains a\m elements, whereas for a BS m need not be
integer. We call the EBS covering in the case U=[1G], when exactly one
building block has nonzero character sum for every nonprincipal character
of G. (The use of ``covering'' refers not to the intersection or union of the
building blocks but to their character properties.) It follows immediately
from Lemma 1.1(i) that a (a, m, 1, \) covering EBS on a group G is equiv-
alent to a ( |G |, a\m, a\m&m2, m2)-difference set in G.

We now show that a covering EBS on a group G can be used to con-
struct a covering EBS on larger groups containing G as a subgroup. In par-
ticular we shall construct a difference set as a single building block on a
group containing G. We shall exploit this result in Section 5 to deduce the
existence of difference sets from covering EBSs.

Lemma 2.3. Suppose there exists a (a, m, h, \) covering EBS on a
group G. Then there exists a (as, m, h�s, \) covering EBS on G$, where s
divides h and G$ is any group containing G as a subgroup of index s.

Proof. The proof is modelled on that of Lemma 2.1. Let [B1 , B2 , ..., Bh]
be a (a, m, h, \) covering EBS on G and let the building block con-
taining a\m elements be B1 . For each j=1, 2, ..., h�s let Dj be the
subset �s

i=1 g$i Bi+( j&1) s of G$, where g$1 , g$2 , ..., g$s # G$ are coset repre-
sentatives of G in G$. If / is a principal character of G and nonprincipal
on G$ (so s>1) then /(Dj)=/(g$1) |B1+( j&1) s |+�s

i=2 /(g$i ) |Bi+( j&1) s |=
/(g$1)( |B1+( j&1) s |&a)+a �s

i=1 /(g$i)=/(g$1)( |B1+( j&1) s |&a), because the
character induced by / on G$�G is nonprincipal. Therefore |/(Dj )| equals m
for j=1 and equals 0 for all j>1. If / is a nonprincipal character of G then
by assumption |/(Bi+( j&1) s)| equals m for exactly one ordered pair (i, j )
and equals 0 for all other ordered pairs (i, j ). Therefore |/(Dj )| equals m
for exactly one value of j and equals 0 for all other values of j.

Combining these two cases, [D1 , D2 , ..., Dh�s] is a (as, m, h�s, \)
covering EBS on G$. K

23DIFFERENCE SETS CONSTRUCTION



File: 582A 279612 . By:DS . Date:15:09:97 . Time:09:17 LOP8M. V8.0. Page 01:01
Codes: 3283 Signs: 2706 . Length: 45 pic 0 pts, 190 mm

Theorem 2.4. Suppose there exists a (a, m, h, \) covering EBS on a
group G. Then there exists a (h |G |, ah\m, ah\m&m2, m2)-difference set
in any group G$ containing G as a subgroup of index h.

Proof. Apply Lemma 2.3 with s=h to obtain a (ah, m, 1, \) covering
EBS on G$. This is equivalent to a (h |G |, ah\m, ah\m&m2, m2)-
difference set in G$. K

For example, the hyperplane construction of McFarland [42] and
Dillon [20] discussed at the beginning of this section can be interpreted as
a (qd, qd, h+1, &) covering EBS [,, H0 , H1 , ..., Hh&1] on the elemen-
tary abelian group G of order qd+1, where h=(qd+1&1)�(q&1). By
Theorem 2.4, this implies the existence of a McFarland difference set in any
group G$ containing G as a subgroup of index h+1.

We have already given an example of a (8, 4, 2) BS [B1 , B2] on
Z2

4_Z2=(x, y, z | x4=y4=z2=1) relative to (x2, y2) $Z2
2 , due to

Arasu and Sehgal [3]. If we define a third building block B3=(x2, y2)
then [B1 , B2 , B3] is a (8, 4, 3, &) covering EBS and then by Theorem 2.4
there exists a (96, 20, 4, 16)-difference set in Z2

4_Z2_Z3 . The main pur-
pose of [3] was to demonstrate the existence of such a difference set, but
the embedded (8, 4, 2) BS will be of great use in the construction of
families of difference sets and semi-regular RDSs in later sections.

We now derive some constraints on the parameters a, m, h and |G | of
a (a, m, h, \) covering EBS on a group G. The relationship between
difference set parameters (v, k, *, n) can be written as k2&n=*v,
so from Theorem 2.4 we find a(ah\2m)=(ah\m&m2) |G |. Provided
*=ah\m&m2>0, this implies that ah\m&m2 divides a(ah\2m). (The
exceptional case *=0 corresponds to k=1, namely a trivial (0, 1, h, +)
or (2, 1, 1, &) or (1, 1, 2, &) covering EBS on G.) Let the covering
EBS be [B1 , B2 , ..., Bh] and let B1 be the building block containing
a\m elements. By the same argument as previously used for a BS,
�/ # G* |/(Bi )| 2=|Bi | } |G |. Therefore if wi is the number of nonprincipal
characters of G giving a nonzero character sum over Bi then
a2+m2wi=a |G | for all i>1 and (a\m)2+m2w1=(a\m) |G | , so that
wi=a( |G |&a)�m2 for all i>1 and w1=a( |G |&a)�m2&1\(|G |&2a)�m.
It follows that, for h>1, m divides |G | and m | a.

Notice that we can construct a difference set or RDS by fixing one build-
ing block at a time. The character properties of the building blocks already
fixed do not change as further building blocks are determined. This is an
important advantage over the binary array viewpoint, in which we must
consider the cross-correlation of a new array with each of those previously
fixed.

The remainder of the paper is concerned with describing and applying
constructions for covering EBSs and BSs. In Section 3 we give a recursive
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construction for covering EBSs which assumes the existence of certain
families of BSs. These families are provided by a recursive construction for
BSs presented in Section 4. We shall illustrate the constructions of Sections
3 and 4 by reference to (16, 8, 5, +) covering EBSs on groups of order 64
and (32, 16, 11, &) covering EBSs on groups of order 128, which by
Theorem 2.4 produce difference sets with parameters (320, 88, 24, 64) and
(1408, 336, 80, 256) respectively. In Sections 5 and 6 we apply the recursive
constructions and use Theorem 2.4 to provide a unifying framework for dif-
ference sets in the McFarland, Spence and Hadamard parameter families as
well as the new parameter family (4). Section 5 deals with BSs on p-groups
only, whereas Section 6 uses BSs on groups whose order need not be a
prime power. In Section 7 we show that the construction of Section 4 is suf-
ficiently strong to provide many further existence results for families of BSs.
From Theorem 2.2 we deduce the existence of several families of semi-
regular RDSs in Section 8 and provide a unifying framework for many pre-
viously known results on RDSs. We conclude in Section 9 with a selection
of open problems and a discussion of how the definitions and constructions
of this paper might be generalised to deal with nonabelian groups.

3. RECURSIVE CONSTRUCTION OF EXTENDED BUILDING SETS

In this section we give a recursive construction for covering EBSs. By
Theorem 2.4, this central result implies a recursive construction for dif-
ference sets, which is the unifying construction of the title of the paper.

We shall construct a covering EBS on a group G as the multiset union
of two collections of building blocks. The first collection will be a
(uam, um, h, \) EBS on G with respect to a subgroup U of order u. By
the definition of EBS, the nonprincipal characters of G giving a nonzero
character sum on these building blocks are precisely those which are prin-
cipal on U. The second collection will be a (uam, um, t) BS on G relative
to U, where um=at (so the BS parameters can equivalently be written as
(a2t, at, t).) By the definition of BS, the nonprincipal characters of G giving
a nonzero character sum on these building blocks are precisely those which
are nonprincipal on U. Moreover, since each building block of a BS or
EBS has nonzero character sum for at most one nonprincipal character,
the multiset union of these two collections will be a (uam, um, h+t, \)
covering EBS on G. In this way we shall combine the favourable properties
of the two collections of blocks without introducing unwanted interactions
between them.

We can fix |G |=u2am from the relationship between BS parameters
given after Theorem 2.2. By Theorem 2.2, the second collection of building
blocks can be viewed as a special form of (u2m2, u, u2m2, u2m) semi-regular
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RDS relative to U in a group having G as a subgroup of index t. To form
the first collection of building blocks we begin with a covering (am, m, h, \)
EBS on the quotient group G�U, which by Theorem 2.4 can be viewed as
a special form of (uamh, m(ah\1), m(ah\1&m), m2)-difference set in a
group having G�U as a subgroup of index h. We now show how to take u
copies of this covering EBS on G�U to produce a EBS on G with respect
to U, as required for the first collection of building blocks.

Lemma 3.1. Suppose there exists a (am, m, h, \) covering EBS on a
group G�U, where U is a subgroup of G of order u. Then there exists a
(uam, um, h, \) EBS on G with respect to U.

Proof. Let [B$1 , B$2 , ..., B$h] be a (am, m, h, \) covering EBS on G�U.
For each j let Bj=[g # G | gU # B$j] be the pre-image of B$j under the
quotient mapping from G to G�U. Since Bj is the union of |B$j | distinct
cosets of U, it follows both that |Bj |=u |B$j | and that for every nonprin-
cipal character / of G

/(Bj)={0
u�(B$j )

if / nonprincipal on U
if / principal on U,

where � is the nonprincipal character induced by / on G�U. By the defini-
tion of covering EBS, �(B$j ) is nonzero (having modulus m) for exactly one
value of j. Therefore [B1 , B2 , ..., Bh] is a (uam, um, h, \) EBS on G with
respect to U. K

We can now construct a covering EBS on G from two ingredients: a
covering EBS on G�U (a special form of difference set) and a BS on G
relative to U (a special form of semi-regular RDS). The following theorem
is the key construction of the paper.

Theorem 3.2. Let G be a group of order u2am containing a subgroup U
of order u. Suppose there exists a (am, m, h, \) covering EBS on G�U and
there exists a (a2t, at, t) BS on G relative to U, where um=at. Then there
exists a (uam, um, h+t, \) covering EBS on G.

Proof. By Lemma 3.1 the existence of a (am, m, h, \) covering EBS on
G�U implies the existence of a (uam, um, h, \) EBS, say [B1 , B2 , ..., Bh],
on G with respect to U. By assumption there exists a (a2t, at, t) BS, say
[Bh+1, Bh+2 , ..., Bh+t], on G relative to U. Since um=at the parameters
of the BS can be written as (uam, um, t). By the definitions of EBS and BS,
this implies that [B1 , B2 , ..., Bh+t] is a (uam, um, h+t, \) covering EBS
on G. K
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By applying the relationship between covering EBS parameters given
after Theorem 2.4 to G�U, we find the parameters of Theorem 3.2 are con-
strained by am(amh\2m)=(amh\m&m2) |G�U | , which reduces to
ah(u&1)=mu�(u&2).

For example, let G be the group Z2
4_Z2 , Z4_Z3

2 , or Z5
2 . In each case

G contains a subgroup U$Z2
2 such that G�U$Z3

2 . Now there exists a tri-
vial (2, 1, 1, &) covering EBS [B$1] on Z3

2 , comprising just the identity
element. Following the proof of Lemma 3.1, set B1=[g # G | gU # B$1]=U.
Assume we can find a (8, 4, 2) BS [B2 , B3] on G relative to U. (Section 2
contains an example of such a BS for the case G=Z2

4_Z2 .) Then by
Theorem 3.2, [B1 , B2 , B3] is a (8, 4, 3, &) covering EBS on G and by
Theorem 2.4 there exists a (96, 20, 4, 16)-difference set in G_Z3 .

In the above example B1 is a subgroup of G, but this need not be the
case. Take G to be the group Z2

4_Z2
2 , Z4_Z4

2 , or Z6
2 and let U$Z2

2 be a
subgroup of G such that G�U$Z4

2 . Now we have seen in Section 1 that Z4
2

contains a (16, 6, 2, 4)-difference set, which can be viewed as a (4, 2, 1, +)
covering EBS [B$1] on Z4

2 . Again set B1=[g # G | gU # B$1], which is not
a subgroup of G. Assume we can find a (16, 8, 4) BS [B2 , B3 , B4 , B5] on
G relative to U. Then by Theorem 3.2, [B1 , B2 , B3 , B4 , B5] is a (16, 8,
5, +) covering EBS on G and by Theorem 2.4 there exists a (320, 88, 24,
64)-difference set in G_Z5 . These difference set parameters belong to the
new family (4) with d=1, for which no examples of difference sets were
previously known.

As a further example, we show that the covering EBS on G�U can com-
prise more than one building block. Take G to be any group of order 128
and exponent at most 4, and let U$Z2

2 be a subgroup of G such that G�U
is isomorphic to Z4_Z3

2 or Z5
2 . From the first example above, there is a

(8, 4, 3, &) covering EBS on G�U. Assume we can find a (32, 16, 8) BS
on G relative to U. Then there exists a (32, 16, 11, &) covering EBS
on G and therefore a (1408, 336, 80, 256)-difference set in G_Z11 . These
difference set parameters belong to the McFarland family with q=4 and
d=2, for which the only abelian groups previously known to contain dif-
ference sets were Z7

2_Z11 [42] and Z4_Z5
2_Z11 [20].

We shall show in Section 4 how to construct the BSs whose existence
was assumed in the above examples. Following the pattern indicated by the
examples, we now apply Theorem 3.2 recursively to large classes of groups,
assuming for now that the required BSs are available.

Theorem 3.3. Let p be a prime, let r�1, and for each d�0 let Gd be a
set of groups of order p(d+1)ram. Suppose there exists a (am, m, h, \) cover-
ing EBS on each G0 # G0 . Suppose also that, for each d�1, there exists a
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( p(d&1) ra2t, p (d&1) rat, p(d&1)rt) BS on each Gd # Gd relative to a subgroup Ud

(depending on Gd ) of order pr, where prm=at and where Gd&1 contains a
group isomorphic to Gd�Ud . Then for each d�0 there exists a ( pdram, pdrm,
h+(( pdr&1)�(pr&1)) t, \) coverings EBS on each Gd # Gd .

Proof. The proof is by induction on d. The case d=0 is true by
assumption. Assume the case d&1 to be true. For each Gd # Gd , by assump-
tion there exists a ( p(d&1)ra2t, p(d&1)rat, p(d&1) rt) BS on Gd relative to a
subgroup Ud . Since Gd&1 contains a group isomorphic to Gd�Ud (of order
pdram), by the inductive hypothesis there exists a ( p (d&1) ram, p(d&1) rm,
h+(( p(d&1)r&1)�( pr&1)) t, \) covering EBS on Gd �Ud . It follows from
Theorem 3.2 that the case d is true, completing the induction. K

When applying the recursive construction for covering EBSs of Theorem
3.3 we shall usually take Gd to be the set of all p-groups of order p(d+1)ram
with bounded exponent (independent of d ). The condition that Gd&1 con-
tains a group isomorphic to Gd�Ud will then automatically be satisfied. In
order to apply this theorem we require suitable families of BSs. We shall
show how to obtain these in Section 4 by means of a second recursive con-
struction. In Section 5 we shall deduce the existence of families of covering
EBSs which, by Theorem 2.4, implies the existence of families of difference
sets. In Section 6 we shall use a similar procedure to construct difference
sets with parameters from the Hadamard family (1), applying Theorem 3.2
directly instead of Theorem 3.3.

4. RECURSIVE CONSTRUCTION OF BUILDING SETS

In this section we give a recursive construction for BSs relative to an
elementary abelian subgroup. This will be used to provide the families of
BSs needed for both the construction of difference sets in Sections 5 and 6
and for the construction of semi-regular RDSs in Section 8.

The construction depends on a vector space P of dimension 2 over
GF( pr). Let $ be a multiplicative generator of GF( pr). We can write the
additive group of GF( pr) as ($i | 0�i�r&1) and so P is an additive
group which can be written as ( ($i, 0), (0, $ j ) | 0�i, j�r&1). We con-
struct an isomorphism from P to Z2r

p =(x1 , x2 , ..., xr , y1 , y2 , ..., yr) by
($i, 0) [ xi+1 and (0, $ j ) [ yj+1 . The subspaces of P of dimension 1 (the
hyperplanes) H0 , H1 , ..., Hpr each contain pr elements and have as their
bases [(1, 0)], [(0, 1)], [(1, 1)], [($, 1)], [($2, 1)], [($3, 1)], ..., [($ pr&2, 1)].

Lemma 4.1. Let P be a vector space of dimension 2 over GF( pr), where
p is prime. Any nonprincipal character of P is principal on exactly one of the
hyperplanes of P.
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Proof. We show firstly that the kernels of the nonprincipal characters
/ of P are precisely the subgroups of P of order p2r&1. Since / is a
homomorphism from P onto the pth roots of unity, |Ker(/)|=|P|�p=p2r&1

and so Ker(/) is a subgroup of P of order p2r&1. Furthermore any sub-
group of P of order p2r&1 is the kernel of some nonprincipal character
of P.

We next show that a subgroup of P of order p2r&1 contains at most one
hyperplane. P is a vector space of dimension 2 over GF( pr) and each
hyperplane is a subspace of dimension 1. Hence two distinct hyperplanes
intersect in a subspace of dimension 0: the identity element. Therefore the
product of two distinct hyperplanes is the whole of P, so a subgroup of
order p2r&1 cannot contain two distinct hyperplanes.

Finally we use a counting argument to show that a subgroup of P of
order p2r&1 contains exactly one hyperplane. Let Hi be a hyperplane for
some i=0, 1, ..., pr. Since P$Z2r

p we have P�Hi$Zr
p. Therefore P�Hi

contains ( pr&1)�( p&1) subgroups of order pr&1. Each such subgroup of
P�Hi is associated with a subgroup of P of order p2r&1 containing Hi ,
using the quotient mapping from P to P�Hi . Therefore there are at least
( pr&1)�( p&1) distinct subgroups of P of order p2r&1 containing Hi . Since
i can take pr+1 values, there are at least ( pr+1)( pr&1)�( p&1)=
( p2r&1)�( p&1) distinct subgroups of P of order p2r&1 containing some
hyperplane (since we have already shown that the subgroups of P arising
from different values of i must be distinct). But the total number of sub-
groups of P of order p2r&1 is ( p2r&1)�( p&1) and so every subgroup of P
of order p2r&1 contains exactly one hyperplane.

We have now shown that for any nonprincipal character / of P, Ker(/)
contains exactly one hyperplane of P. This completes the proof. K

Lemma 4.1 implies the following result, due to Davis [10], which was
discussed when introducing building sets in Section 2.

Corollary 4.2. There exists a ( pr, pr, pr) BS on Z2r
p relative to Z r

p ,
where p is prime and r�1.

Proof. Let H0 , H1 , ..., Hp r be the subgroups of Z2r
p of order pr corre-

sponding to hyperplanes of P under the isomorphism from Z2r
p to P. Label the

subgroups so that H0=Zr
p. Then Lemma 4.1 implies that [H1 , H2 , ..., Hpr]

is a ( pr, pr, pr) BS on Z2r
p relative to Z r

p . K

We now show how to exploit the hyperplane structure of Lemma 4.1 to
obtain a more general result than Corollary 4.2. Take a group G containing
a subgroup Q isomorphic to Z2r

p and consider those subgroups Hi of G
which correspond to hyperplanes when viewed as subgroups of Q. We
show that if there exists a BS on G�Hi relative to Q�Hi for i=1, 2, ..., pr
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then each BS can be ``lifted'' from the quotient group G�Hi to G (in a
similar manner to the lifting of a covering EBS in Lemma 3.1) to collec-
tively form a BS on G relative to H0 .

Theorem 4.3. Let G be a group of order p2ra containing a subgroup
Q$Z2r

p , where p is prime. Let H0 , H1 , ..., Hp r be the subgroups of G of
order pr corresponding to hyperplanes when viewed as subgroups of Q.
Suppose there exists a (a, - at , t) BS on G�Hi relative to Q�Hi for each i=
1, 2, ..., pr. Then there exists a ( pra, pr

- at , prt) BS on G relative to H0 .

Proof. For each i�1, let [B$i1 , B$i2 , ..., B$it] be a (a, - at , t) BS on G�Hi

relative to Q�Hi . Following the proof of Lemma 3.1, for each i�1 and for
each j let Bij=[g # G | gHi # B$ij]. Since Bij is the union of |B$ij |=a distinct
cosets of Hi , |Bij |=pra and for every nonprincipal character / of G and for
each i�1 and for each j

/(Bij)={0
pr�(B$ij )

if / nonprincipal on Hi

if / principal on Hi ,
(5)

where �(B$ij ) is the nonprincipal character induced by / on G�Hi . By the
definition of BS, for each i�1, �(B$ij ) is nonzero (having modulus - at ) for
exactly one value of j if � is nonprincipal on Q�Hi , and is nonzero for no
value of j if � is principal on Q�Hi .

We claim that [Bij | 1�i�pr, 1� j �t], comprising prt subsets Bij of G,
is a ( pra, pr

- at , prt) BS on G relative to H0 . To establish this, let / be
a nonprincipal character of G. Lemma 4.1 implies that if / is nonprincipal
on Q then it is principal on one of the subgroups Hi and nonprincipal on
all the others. We therefore distinguish three cases: / is principal on HI for
some I{0 and nonprincipal on Hi for each i{I; / is principal on H0 and
nonprincipal on Hi for each i{0; and / is principal on Q and nonprincipal
on G.

In the first case, where / is principal on HI for some I{0 and nonprin-
cipal on Hi for each i{I, /(Bij )=0 for each i{I and /(BIj )=pr�(B$Ij ),
from (5). Since / is nonprincipal on Q, � is nonprincipal on Q�HI and so
�(B$Ij ) is nonzero (having modulus - at ) for exactly one value of j. There-
fore /(Bij ) is nonzero (having modulus pr

- at ) for exactly one ordered
pair (i, j ). In the second case, where / is principal on H0 and nonprincipal
on Hi for each i{0, /(Bij )=0 for each ordered pair (i, j ), from (5). In the
third case, where / is principal on Q and nonprincipal on G, / is principal
on Hi for each i�0. Therefore /(Bij)=pr�(B$ij ) for each i�1, from (5).
Since � is principal on Q�Hi , �(B$ij )=0 for each ordered pair (i, j ).

The results for the three cases establish the claim. K
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Given a group G and a subgroup H0$Z r
p on which we wish to construct

a BS using Theorem 4.3, we are free to choose Q to be any subgroup of
G isomorphic to Z2r

p containing H0 . This choice will determine the sub-
groups Hi{H0 of G corresponding to hyperplanes. By suitable choice of
generators of G we can assume that Q is contained in 2r direct factors of
G and that any one particular hyperplane Hi is contained in r of these
direct factors. Then the proof of Theorem 4.3 describes a procedure for
constructing the BS explicitly. Given a BS on each of the pr quotient
groups G�Hi relative to Q�Hi , we lift each BS from G�Hi to G by taking
Bij=[g # G | gHi # B$ij]. This produces the prt building blocks of a
( pra, pr

- at , prt) BS on G relative to H0 .
To illustrate this procedure in detail, suppose we wish to construct a

(32, 16, 8) BS on G=Z3
4_Z2=(x, y, z, w | x4=y4=z4=w2=1) relative

to H0=(x2, y2)$Z2
2 . We firstly choose the subgroup Q$Z4

2 of G to be
(x2, y2, z2, w) , which contains H0 . We next determine the subgroups of
G corresponding to hyperplanes, by reference to the multiplicative structure
of GF(4). Since x2+x+1 is an irreducible polynomial of degree 2 over
GF(2) we can regard GF(4) as having multiplicative generator $, where
$2=$+1. Then the hyperplanes of GF(4)2 are ( (1, 0)) , ( (0, 1)) ,
( (1, 1)) , ( ($, 1)) and ( ($+1, 1)). Define the isomorphism from GF(4)2

to Q by (1, 0) [ x2, ($, 0) [ y2, (0, 1) [ z2 and (0, $) [ w. The subgroups
of G corresponding to the hyperplanes are then respectively H0=(x2, y2) ,
H1=(z2, w), H2=(x2z2, y2w) , H3=(y2z2, x2y2w) and H4=(x2y2z2, x2w).
For each i{0 we now form the quotient group G�Hi and its associated
subgroup Q�Hi . In this case we find that G�Hi$Z2

4_Z2 , and Q�Hi$Z2
2 is

contained within Z2
4 , for each i{0. We therefore require a (8, 4, 2) BS on

(a, b, c | a4=b4=c2) relative to (a2, b2). An example of such a BS was
given in Section 2, comprising the group ring elements

B$1(a, b, c)=1+a+ac+a2c+a2bc+ab+ab3c+b3,

B$2(a, b, c)=1+a3+a3b2c+a2b2c+bc+ab3c+ab3+a2b.

In order to construct the BS on G we write each quotient group G�Hi

explicitly in terms of its generators. We find G�H1=(xH1 , yH1 , zH1) ,
G�H2=(xH2 , yH2 , xzH2) , G�H3=(xH3 , yH3 , yzH3) and G�H4=
(xH4 , yH4 , xyzH4) , the first two generators having order 4 and the third
generator having order 2 in each case. We also find Q�Hi$(x2Hi , y2Hi)
for each i{0. Therefore a (8, 4, 2) BS in G�Hi relative to Q�Hi is
given by the building blocks B$i1 and B$i2 where for j=1, 2 we have
B$1j=B$j (x, y, z) H1 , B$2j=B$j (x, y, xz) H2 , B$3j=B$j (x, y, yz) H3 and B$4j=
B$j (x, y, xyz) H4 . For example, B$21=H2+xH2+x2zH2+x3zH2+x3yzH2

+xyH2+x2y3zH2+y3H2 . Each of the expressions B$ij is a group ring
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element in Z[G�Hi ] comprising 8 elements of the quotient group G�Hi . We
finally obtain Bij=[g # G | gHi # B$ij] by regarding the formal expression
for B$ij as a group ring element in Z[G] comprising 32 elements of G. The
8 building blocks [Bij | 1�i�4, 1�j�2] then form a (32, 16, 8) BS on
G relative to H0 .

In general the quotient groups G�Hi for i{0 need not be isomorphic.
For example, let G=Z2_Z4=(x, y | x2=y4=1). The subgroups of G
corresponding to hyperplanes are H0=(x) , H1=( y2) and H2=(xy2) ,
so the quotient groups G�H1$Z2

2 and G�H2$Z4 are not isomorphic.
(Since there exists a (2, 2, 2) BS on Z2

2 relative to Z2 but not on Z4 relative
to Z2 , we cannot use Theorem 4.3 to construct a (4, 4, 4) BS on G relative
to H0 .) This example also demonstrates (for i=2) that the direct factors of
G containing H0 do not necessarily correspond to the direct factors of G�Hi

containing Q�Hi .
Clearly we require some information about the form of G�Hi and Q�Hi

in order to apply Theorem 4.3 effectively. We now show that by
appropriate choice of generators, exactly r direct factors of G retain the
same exponent in G�Hi (these are the direct factors which contain Q�Hi)
and r are reduced by a factor of p.

Lemma 4.4. Let G be the group >2r
u=1 Zp 1+:u containing a subgroup

Q$Z2r
p , where p is prime and :u�0. Let H0 , H1 , ..., Hp r be the subgroups

of G of order pr corresponding to hyperplanes when viewed as subgroups of
Q. Then for each Hi there exists a r-element subset S of [1, 2, ..., 2r] such
that G�Hi$>u � S Zp1+:u_>u # S Zp:u . Moreover, for each Hi a suitable
choice of generators of G ensures that Q�Hi$Zr

p is contained in the first r
direct factors of G�Hi as specified. Furthermore if H0 is contained in a sub-
group of G isomorphic to Zr

p 2 then, for each Hi{H0 , Q�Hi is contained in
a subgroup of G�Hi isomorphic to Zr

p2 .

Proof. Each Hi is a subgroup of Q of order pr and so Hi$Zr
p . There-

fore we can choose generators of G such that Hi is contained in r direct
factors of G. Let [xu | 1�u�2r] be the generators of G, where xp1+:u

u =1
for all u, and let S be the r-element subset of [1, 2, ..., 2r] which indexes
the r direct factors containing Hi . Then Hi=(x p:u

u | u # S) , and the
order of xuHi in G�Hi is p1+:u for u � S and p:u for u # S. Therefore
G�Hi=(xuHi | 1�u�2r)$>u � S Zp1+: u_>u # S Zp: u as required. With
this choice of generators, Q�Hi=(x p:u

u Hi | 1�u�2r)=(xp:u
u Hi | u � S) ,

and so Q�Hi$Zr
p and Q�Hi is contained in the first r direct factors of G�Hi

as specified.
Suppose now that H0 is contained in a subgroup of G isomorphic to Zr

p 2 .
Since H0 is isomorphic to Z r

p this is equivalent to the statement that each
h0 # H0 can be written as h0=gp for some g # G. For any Hi{H0 let qHi
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be an element of Q�Hi . The proof of Lemma 4.1 shows that Q=H0Hi and
so q=h0hi for some h0 # H0 and some hi # Hi . Since h0=gp for some g # G
we obtain qHi=gphiHi=gpHi=(gHi )

p, and so Q�Hi$Zr
p is contained in

a subgroup of G�Hi isomorphic to Zr
p 2 . K

For example, we can now construct the BSs whose existence we assumed
in Section 3. We firstly show there exists a (8, 4, 2) BS on each of the
groups Z2

4_Z2 , Z4_Z3
2 and Z5

2 relative to a subgroup U$Z2
2 contained

within two of the largest direct factors of the group. The group Z2
4_Z2 is

dealt with by the example in Section 2. For the other two groups, by
Corollary 4.2 there is a (4, 4, 4) BS on Z4

2 relative to Z2
2 , from which the

desired BS can be obtained using Lemma 2.1 with s=2. An example in
Section 3 then shows that there is a (96, 20, 4, 16) McFarland difference
set in any group of order 96 whose Sylow 2-subgroup has exponent at
most 4.

Next we show there exists a (32, 16, 8) BS on any group G of order 128
and exponent at most 4 relative to a subgroup U$Z2

2 contained within
two of the largest direct factors of G. Let Q$Z4

2 be a subgroup of G con-
taining H0=U. By Lemma 4.4, for each Hi{H0 , we find G�Hi has order
32 and exponent at most 4 and Q�Hi$Z2

2 is contained in two of the largest
direct factors of G�Hi . By the preceding example there is a (8, 4, 2) BS on
G�Hi relative to Q�Hi and so by Theorem 4.3 we obtain the desired BS
on G. An example in Section 3 then shows that there is a (1408, 336, 80,
256) McFarland difference set in any group of order 1408 whose Sylow
2-subgroup has exponent at most 4. The above procedure indicates the
recursive construction for McFarland difference sets which we shall present
in Section 5.

As a further example, we show there exists a (16, 8, 4) BS on each of the
groups Z2

4_Z2
2 , Z4_Z4

2 and Z6
2 relative to a subgroup U$Z2

2 contained
within two of the largest direct factors of the group. We firstly consider the
group Z2

4_Z2
2. Now Jungnickel [28] has shown that [1, x, y, x3y3] is a

(4, 4, 4, 1) semi-regular RDS in Z2
4=(x, y | x4=y4=1) relative to

(x2, y2) $Z2
2 . Since this is equivalent to a (4, 2, 1) BS on Z2

4 relative to
Z2

2 , we obtain the required BS by Theorem 4.3 and Lemma 4.4. We cannot
deal with the groups Z4_Z3

2 and Z5
2 in the same way because this would

require a (4, 4, 4, 1) semi-regular RDS on Z4_Z2
2 or Z4

2 relative to U$Z2
2 ,

which does not exist [24]. But from Corollary 4.2 there is a (8, 8, 8) BS
on Z6

2 relative to Z3
2 . We show in the following lemma how this can be used

to provide a (8, 8, 8) BS on Z5
2 relative to Z2

2 , which allows the required
BS to be constructed using Lemma 2.1 with s=2. An example in Section
3 then shows that there is a (320, 88, 24, 64)-difference set in Z2

4_Z2
2_Z5 ,

Z4_Z4
2_Z5 and Z6

2_Z5 . Although the group Z3
4_Z5 has order 320 and

exponent 4 it is excluded from this result because Z3
4 does not contain a
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subgroup Q$Z4
2 and so Theorem 4.3 cannot be applied. In Section 5 we

present a recursive construction for difference sets with parameters (4)
based on these initial examples, and show that the exceptional case Z3

4_Z5

does not propagate to larger groups under this construction.
We now describe the method of ``contraction'' of BSs required in the

preceding example, modelled on that given by Elliott and Butson [21] for
RDSs.

Lemma 4.5. Suppose there exists a (a, - at, t) BS on a group G relative
to a subgroup U. Let W be a subgroup of U. Then there exists a (a, - at, t)
BS on G�W relative to U�W.

Proof. Let [B1 , B2..., Bt] be a (a, - at , t) BS on G relative to U. Let
B$j=[gU # G�U | g # Bj] be the image of Bj under the quotient mapping
from G to G�U and let Bj"=[gW # G�W | g # Bj] be the image of Bj under
the quotient mapping from G to G�W.

We show firstly that for each j, B$j=G�U in the group ring Z[G�U].
Every nonprincipal character � of G�U can be regarded as being induced
by a character / that is nonprincipal on G and principal on U, so that
�(B$j )=/(Bj )=0 by the definition of BS. Therefore B$j=c G�U in Z[G�U]
for some integer c. Now |Bj |=a by the definition of BS, and |G |�|U |=a
from the relationship between BS parameters given after Theorem 2.2, so
that c=1.

We next show that for each j, Bj" contains no repeated elements. Since
B$j=G�U in Z[G�U], each coset of U in G contains exactly one element of
Bj . It follows that each coset of W in G contains at most one element
of Bj .

Finally we show that [B"1 , B"2 ..., Bt"] is a (a, - at , t) BS on G�W relative
to U�W. For each j, we have shown that Bj" is a subset of G�W comprising
a elements. Every nonprincipal character , of G�W can be regarded as
being induced by a character / that is nonprincipal on G and principal on
W, so that ,(Bj")=/(Bj ). If / is nonprincipal on U, so that , is non-
principal on U�W, then /(Bj) is nonzero (having modulus - at ) for exactly
one j, by the definition of BS. If / is principal on U, so that , is principal
on U�W, then /(Bj )=0 for each j, by the definition of BS. This completes
the proof. K

We shall defer until Section 7 a full examination of the consequences of
Theorem 4.3 for constructing families of BSs. For now our goal is to obtain
quickly and easily just the BSs required for the construction of difference
sets using Theorems 2.4 and 3.3. In this spirit we now give a recursive
application of Theorem 4.3 to large classes of groups, which will be
generalised in Section 7. While it was not important in Theorem 3.3 to
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keep track of the subgroup U associated with the BS on the group G, here
we specify ordered pairs (G, U ) to assist in applying Theorem 4.3 recursively.

Theorem 4.6. Let p be prime, let r�1, and for each d�1 let Kd be a
set of ordered pairs (Gd , Ud ), where Gd is a group of order pdra containing
a subgroup Ud$Zr

p . Suppose that for each (G1 , U1 ) # K1 there exists a
(a, - at , t) BS on G1 relative to U1 . Suppose also that, for each d>1 and
for each (Gd , Ud ) # Kd , Gd contains a subgroup Q$Z2r

p and subgroups
H0 , H1 , ..., Hpr of order pr (corresponding to hyperplanes when viewed as
subgroups of Q), where H0=Ud and where Kd&1 contains an ordered pair
isomorphic to (Gd�Hi , Q�Hi) for each Hi{H0 . Then for each d�1 and for
each (Gd , Ud ) # Kd there exists a ( p(d&1)ra, p (d&1) r

- at , p(d&1) rt) BS on Gd

relative to Ud .

Proof. The proof is by induction on d. The case d=1 is true by
assumption. Assume the case d&1 to be true and consider Hi{H0 . Since
Kd&1 contains an ordered pair isomorphic to (Gd�Hi , Q�Hi ), by the induc-
tive hypothesis there exists a ( p(d&2) ra, p(d&2) r

- at , p(d&2)rt) BS on Gd�Hi

relative to Q�Hi . It follows from Theorem 4.3 that the case d is true, com-
pleting the induction. K

In Section 5 we shall apply Theorem 4.6, usually taking Kd to be the set
of all ordered pairs (Gd , Ud ) for which Gd is a p-group of order pdra with
bounded exponent (independent of d ), and for which Ud$Zr

p is contained
in r of the largest direct factors of Gd . This will allow the construction of
difference sets with parameters from the families (2), (3) and (4). In Sec-
tion 6 we shall present a different recursive application of Theorem 4.3 for
the construction of difference sets with parameters from the Hadamard
family (1).

5. APPLICATION TO DIFFERENCE SETS

In this section we use the recursive construction of Theorem 4.6 to
obtain families of BSs on p-groups, from which the recursive construction
of Theorem 3.3 produces families of covering EBSs on p-groups. Using
Theorem 2.4 we deduce the existence of difference sets with parameters
from the McFarland family, the Spence family, and the new parameter
family (4).

We firstly show that by restricting the BSs to be on p-groups, the result-
ing difference set parameters must belong to the Hadamard family (1), the
McFarland family (2), the Spence family (3), or the new family (4). By
Theorem 2.4, the construction of Theorem 3.2 can be viewed as using an
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initial difference set (based on the covering EBS on G�U) to produce a final
difference set (based on the covering EBS on G). We now examine the
parameters u, a, m, t and h of Theorem 3.2 in more detail. By assumption
G is a p-group of order u2am, so u and m are powers of the prime p. Let
u=pr, and write m=p(d&1) r+: for some d�1 and 0�:<r. The assump-
tion um=at of Theorem 3.2 can then be written as at=pdr+:, and the
parameter relationship ah(u&1)=mu�(u&2) following the Theorem can
be written as ah=( pdr+:\1)�( pr&1)�1. The last equality implies that
pr&1 divides pdr+:\1=( pr&1)( p(d&1) r+:+p(d&2) r+:+ } } } +p:)+
p:\1, and so pr&1 divides p:\1 for some : satisfying 0�:<r. This con-
dition only holds in three cases: with the lower sign and :=0; with the
upper sign and :=0, p=3 and r=1; and with the upper sign and :=1,
p=2 and r=2. In each case the values of u, m, at and ah fix the parameters
of the initial and final difference set.

In the first case, with the lower sign and :=0, we have u=pr,
m=p(d&1) r, at=pdr and ah=( pdr&1)�( pr&1)+1. Theorem 2.4 then gives
the parameters of both difference sets as being from the McFarland family,
the initial with the values q=pr and d&1 and the final with the values
q=pr and d. The special case pr=2 corresponds to Hadamard parameters,
the initial and final difference sets having the values N=2d&1 and N=2d.
We return to this special case in Section 6, where we shall in addition make
use of BSs which are not defined on p-groups.

In the second case, with the upper sign and :=0, p=3 and r=1, we
have u=3, m=3d&1, at=3d and ah=(3d&1)�2. Theorem 2.4 gives the
parameters of both difference sets as being from the Spence family, the
initial with the value d&1 and the final with the value d.

In the third case, with the upper sign and :=1, p=2 and r=2, we have
u=4, m=22d&1, at=22d+1 and ah=2((22d&1)�3). Theorem 2.4 gives the
parameters of both difference sets as being from the new family (4), the
initial with the value d&1 and the final with the value d.

The above argument determines the parameter family for the initial and
final difference sets in each of the three cases. Since the application of
Theorem 3.2 increases the value d by 1 without changing the associated dif-
ference set parameter family, it is natural to apply the construction recur-
sively using Theorem 3.3. The above analysis almost completely determines
the required parameter values for the covering EBSs and BSs, by com-
parison of the equations for ah and at.

In the first case we have ah=( pdr&1)�( pr&1)+1=p(d&1)r+p(d&2)r

+ } } } +pr+2 and at=pdr. The only solutions are a=1 or, in the case
p=2, a=2. The solution a=1 requires a ( pdr, pdr, pdr) BS on a group of
order p(d+1) r relative to a subgroup of order pr and the solution a=2
requires a (2dr+1, 2dr, 2dr&1) BS on a group of order 2(d+1) r+1 relative to
a subgroup of order 2r. To begin the recursion with the smallest value d=1
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we require a (1, 1, 2, &) covering EBS on a group of order pr and a (2,
1, 1, &) covering EBS on a group of order 2r+1 respectively.

Similarly, in the second case we require a (3d, 3d, 3d ) BS on a group of
order 3d+1 relative to a subgroup of order 3 and, to begin the recursion
with d=1, a (1, 1, 1, +) covering EBS on a group of order 3.

Likewise in the third case we have a=1 or a=2. When a=1 we require
a (22d+1, 22d+1, 22d+1 ) BS on a group of order 22d+3 relative to a sub-
group of order 4 and, for d=1, a (2, 2, 2, +) covering EBS on a group
of order 8. When a=2 we require a (22d+2, 22d+1, 22d ) BS on a group of
order 22d+4 relative to a subgroup of order 4 and, for d=1, a (4, 2, 1, +)
covering EBS on a group of order 16.

In each case it is straightforward to find an appropriate covering EBS,
so the application of the recursive construction depends on finding families
of BSs as described above. We now show how to construct some of the
identified families using the recursive construction for BSs of Theorem 4.6.
The initial BSs can be traced to three sources: the ( pr, pr, pr) BS of
Corollary 4.2, due to Davis [10]; the (8, 4, 2) BS described in Section 2,
due to Arasu and Sehgal [3]; and the (4, 2, 1) BS on Z2

4 relative to Z2
2

described in Section 4, due to Jungnickel [28].

Theorem 5.1. For each d�1, the following exist:

(i) A ( pdr, pdr, pdr) BS on Z (d+1)r
p relative to Zr

p , where p is prime
and r�1.

(ii) A (22d+1, 22d, 22d&1) BS on any group Gd of order 22d+3 and
exponent at most 4 relative to a subgroup Ud$Z2

2 contained within two of
the largest direct factors of Gd .

(iii) A (22d+2, 22d+1, 22d) BS on any group Gd of order 22d+4 and
exponent at most 4 relative to a subgroup Ud$Z2

2 contained within two of
the largest direct factors of Gd , except possibly G1=Z3

4 .

Proof. The proof is by application of Theorem 4.6, using initial BSs
introduced in earlier sections.

For (i), put a=t=pr and take Kd=[(Z (d+1)r
p , Zr

p)], where H0=Zr
p is

contained within r direct factors of Z (d+1) r
p . There exists a ( pr, pr, pr) BS

on Z2r
p relative to the subgroup Zr

p contained within r direct factors of Z2r
p ,

by Corollary 4.2. For d>1, let Q$Z2r
p be a subgroup of Z (d+1) r

p containing
H0 . For each subgroup Hi{H0 of Z (d+1)r

p of order pr, corresponding to a
hyperplane when viewed as a subgroup of Q, Lemma 4.4 shows that
Z(d+1)r

p �Hi$Zdr
p , and Q�Hi$Zr

p is contained within r direct factors of Zdr
p .

Therefore Kd&1 contains an ordered pair isomorphic to (Z (d+1)r
p �Hi , Q�Hi )

and the result follows from Theorem 4.6.
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For (ii), put p=r=2, a=8 and t=2, and take Kd to be the set of all
ordered pairs (Gd , Ud ) for which Gd is a group of order 22d+3 and expo-
nent at most 4 and Ud$Z2

2 is a subgroup contained within two of the
largest direct factors of Gd . An example in Section 4 shows that there exists
a (8, 4, 2) BS on each of the groups Z2

4_Z2 , Z4_Z3
2 and Z5

2 relative to a
subgroup Z2

2 contained within two of the largest direct factors of the group.
For d�2, let Q$Z4

2 be a subgroup of Gd containing H0=Ud . For each
subgroup Hi{H0 of Gd corresponding to a hyperplane, Lemma 4.4 shows
that Gd �Hi is a group of order 22d+1 and exponent at most 4 and
Q�Hi$Z2

2 is contained in two of the largest direct factors of Gd �Hi .
For (iii), put p=r=2, a=16 and t=4, and take Kd to be the set of all

ordered pairs (Gd , Ud ) included in the statement of the theorem (so that
(Z3

4 , U1) � K1). An example in Section 4 shows that there exists a (16, 8, 4)
BS on each of the groups Z2

4_Z2
2 , Z4_Z4

2 and Z6
2 relative to a subgroup

Z2
2 contained within two of the largest direct factors of the group. The

remainder of the proof is similar to that of (ii) except that we must ensure
G2 �Hi$% Z3

4 for Hi{H0 . We achieve this by taking Q$Z4
2 to be a sub-

group of Gd containing H0=Ud for d>1 as before, with the additional
constraint that Q be contained within four of the largest direct factors
of Gd . K

Note that although the group Gd=Z3
4 is not covered by the case d=1

of Theorem 5.1(iii), this exception does not propagate to higher values of
d under the recursive construction of Theorem 4.6.

We next combine the BSs of Theorem 5.1 with initial covering EBSs
whose parameters were previously identified in order to produce families of
covering EBSs.

Theorem 5.2. For each d�0, the following exist:

(i) A ( pdr, pdr, (p (d+1) r&1)�( pr&1)+1, &) covering EBS on
Z(d+1)r

p , where p is prime and r�1.

(ii) A (22d+1, 22d, (22d+1+1)�3, &) covering EBS on any group of
order 22d+3 and exponent at most 4.

(iii) A (3d, 3d, (3d+1&1)�2, +) covering EBS on Zd+1
3 .

(iv) A (22d+2, 22d+1, (22d+2&1)�3, +) covering EBS on any group of
order 22d+4 and exponent at most 4, except possibly Z3

4 in the case d=1.

Proof. The proof is by application of Theorem 0recurcebs to the BSs of
Theorem 0diffsetbs, together with appropriate initial covering EBSs.

For (i), put a=m=1, h=2 and t=pr, and take Gd=[Z (d+1)r
p ] in

Theorem 3.3. There exists a trivial (1, 1, 2, &) covering EBS on Zr
p . The

required BSs are provided by Theorem 5.1(i), and Z(d+1)r
p �Zr

p is isomorphic
to Zdr

p , which is contained in Gd&1.
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For (ii), put p=r=2, a=t=2 and m=h=1, and take Gd to be the set
of all groups of order 22d+3 and exponent at most 4. There exists a trivial
(2, 1, 1, &) covering EBS on Z4_Z2 and Z3

2 . The required BSs on Gd

relative to Ud are provided by Theorem 5.1(ii), and clearly Gd�Ud is a
group of order 22d+1 and exponent at most 4.

For (iii), put p=3, r=1, a=m=h=1 and t=3, and take Gd=[Zd+1
3 ].

There exists a (1, 1, 1, +) covering EBS on Z3 comprising two elements
(the complement of a trivial (2, 1, 1, &) covering EBS on Z3). The required
BSs are provided by Theorem 5.1(i) with p=3 and r=1, and Zd+1

3 �Z3 is
isomorphic to Zd

3 .
For (iv), put p=r=2, a=m=2, h=1 and t=4, and take Gd to be the

set of all groups of order 22d+4 and exponent at most 4 but exclude Z3
4

from G1 . The examples of (16, 6, 2, 4)-difference sets in Section 1 are equiv-
alent to a (4, 2, 1, +) covering EBS on Z2

4 , Z4_Z2
2 and Z4

2 . The required
BSs are provided by Theorem 5.1(iii), and Gd�Ud is a group of order 22d+2

and exponent at most 4. Furthermore the choice of Ud ensures that
G2 �U2$% Z3

4 . K

We now list the families of difference sets arising from the covering EBSs
of Theorem 5.2. The unifying corollary which follows is one of the central
results of the paper. There are no abelian groups known to contain dif-
ference sets in the indicated families which are not covered by this result.
(As throughout the paper, the groups involved are implicitly abelian.)

Corollary 5.3. For each d�0, the following exist:

(i) A McFarland difference set with q=pr in any group of order
qd+1((qd+1&1)�(q&1)+1) containing a subgroup isomorphic to Z (d+1)r

p ,
where p is prime and r�1.

(ii) A McFarland difference set with q=4 in any group of order
22d+3((22d+1+1)�3) containing a subgroup of order 22d+3 and exponent at
most 4.

(iii) A Spence difference set in any group of order 3d+1((3d+1&1)�2)
containing a subgroup isomorphic to Zd+1

3 .

(iv) A difference set with parameters (4) in any group of order
22d+4((22d+2&1)�3) containing a subgroup of order 22d+4 and exponent at
most 4, except possibly when the subgroup is Z3

4 in the case d=1.

Proof. Apply Theorem 2.4 to the covering EBSs of Theorem 5.2. K

In Corollary 5.3(i), the Sylow p-subgroup of the group containing the
McFarland difference set is isomorphic to Z (d+1)r

p when p is odd, and is
isomorphic to Z (d+1) r+1

2 or Z4_Z (d+1) r&1
2 when p=2, because p divides
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the index (qd+1&1)�(q&1)+1 if and only if p=2. In the remaining parts
of Corollary 5.3, the Sylow p-subgroup of the group containing the dif-
ference set is isomorphic to the subgroup mentioned (where p=2 in parts
(ii) and (iv) and p=3 in part (iii).)

Corollary 5.3(i) is due to McFarland [42] for p odd and to Dillon [20]
for p=2. Ma and Schmidt [39] showed that for p odd, the condition that
the Sylow p-subgroup is isomorphic to Z(d+1)r

p is necessary as well as suf-
ficient, provided that p is self-conjugate modulo the group exponent. (The
definition of self-conjugate is given before Lemma 1.1.) In a subsequent
paper Ma and Schmidt [38] showed that for p=2 and r>1, the Sylow
2-subgroup must have exponent at most 4 provided that 2 is self-conjugate
modulo the group exponent. (For p=2 and r=1 the McFarland parameters
correspond to Hadamard parameters with N=2d, which are considered
separately in Section 6.)

Corollary 5.3(ii) extends the set of groups known to contain McFarland
difference sets in the case q=4 beyond those identified in Corollary 5.3(i).
None of these additional groups was previously known to contain dif-
ference sets with the single exception, due to Arasu and Sehgal [3], of
Z2

4_Z2_Z3 in the case d=1. Moreover the self-conjugacy condition from
Ma and Schmidt's result [38] above is always satisfied when q=4, since
the exponent of a group divides the order and 2 is self-conjugate modulo
22d+3((22d+1+1)�3). We have therefore established that a McFarland dif-
ference set with q=4 exists in an abelian group if and only if the Sylow
2-subgroup has exponent at most 4. Unlike the above result for McFarland
difference sets with q=pr odd, this result does not depend on a self-
conjugacy condition. The only other comparable result for families of
difference sets, relying on a single group exponent condition, is due to
Kraemer [31] for Hadamard difference sets. We shall show in Section 6
that Kraemer's result can also be derived from the framework of this paper.

Corollary 5.3(iii) is due to Spence [54]. Using Theorem 5.4 below it is
easily shown that the condition that the Sylow 3-subgroup is isomorphic to
Zd+1

3 is necessary as well as sufficient, provided that 3 is self-conjugate
modulo the group exponent.

Corollary 5.3(iv) describes the first new family of difference set
parameters to be discovered since 1977 [54]. Apart from the case d=0,
giving Hadamard parameters, all the examples were previously unknown.
This also gives a new family of symmetric designs with the same
parameters (4). For d=1, Ma and Schmidt [38] have shown that the
Sylow 2-subgroup must have exponent at most 4. The only open case for
difference set parameters (320, 88, 24, 64) is therefore Z3

4_Z5 . For d>1,
we can use standard techniques to bound the exponent of the Sylow 2-sub-
group. We shall use the following special case of Theorem 4.33 of Lander
[32], based on results of Turyn [55].
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Theorem 5.4. Suppose that there exists a (v, k, *, n)-difference set in an
abelian group G containing a subgroup H of index w. Suppose also that p is
a prime for which p | w, p2r | n for some r�1, p is self-conjugate modulo
exp(G�H ), and the Sylow p-subgroup of G�H is cyclic. Then prw�v.

Corollary 5.5. The Sylow 2-subgroup of a group containing a dif-
ference set with parameters (4) has exponent at most 8 provided that 2 is
self-conjugate modulo the group exponent.

Proof. The group G containing the difference set has order v=
22d+4((22d+2&1)�3). Let the exponent of the Sylow 2-subgroup be 2:.
Choose the subgroup H so that w=2:((22d+2&1)�3) with the Sylow
2-subgroup of G�H cyclic. Apply Theorem 5.4 with p=2 and r=2d+1 to
obtain :�3. K

The discussion at the beginning of this section identifies the possible
parameters for BSs on p-groups which could be used in Theorem 3.2 to
produce difference sets. Not all of the identified parameter sets are included
in Theorem 5.1. In particular, we have seen that a (2qd, qd, qd�2) BS
on a group of order 2qd+1 relative to a subgroup of order q=2r would
yield a McFarland difference set with parameters q and d (assuming the
appropriate covering EBS existed). However the only groups on which we
know that such BSs exist for q>4 are Z (d+1) r+1

2 and Z4_Z (d+1) r&1
2 , using

Lemma 2.1 on Theorem 5.1(i). Construction of such BSs on other groups
would give new McFarland difference sets. For example, in the case
q=8 and d=1, a (16, 8, 4) BS on a group of order 128 and exponent 4
(other than Z4_Z5

2) relative to a subgroup of order 8 would give a new
(640, 72, 8, 64) McFarland difference set. The results of this paper grew
out of an unsuccessful attempt to construct such a BS. In the case q=16
and d=1, a (32, 16, 8) BS on a group of order 512 and exponent 4 (other
than Z4_Z7

2) relative to a subgroup of order 16 would give a new
(4608, 272, 16, 256) McFarland difference set. (We have imposed expo-
nent 4 in both cases because the self-conjugacy condition from Ma and
Schmidt's result [38] is always satisfied when d=1.)

6. APPLICATION TO HADAMARD DIFFERENCE SETS

In this section we use the key constructions, Theorem 3.2 for covering
EBSs and Theorem 4.3 for BSs, to obtain difference sets with parameters
from the Hadamard family (1). Although many of the results were pre-
viously known our intention is to show that the various construction
methods in the literature can be concisely brought into the unifying
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framework of this paper. Based on this formulation, we suggest a number
of generalisations in Section 9.

Since the Hadamard parameters with N=2d are equivalent to the
McFarland parameters with q=2, we have already established in
Corollary 5.3(i) that there exists a Hadamard difference set in any group
of order 22d+2 and rank at least d+1. This construction depended on the
number of building blocks h and t in Theorem 3.2 being large. However we
now demonstrate by means of an example that for the Hadamard
parameters it is sufficient to take h=t=2, which allows additional freedom
in choosing the group G (which need not be a 2-group).

Assume we can find a (9, 3, 2, &) covering EBS on Z2_Z2
3 , so that by

Theorem 2.4 there exists a (36, 15, 6, 9) Hadamard difference set in Z2
2_Z2

3

and Z4_Z2
3. Assume also that we can find a (18, 6, 2) BS on Z2

2_Z2
3

relative to Z2 . By Theorem 3.2 with u=2, this BS and covering EBS
together give a (18, 6, 4, &) covering EBS on Z2

2_Z2
3 . Therefore by

Theorem 2.4 there exists a (144, 66, 30, 36) Hadamard difference set in
G_Z2

3 for any group G of order 16 and exponent at most 8.
Now apply Lemma 2.1 with s=2 to the (18, 6, 2) BS to obtain a

(36, 6, 1) BS on Z4_Z2_Z2
3 and Z3

2_Z2
3 relative to any subgroup of

order 2. Then by Theorem 4.3 with pr=2 there exists a (72, 12, 2) BS on
G_Z2

3 relative to any subgroup of order 2, where G is any group of order
16 and exponent at most 4 (since G�Hi$Z4_Z2 or Z3

2). Furthermore we
can apply Lemma 2.3 with s=2 to the (18, 6, 4, &) covering EBS to obtain
a (36, 6, 2, &) covering EBS on Z4_Z2_Z2

3 and Z3
2_Z2

3 . Then by
Theorem 3.2 with u=2, these (36, 6, 2, &) covering EBSs together with the
(72, 12, 2) BSs give a (72, 12, 4, &) covering EBS on G_Z2

3 , where G is
any group of order 16 and exponent at most 4. Therefore by Theorem 2.4
there exists a (576, 276, 132, 144) Hadamard difference set in G_Z2

3 for
any group G of order 64 and exponent at most 16.

The pattern indicated by this example forms the model for the construc-
tions in this section, each step of the recursion using an initial Hadamard
difference set with N=2d&1m to construct a final Hadamard difference set
with N=2dm, where m is odd. Provided the initial BS and covering EBS
can be found, the group of order m2 (Z2

3 in the above example) plays
no part in the recursion. For example, given a (1, 1, 2, &) covering EBS on
Z2 (which is trivial) and a (2, 2, 2) BS on Z2

2 relative to Z2 (which
exists by Corollary 4.2), by the same argument as above there exists a
(64, 28, 12, 16) Hadamard difference set in any group of order 64 and expo-
nent at most 16. As in Theorem 3.3 we begin by assuming the existence of
an initial covering EBS and a family of BSs.

Theorem 6.1. Let M be a group of odd order m2 and for each d�1 let
Gd be the set of all groups of order 22d and exponent at most 2d. Suppose that
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there exists a (m2, m, 2, &) covering EBS on Z2_M. Suppose also that for
each d�1 and for each Gd # Gd there exists a (22d&1m2, 2dm, 2) BS on
Gd_M relative to a subgroup Ud (depending on Gd ) of order 2. Then for
each d�1 and for each Gd # Gd there exists a (22d&1m2, 2dm, 4, &) covering
EBS on Gd_M.

Proof. The proof is by induction on d. We begin by establishing the
case d=1. By assumption there exists a (m2, m, 2, &) covering EBS on
Z2_M and a (2m2, 2m, 2) BS on Z2

2_M relative to Z2 . Combine these
using Theorem 0master with G=Z2

2_M and U=Z2 to obtain the case
d=1.

Assume the case d&1 to be true. For each Gd # Gd , by assumption there
exists a (22d&1m2, 2dm, 2) BS on Gd_M relative to a subgroup Ud of
order 2. Now Gd�Ud has order 22d&1 and exponent at most 2d and so
attains the exponent 2d in at most one direct factor. Therefore Gd�Ud con-
tains a subgroup S�Ud of index 2 and exponent at most 2d&1. The inductive
hypothesis then implies that there exists a (22d&3m2, 2d&1m, 4, &) covering
EBS on (S�Ud)_M. Apply Lemma 2.3 with s=2 to obtain a (22d&2m2,
2d&1m, 2, &) covering EBS on (Gd�Ud)_M. Combine this covering EBS
with the BS on Gd_M relative to Ud , using Theorem 3.2 with G=Gd_M.
This shows the case d is true and completes the induction. K

We next show that the family of BSs required in Theorem 6.1 can be
obtained recursively from a single BS using Theorem 4.3. Although
Theorem 6.1 requires a BS on Gd_M relative to only a single subgroup
Ud , the recursion produces a BS on Gd_M relative to any subgroup of
order 2. By rewriting the generators of Gd we can assume that such a sub-
group is contained within a single direct factor of Gd .

Theorem 6.2. Let M be a group of odd order m2 and for each d�1 let
Gd be the set of all groups of order 22d and exponent at most 2d. Suppose
there exists a (2m2, 2m, 2) BS on Z2

2_M relative to Z2 . Then for each d�1
and for each Gd # Gd there exists a (22d&1m2, 2dm, 2) BS on Gd_M relative
to any subgroup of order 2.

Proof. The proof is by induction on d. The case d=1 is true by
assumption. Assume the case d&1 to be true. For each Gd # Gd , let H0 be
any subgroup of order 2. Choose Q$Z2

2 to be a subgroup of Gd containing
H0 and let the subgroups of Gd of of order 2, corresponding to hyperplanes
when viewed as subgroups of Q, be H0 , H1 and H2 . For each i, Gd �Hi

has order 22d&1 and exponent at most 2d and so, as in the proof of
Theorem 6.1, Gd�Hi contains a subgroup S�Hi of index 2 and exponent at
most 2d&1. Then by the inductive hypothesis there exists a (22d&3m2,
2d&1m, 2) BS on (S�Hi)_M relative to Q�Hi$Z2 . Apply Lemma 2.1
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with s=2 to obtain a (22d&2m2, 2d&1m, 1) BS on (Gd �Hi)_M relative to
Q�Hi . Therefore by Theorem 4.3 there exists a (22d&1m2, 2dm, 2) BS on
Gd_M relative to H0 . This shows the case d is true and completes the
induction. K

Previously, in Theorem 3.2, we gave a construction for a covering EBS
based on the existence of a BS and another covering EBS. We now show
how to construct a particular type of BS (required as the initial BS in
Theorem 0hadbsfam) from a covering EBS.

Lemma 6.3. Let M be a group of odd order m2. Suppose there exists a
(m2, m, 2, &) covering EBS on Z2_M. Then there exists a (2m2, 2m, 2) BS
on Z2

2_M relative to Z2 .

Proof. Let Z2
2=(x, y | x2=y2=1) and let [A, B] be a (m2, m, 2, &)

covering EBS on G=( y)_M, where the building block containing
m2&m elements is A. Define the subsets C=A+x(G"A) and D=B+
x(G"B) of Z2

2_M.
Let / be a nonprincipal character of (x)_G. Firstly consider the

case when / is nonprincipal on G. By the definition of covering EBS,
[ |/(A)|, |/(B)|]=[0, m] so [ |/(C )|, |/(D)|]=[0, m|1&/(x)|]. There-
fore if / is also nonprincipal on (x) (so / maps x to &1) we have
[ |/(C)|, |/(D)|]=[0, 2m] whereas if / is principal on (x) then /(C )=
/(D)=0. Next consider the case when / is principal on G (and so non-
principal on (x) ). This gives /(C )=|A|&(|G|&|A| )= &2m and /(D)=
|B|&(|G|&|B| )=0.

Combining the two cases, [C, D] is a (2m2, 2m, 2) BS on (x)_G
relative to (x). K

For example, at the beginning of this section we assumed the existence
of a (9, 3, 2, &) covering EBS on Z2_Z2

3 and a (18, 6, 2) BS on Z2
2_Z2

3

relative to Z2 . By Lemma 6.3 the existence of the second is implied by the
existence of the first.

We now combine Theorems 6.1 and 6.2 and Lemma 6.3 to show that
only an initial covering EBS is required for the recursions.

Corollary 6.4. Suppose there exists a (m((m&1)�2), m, 4, +) covering
EBS on a group M of odd order m2. Then the following exist:

(i) A (22d&1m2, 2dm, 2) BS on Gd_M relative to any subgroup
of order 2, where d�1 and Gd is any group of order 22d and exponent at
most 2d.

(ii) A (22d&1m2, 2dm, 4, &) covering EBS on Gd_M, where d�1
and Gd is any group of order 22d and exponent at most 2d.
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(iii) A Hadamard difference set with N=2dm in Gd_M, where d�0
and Gd is any group of order 22d+2 and exponent at most 2d+2.

Proof. For (i), by assumption there exists a (m((m&1)�2), m, 4, +)
covering EBS on M. Apply Lemma 2.3 with s=2 to obtain a (m(m&1),
m, 2, +) covering EBS on Z2_M. This can be equivalently written as a
(m2, m, 2, &) covering EBS on Z2_M, so from Lemma 6.3 there is a
(2m2, 2m, 2) BS on Z2

2_M relative to Z2 . Apply Theorem 6.2.
For (ii), as noted above there is a (m2, m, 2, &) covering EBS on

Z2_M. Apply Theorem 6.1 to this covering EBS and the BSs of (i).
For (iii), apply Theorem 2.4. The case d=0 results from a (m((m&1)�2),

m, 4, +) covering EBS on M, which exists by assumption. Each case d�1
results from the covering EBSs of (ii), noting that the group Gd in (iii)
contains a subgroup of index 4 and exponent at most 2d. K

A result broadly equivalent to Corollary 6.4 was proved by Jedwab [27]
from the viewpoint of perfect binary arrays, via lengthy computation. (A
(m((m&1)�2), m, 4, +) covering EBS on >r

i=1 Zsi
, where m2=>r

i=1 si ,
implies the existence of a s1_s2_ } } } _sr ``binary supplementary quad-
ruple,'' which is the initial object for the recursive constructions in [27].)
We believe the method presented here to be much clearer.

We have chosen in Corollary 6.4 to begin with a (m((m&1)�2), m, 4, +)
covering EBS on M, although it is clear from the proof that it would be
sufficient to begin with a (m2, m, 2, &) covering EBS on Z2_M. (In the
running example of this section, a (3, 3, 4, +) covering EBS on Z2

3 implies
the existence of the required (9, 3, 2, &) covering EBS on Z2_Z2

3 .) The
reason is the following composition theorem for (m((m&1)�2), m, 4, +)
covering EBSs.

Theorem 6.5. Suppose there exists a (mi ((mi&1)�2), mi , 4, +) covering
EBS on a group Mi of odd order m2

i for i=1, 2. Then there exists a
(m1m2((m1m2&1)�2), m1 m2 , 4, +) covering EBS on M1_M2 .

Proof. For i=1, 2 let [Ai , Bi , Ci , Di] be a (mi ((mi&1)�2), mi , 4, +)
covering EBS on Mi and let the building block containing mi ((mi+1)�2)
elements be Di . Define the following elements of the group ring Z[M1_M2]:

A=M1A2+A1M2&A1A2+B1B2&A1B2&B1A2 ,
B=M1C2+A1 M2&A1C2+B1D2&A1D2&B1C2 ,
C=M1A2+C1M2&C1A2+D1B2&C1B2&D1A2 ,
D=M1C2+C1M2&C1C2+D1D2&C1D2&D1C2 .= (6)
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We firstly show that each of these elements can be regarded as a subset of
M1_M2 (so the coefficients in the group ring are 0 or 1). Consider the
following subsets of M1_M2 :

S1=(A1 & B1)_(M2"A2),

S2=((M1"A1) & (M1"B1))_A2 ,

S3=(A1 & (M1"B1))_(M2"B2),

S4=((M1"A1) & B1)_B2 .

By inspection the Si have empty pairwise intersection. Let T=A1 & B1 ,
and note that we can write (M1"A1) & (M1"B1) as (M1"A1)"(B1"T ). Then
in the group ring we have S1=T(M2&A2), S2=(M1&A1&B1+T )A2 ,
S3=(A1&T )(M2&B2) and S4=(B1&T )B2 , from which S1+S2+
S3+S4=A. Since the Si have empty pairwise intersection, A is therefore a
subset of M1_M2 . Similar arguments hold for B, C and D.

We claim that [A, B, C, D] is a (m1m2((m1 m2&1)�2), m1m2 , 4, +)
covering EBS on M1_M2 . To show that A, B, C and D have the correct
size, note that for i=1, 2 we have |Mi |=m2

i , |Ai |=|Bi |=|Ci |=
mi ((mi&1)�2) and |Di|=mi ((mi+1)�2). Then from (6) we have

|A|=|M1 A2|+|A1M2|&|A1 A2|+|B1B2|&|A1B2|&|B1A2|

=m1m2((m1m2&1)�2),

and similar calculations show that |B|= |C |=m1m2((m1 m2&1)�2) and
|D|=m1m2((m1 m2+1)�2). It remains to establish the character properties
for [A, B, C, D].

Let / be a nonprincipal character of M1_M2 . Firstly consider the case
when / is nonprincipal on M1 and M2 . Then the terms in (6) involving M1

or M2 have a character sum of 0. By the definition of covering EBS, for
i=1, 2 exactly one of Ai , Bi , Ci and Di has nonzero character sum (with
modulus mi). Since each term X1Y2 , where X, Y # [A, B, C, D], occurs
exactly once in (6) it follows that exactly one of A, B, C and D has nonzero
character sum (with modulus m1m2). By symmetry in the subscripts 1 and
2 in the equations (6), it is now sufficient to consider the case when / is
principal on M1 and nonprincipal on M2 . Exactly one of the building
blocks A2 , B2 , C2 and D2 then has a nonzero character sum. If this build-
ing block is A2 then /(B)=/(D)=0, /(C)=(|M1 |&|C1 |&|D1| ) /(A2)=0
and /(A)=( |M1 |&|A1 |&|B1 | ) /(A2)=m1/(A2), which has modulus
m1 m2 . If instead the building block with nonzero character sum is B2 , C2

or D2 then similar calculations show that C, B or D respectively has non-
zero character sum (with modulus m1m2) while the rest of A, B, C and D
have zero character sum. K
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Theorem 6.5 is based on a construction of Turyn [56] involving
incidence matrices of Hadamard difference sets known as Williamson
matrices. (The form of the construction given in [56] corresponds to the
equations for the Si in the above proof). In Theorem 6.5 we have estab-
lished additional character properties of Turyn's construction for use in
Corollary 6.4. The construction of Hadamard difference sets now relies on
finding initial (m((m&1)�2), m, 4, +) covering EBSs on groups of order
m2 (which, from the relationship between covering EBS parameters given
after Theorem 2.4, must be odd). The following examples are known.

Theorem 6.6. There exists a (m((m&1)�2), m, 4, +) covering EBS on
the following groups M of order m2:

(i) M is the trivial group.

(ii) M=Z2
3: , where :�1.

(iii) M=Z4
p , where p is an odd prime.

Theorem 6.6(ii) is due to Arasu, Davis, Jedwab and Sehgal [2].
Theorem 6.6(iii) is due to Chen [5], who built on a succession of papers
devoted to finding a Hadamard difference set in Z2

2_Z4
p or Z4_Z4

p .
Initially Xia [58] constructed such a difference set for all primes p con-
gruent to 3 modulo 4. Xiang and Chen [59] then showed that this
construction could be viewed as depending on subsets whose character
properties correspond to those of a covering EBS. Next, van Eupen and
Tonchev [22] found a difference set example for p=5 and subsequently
Wilson and Xiang [57] found an example for p=13 and p=17. Finally
Chen [5] solved the problem for all odd primes p by constructing the
covering EBS of Theorem 6.6(iii).

Corollary 6.7. Let M be either the trivial group or the group
>i Z2

3:i_>j Z4
pj

, where :i�1 and where pj is an odd prime, and let
|M|=m2. Then the following exist:

(i) A (m((m&1)�2), m, 4, +) covering EBS on M.

(ii) A (22d&1m2, 2dm, 2) BS on Gd_M relative to any subgroup
of order 2, where d�1 and Gd is any group of order 22d and exponent at
most 2d.

(iii) A (22d&1m2, 2dm, 4, &) covering EBS on Gd_M, where d�1
and Gd is any group of order 22d and exponent at most 2d.

(iv) A Hadamard difference set with N=2dm in Gd_M, where d�0
and Gd is any group of order 22d+2 and exponent at most 2d+2.

Proof. For (i), apply Theorem 6.5 to the initial covering EBSs of
Theorem 6.6. Then (ii), (iii) and (iv) follow from Corollary 6.4. K
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Corollary 6.7(iv) is one of the central results of the paper, together with
Corollary 5.3 (once again, the groups involved are implicitly abelian).
There are no other abelian groups known to contain Hadamard difference
sets. The case where M is trivial is due to Kraemer [31]. When combined
with an exponent bound given by Turyn [55], Kraemer's result states that
Hadamard difference sets exist in abelian groups of order 22d+2 if and only
if the exponent is at most 2d+2. For the case where M is nontrivial many
nonexistence results depending on number theoretic conditions are known
(for details see Davis and Jedwab [13]).

7. FAMILIES OF BUILDING SETS

In this section we demonstrate the full power of the recursive construc-
tion for BSs of Section 4 by applying Theorem 4.3 systematically to a small
initial set of BSs. This produces several families of BSs, including as special
cases all those previously found in Sections 5 and 6 for the purpose of
constructing difference sets. The BSs constructed here will be used in
Section 8 to deduce the existence of families of semi-regular RDSs, and in
Section 9 when we discuss nonabelian groups. Since the construction is
based on Theorem 4.3, all the BSs are defined on a group G relative to an
elementary abelian subgroup U, although G will not necessarily be a
p-group. We are now interested not only in the groups G on which BSs
with given parameters exist, but also in the different possible subgroups U.
The arguments in this section are probably the most difficult in the paper!

In general, we wish to find (a, - at , t) BSs for which the number of
building blocks t is large. We have seen in Section 5 that difference sets in
several parameter families can be constructed from BSs using Theorem 3.2
only when t is large, and by Lemma 2.1 a (a, - at , t) BS on a group G is
clearly a more general object than a (as, - at , t�s) BS on a group G$ con-
taining G as a subgroup of index s. On the other hand, we have seen in
Section 6 that it is possible to trade the growth in t under the recursive
application of Theorem 4.3 for a more general form for the group G. For
example, for any d�1, by Theorem 5.1(i) there is a (2d, 2d, 2d) BS on Zd+1

2

relative to Z2 whereas by Corollary 6.7(ii) there is a (22d&1, 2d, 2) BS on
any group of order 22d and exponent at most 2d relative to any subgroup
of order 2. The first set of BSs is more general in that the number of build-
ing blocks is 2d rather than 2, but the second set of BSs is more general in
that the group rank can be as small as 2 rather than d+1. (Lemma 2.1
allows some of the second set of BSs to be constructed from the first, but
not when the group rank is less than d+1). We now present a general
recursive application of Theorem 4.3 which gives the result of applying
Lemma 2.1 prior to Theorem 4.3 as desired, throughout the recursion, to
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the BSs with the smallest number of building blocks. As before, the recur-
sion is controlled by the parameter d. We introduce a new parameter c,
ranging from a minimum value c� up to d, which will be used in applica-
tions of Theorem 7.1 to indicate the maximum exponent pc of the Sylow
p-subgroup of the group Gd, c .

Theorem 7.1. Let p be prime and let r�1 and c� �1. For each d�c� and
for each c in the range c� �c�d let Kd, c be a set of ordered pairs
(Gd, c , Ud, c), where Gd, c is a group of order p(d+c&2c� +2)ra containing a sub-
group Ud, c$Zr

p . Suppose that for each (Gc� , c� , Uc� c� ) # Kc� , c� there exists a
( pra, pr

- at , prt) BS on Gc� , c� relative to Uc� , c� . Suppose also that, for each
d>c� and for each c in the range c� �c�d and for each (Gd, c , Ud, c) # Kd, c ,
Gd, c contains a subgroup Q$Z2r

p and subgroups H0=Ud, c , H1 , ..., Hpr of
order pr (corresponding to hyperplanes when viewed as subgroups of Q) such
that, for all Hi{H0 ,

(i) Kd&1, c contains an ordered pair isomorphic to (Gd, c �Hi , Q�Hi) for
each c in the range c� �c�d&1, and

(ii) Gd, d�Hi contains a subgroup S�Hi of index pr such that Kd&1, d&1

contains an ordered pair isomorphic to (S�Hi , Q�Hi).

Then for each d�c� and for each c in the range c� �c�d and for each
(Gd, c , Ud, c) # Kd, c there exists a ( p(d+c&2c� +1) ra, p (d&c� +1)r

- at , p(d&c+1) rt)
BS on Gd, c relative to Ud, c .

Proof. The proof is by induction on d. The case d=c� is true by assump-
tion. Assume the case d&1 to be true (for each value of c in the range
c� �c�d&1) and consider Hi{H0 . For each value of c in the range
c� �c�d we can apply Theorem 4.3 with G=Gd, c and H0=Ud, c to estab-
lish the case d, provided there exists a ( p(d+c&2c� ) ra, p (d&c� ) r

- at , p(d&c) rt)
BS on Gd, c�Hi relative to Q�Hi . The subsequent analysis depends on
whether c�d&1 or c=d. When c�d&1, by assumption Kd&1, c contains
an ordered pair isomorphic to (Gd, c �Hi , Q�Hi ) so the required BS is given
by the inductive hypothesis with the value c. When c=d, there is no induc-
tive hypothesis with the value c. But by assumption Gd, d�Hi contains a
subgroup S�Hi of index pr such that Kd&1, d&1 contains an ordered pair
isomorphic to (S�Hi , Q�Hi ). Therefore by the inductive hypothesis there
exists a ( p(2d&2c� &1) ra, p(d&c� )r

- at , prt) BS on S�Hi relative to Q�Hi . Then
Lemma 2.1 with s=pr gives the required BS on Gd, d�Hi relative to Q�Hi .
This completes the induction. K

The special case c� =c=1 of Theorem 7.1 is similar to Theorem 4.6. We
shall consider groups Gd, c in Theorem 7.1 whose Sylow p-subgroup has
exponent at most pc. The minimum value of c is c� , which will be either
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1 or 2. (For example, we must take c� =2 when considering an initial
(4, 2 - 2, 2) BS on a group G of order 8 relative to a subgroup U of
order 2, which we shall later show exists only if U is contained in a sub-
group of G isomorphic to Z4 .) Then, since Gd, c has order p(d+c&2c� +2)ra,
for fixed d>2 we see that for larger values of c the number of building
blocks p(d&c+1) rt is smaller but the Sylow p-subgroup is allowed to have
smaller rank (and larger exponent). Furthermore by Theorem 2.2 we can
construct a semi-regular RDS in groups G$d, c for which the exponent of the
Sylow p-subgroup is a multiple of pc+(d&c+1) r. For r>1 this means we can
achieve a smaller rank for G$d, c , by taking c large, at the cost of a smaller
maximum exponent. For further details see Section 8.

Theorem 7.1 is particularly straightforward to apply when pr=2 and we
now do so, after giving another construction for a BS from a covering EBS
similar to Lemma 6.3.

Lemma 7.2. Let M be a group of odd order m2. Suppose there exists a
(m2, m, 2, &) covering EBS on Z2_M. Then there exists a (4m2, 23�2m, 2)
BS on Z4_Z2_M relative to the subgroup of order 2 contained within Z4 .

Proof. Let Z4_Z2=(x, y | x4=y2=1) and let [A, B] be a (m2, m, 2, &)
covering EBS on G=( y)_M. Define the subsets C=(1+x)
(A+x2(G"A)) and D=(1+x)(B+x2(G"B)) of Z4_Z2_M. A similar
method to the proof of Lemma 6.3 shows that [C, D] is a (4m2, 23�2m, 2)
BS on (x)_G relative to (x2) . K

Corollary 7.3. Let M be either the trivial group or the group
>i Z2

3: i_> j Z4
p j

, where :i�1 and where pj is an odd prime, and let |M|=m2.

(i) For each d and c satisfying 1�c�d, there exists a (2d+c&1m2,
2dm, 2d&c+1) BS on Gd, c_M relative to any subgroup of order 2, where
Gd, c is any group of order 2d+c and exponent at most 2c.

(ii) For each d and c satisfying 2�c�d, there exists a (2d+c&2m2,
2(2d&1)�2m, 2d&c+1) BS on Gd, c_M relative to any subgroup Ud, c of
order 2 which is contained within a subgroup of Gd, c isomorphic to Z4 , where
Gd, c is any group of order 2d+c&1 and exponent at most 2c.

Proof. By Corollary 6.7(i) there exists a (m((m&1)�2), m, 4, +) cover-
ing EBS on M. Therefore (as in the proof of Corollary 6.4) there exists a
(m2, m, 2, &) covering EBS on Z2_M. We shall now apply Theorem 7.1
with pr=2.

For (i), let a=m2 and c� =t=1 and take Kd, c to be the set of all ordered
pairs (Gd, c_M, Ud, c) for which Gd, c is a group of order 2d+c and exponent
at most 2c and Ud, c is a subgroup of order 2. By Lemma 6.3 there exists
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a (2m2, 2m, 2) BS on Z2
2_M relative to Z2 , which satisfies the condition on

Kc� , c� . Let Q$Z2
2 be a subgroup of Gd, c containing H0=Ud, c and let the

subgroups of Gd, c of order 2, corresponding to hyperplanes when viewed as
subgroups of Q, be H0 , H1 and H2 . For Hi{H0 and d>1, clearly Gd, c �Hi

has order 2d+c&1 and exponent at most 2c when c�d&1, and it is easily
shown that Gd, d�Hi contains a subgroup S�Hi (containing Q�Hi) of
index 2 and exponent at most 2d&1. The result follows from Theorem 7.1.

For (ii), let a=2m2, c� =2 and t=1 and take Kd, c to be the set of all
ordered pairs (Gd, c_M, Ud, c) for which Gd, c is a group of order 2d+c&1

and exponent at most 2c and Ud, c is a subgroup of order 2 contained
within a subgroup of Gd, c isomorphic to Z4 . By Lemma 7.2 there exists a
(4m2, 23�2m, 2) BS on Z4_Z2_M relative to the subgroup of order 2 con-
tained within Z4 , which satisfies the condition on Kc� , c� . The remainder of
the proof is similar to that of (i), with an additional condition on Q�Hi

which we now demonstrate. By Lemma 4.4, Q�Hi is contained in a sub-
group of Gd, c�Hi isomorphic to Z4 for c�d. In the case c=d, this implies
that the subgroup S�Hi of Gd, d �Hi can be chosen as above so that Q�Hi is
contained in a subgroup of S�Hi isomorphic to Z4 when d>2. K

The examples of BSs used at the beginning of this section to introduce
Theorem 7.1 are given by the extreme cases c=1 and c=d of Corollary
7.3(i). We now show the condition in Corollary 7.3(ii), that Ud, c is con-
tained within a subgroup of Gd, c isomorphic to Z4 , to be necessary. This
is a consequence of the character sum modulus 2(2d&1)�2m being non-
integer.

Lemma 7.4. Suppose there exists a (a, m, t) BS on a group G_W
relative to a subgroup U of G, where G is a 2-group and m is not integer.
Then rank(G�U )=rank(G ).

Proof. Suppose, for a contradiction, that rank(G�U )<rank(G ). Then U
contains a nonidentity element u for which there is no g # G_W satisfying
g2=u. Then we can define / to be the character mapping u to &1 and
mapping every element of G_W not in (u) to 1. / is nonprincipal on U
and so by the definition of BS there is a building block Bi for which
|/(Bi)|=m. But /(Bi ) is the sum of terms each of which is 1 or &1 whereas
by assumption m is not integer. K

A RDS in a group U_W relative to U is said to be ``splitting''; the
conclusion rank(G�U )=rank(G ) implies in particular that the BS in
Lemma 7.4 cannot have this form.

We have seen how to apply Theorem 7.1 when pr=2. We now examine
conditions (i) and (ii) of the Theorem more closely in order to indicate
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how we shall apply it when pr>2. Suppose we begin with the BSs of
Corollary 4.2, taking a=t=1 and K1, 1=[(Z2r

p , Z r
p)]. Then clearly we can

satisfy condition (i) by choosing K2, 1=[(Z3r
p , Zr

p)]. We can satisfy condi-
tion (ii) by choosing K2, 2 to be the set of all ordered pairs (G2, 2 , U2, 2) for
which G2, 2 has order p4r and exponent at most p2 subject to the constraint,
for each Hi{H0 , that G2, 2 �Hi contains a subgroup of index pr and expo-
nent p containing Q�Hi . We shall show that these constraints on the
Hi{H0 are all implied by the single constraint that G2, 2 �U2, 2 contains a
subgroup of index pr and exponent p (by suitable choice of the subgroup
Q$Z2r

p ). In other words, the single constraint is that G2, 2 �U2, 2 attains its
maximum exponent p2 at most r times. For example, if G2, 2=Z2r&2

p _Zr+1
p 2

(where r>1) and we write the subgroup U2, 2$Zr
p as being contained

within r direct factors of G2, 2 then all choices of U2, 2 are allowed, except
possibly U2, 2 being contained within the subgroup Z2r&2

p . This demon-
strates that even when all positions of Uc� , c� within Gc� , c� are allowed, not all
positions of Ud, c within Gd, c are necessarily allowed.

Continuing to the next level d=3, we can similarly take K3, 1=
[(Z4r

p , Zr
p)]. We then satisfy condition (i) by choosing K3, 2 to be the set of

all ordered pairs (G3, 2 , U3, 2) for which G3, 2 has order p5r and exponent at
most p2, provided that (G3, 2 �Hi , Q�Hi ) is contained in K2, 2 . This requires
(G3, 2 �Hi)�(Q�Hi ) to contain a subgroup of index pr and exponent p for
each Hi{H0 . We shall show that these constraints are all implied by the
single constraint that G3, 2 �U3, 2 contains a subgroup of index p2r and
exponent p. Thus, a constraint for (d, c)=(2, 2) forces a constraint for
(d, c)=(3, 2) and will likewise propagate to all (d, 2) with d>2. We then
satisfy condition (ii) by choosing K3, 3 to be the set of all ordered pairs
(G3, 3 , U3, 3) for which G3, 3 has order p6r and exponent at most p3, subject
to two constraints. The first, that G3, 3 �U3, 3 contains a subgroup of index
pr and exponent at most p2, arises directly from condition (ii) as a result
of the increase in exponent from p2 to p3. The second, that G3, 3�U3, 3 con-
tains a subgroup of index p3r and exponent p, is inherited via condition (ii)
from the constraint on K2, 2 . Note that K2, 2 contains (Z2r

p2 , Zr
p) and K3, 3

contains (Z2r
p 3 , Zr

p). This illustrates that the rank of the Sylow p-subgroup
of Gd, c need not increase from the minimum value of 2r, as required so that
the subgroup Q$Z2r

p exists.
Following the pattern of the above example, we now produce an explicit

form for allowable ordered pairs (Gd, c , Ud, c) from Theorem 7.1, involving
the existence of a subgroup of Gd, c �Ud, c of exponent p j for each j in the
range c� � j �c&1. Although the following theorem constructs many such
ordered pairs, it is necessary to check only that the subgroup conditions
hold for a particular ordered pair (Gd, c , Ud, c) and a particular value of d
and c to conclude that the stated BS exists for this ordered pair. For the
moment we take Gd, c to be a p-group.
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Theorem 7.5. Let p be prime and let r�1. Suppose there exists a
( pra, pr

- at , prt) BS on any p-group Gc� , c� of order p2ra and exponent at most
pc� relative to any subgroup Uc� , c� $Zr

p , where a>pc� (2r&1)&2r&1 and c� �1.
Then for each d and c satisfying c� �c�d, there exists a ( p(d+c&2c� +1) ra,
p(d&c� +1) r

- at , p(d&c+1)rt) BS on any p-group Gd, c of order p(d+c&2c� +2) ra
and exponent at most pc relative to any subgroup Ud, c$Zr

p, where, for
each j in the range c� � j �c&1, Gd, c �Ud, c contains a subgroup of index
p(d+c&2j&1)r and exponent at most p j.

Furthermore the theorem remains true for c� �2 if Uc� , c� is additionally con-
strained to be contained within a subgroup of Gc� , c� isomorphic to Zr

p 2 ,
provided that each Ud, c is likewise contained within a subgroup of Gd, c

isomorphic to Zr
p 2 .

Proof. We shall apply Theorem 7.1, taking Kd, c to be the set of all
ordered pairs (Gd, c , Ud, c) for which Gd, c is any p-group of order
p(d+c&2c� +2)ra and exponent at most pc and Ud, c is any subgroup isomorphic
to Zr

p provided that, for each j in the range c� � j �c&1, Gd, c �Ud, c contains
a subgroup of index p(d+c&2j&1) r and exponent at most p j. The condition
on Kc� , c� is true by assumption. Consider d and c satisfying d>c� and
c� �c�d. Since Gd, c has order p(d+c&2c� +2)ra and exponent at most pc, and
by assumption a>pc� (2r&1)&2r&1, it is straightforward to show that
rank(Gd, c)>2r&1. Therefore Gd, c contains a subgroup Qd, c$Z2r

p con-
taining Ud, c . Choose the subgroups Hi of Gd, c corresponding to hyper-
planes of Qd, c so that H0=Ud, c , and consider Hi{H0 . The result follows
from Theorem 7.1 subject to the following two conditions. Firstly, when
c�d&1, (Gd, c �Hi )�(Qd, c�Hi ) contains a subgroup of index p(d+c&2j&2)r

and exponent at most p j for each j in the range c� � j �c&1. Secondly,
Gd, d�Hi contains a subgroup S�Hi (containing Qd, d �Hi ) of index pr and
exponent at most pd&1 such that, for each j in the range c� � j �d&2,
(S�Hi )�(Qd, d �Hi ) contains a subgroup of index p(2d&2j&3) r and exponent at
most p j. We now demonstrate the existence of the required subgroups
when c�d&1 and when c=d to complete the proof.

For c�d&1 or c=d, let

Gd, c= `
r

u=1

Zp 1+: u_ `
w

u=1

Zp1+; u , (7)

where w�r, Qd, c is contained in the first 2r direct factors of Gd, c , Ud, c is
contained in the first r direct factors of Gd, c , c&1�:u�0 for each u, and
c&1�;1�;2� } } } �;w�0. By the third isomorphism theorem for
groups, (Gd, c �Hi )�(Qd, c�Hi )$Gd, c�Qd, c and so

(Gd, c �Hi )�(Qd, c �Hi )$ `
r

u=1

Zp : u_ `
r

u=1

Zp ; u_ `
w

u=r+1

Zp1+; u . (8)
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Furthermore from (7),

Gd, c �Ud, c$ `
r

u=1

Zp: u_ `
w

u=1

Zp 1+; u , (9)

and by assumption (9) contains a subgroup T of index p(d+c&2j&1)r and
exponent at most p j for each j in the range c� � j �c&1. Let s=s( j ) be the
largest u for which ;u�j. If s�r then it clearly follows that (8) contains
a subgroup (isomorphic to T ) of index p(d+c&2j&1) r�pr and exponent at
most p j. If s<r then ;u< j for all u>s and so (8) contains a subgroup
of exponent at most p j and index at most p (c&1&j ) r+(c&1&j ) s<
p(c&1&j ) r+(d&1&j ) r (since c�d ). Therefore for s�r or s<r, (8) contains a
subgroup of index p(d+c&2j&2)r and exponent at most p j. This completes
the proof when c�d&1.

When c=d the above argument shows that, for each j in the range
c� � j �d&2, G$�Q$ contains a subgroup of index p(2d&2j&2) r and exponent
at most p j, where G$=Gd, d �Hi and Q$=Qd, d�Hi . Let S$�Q$ be any sub-
group of G$�Q$ of index pr and minimal exponent for which the exponent
is attained in a minimal number of direct factors. Then any subgroup of
S$�Q$ of index p(2d&2j&2) r�pr and minimal exponent has exponent at most
p j. The pre-image S$=S�Hi of S$�Q$ under the quotient mapping from G$
to G$�Q$ will be the subgroup of G$=Gd, d�Hi of index pr we are seeking.
It remains to show that for some choice of S$�Q$ as specified above, S$ has
exponent at most pd&1. Now by definition 1+:u�d and 1+;u�d for all
u, and by assumption (taking c=d and j=d&1) (9) contains a subgroup
of index pr and exponent at most pd&1. Therefore the largest u for which
1+;u=d is at most r. Hence from (8), G$�Q$ has exponent at most pd&1

and from (7), if Gd, d attains the exponent pd it does so only in the first 2r
direct factors. Lemma 4.4 then implies that if G$=Gd, d�Hi attains the expo-
nent pd it does so in at most r direct factors, and moreover we can rewrite
the generators of Gd, d if necessary so that all such direct factors belong to
a subgroup of rank r containing Q$=Qd, d�Hi . The exponent attained in
these direct factors will be reduced to pd&1 in G$�Q$ (and we have already
established that the exponent of G$�Q$ is at most pd&1). We can therefore
ensure that S$ has exponent at most pd&1 by insisting that the selection of
S$�Q$, as a subgroup of G$�Q$ of index pr and minimal exponent attained
a minimal number of times, reduces the exponent attained in these direct
factors of G$�Q$ to pd&2 in preference to any other direct factors of G$�Q$
attaining the exponent pd&1. This completes the proof when c=d.

Finally, for c� �2, let Ud, c be additionally constrained to be contained
within a subgroup of Gd, c isomorphic to Zr

p2 for each d�c� and for each c
in the range c� �c�d. The above induction step for d>c� can be modified
as follows. The required BS on Gd, c �Hi relative to Qd, c�Hi exists provided

54 DAVIS AND JEDWAB



File: 582A 279643 . By:DS . Date:15:09:97 . Time:09:17 LOP8M. V8.0. Page 01:01
Codes: 3298 Signs: 2588 . Length: 45 pic 0 pts, 190 mm

Qd, c �Hi is contained in a subgroup of Gd, c �Hi isomorphic to Z r
p 2

when c�d&1, and provided Qd, d�Hi is contained in a subgroup of
S�Hi isomorphic to Zr

p2 . Apply Lemma 4.4 with G=Gd, c , H0=Ud, c and
Q=Qd, c to show that Qd, c�Hi is contained in a subgroup of Gd, c �Hi

isomorphic to Zr
p2 for c�d. This establishes the result when c�d&1. It

remains to show that if Q$=Qd, d �Hi is contained in a subgroup of
G$=Gd, d �Hi isomorphic to Zr

p2 (as just demonstrated) then we can choose
S$=S�Hi consistently with the previous procedure so that Q$ is also con-
tained in a subgroup of S$ isomorphic to Zr

p2 . In other words, given that
the r direct factors of G$�Q$ corresponding to the position of Q$ in G$ each
attains an exponent of at least p, we must choose the subgroup S$�Q$ con-
sistently so that none of these direct factors is removed. The reduction in
exponent to pd&2 can proceed as before since d&2�c� &1�1, and the
choice of S$�Q$ with minimal exponent does not require the removal of any
of the r direct factors unless |G$�Q$|�p2r&1. It is straightforward to show
that this inequality is false and so the induction proof carries over. K

Theorem 7.5 gives conditions on subgroups of Gd, c �Ud, c for each c in the
range c� �c�d and for each j in the range c� � j �c&1. We shall show in
the following four corollaries that in particular cases some of these condi-
tions are implied by others while some are guaranteed to hold because of
the order and exponent restrictions on Gd, c . Each of the corollaries is
based on one of the following four sources, to which we apply Theorem 4.3
if necessary to obtain initial BSs comprising prt building blocks on any
p-group Gc� , c� of fixed order and bounded exponent relative to any sub-
group Uc� , c� $Z r

p .

Theorem 7.6. For each r�1, the following exist:

(i) A ( pr, pr, pr) BS on Z2r
p relative to Zr

p , where p is prime and r�1.

(ii) A ( pr, pr�2, 1) BS on Z2r
p relative to Zr

p , where p is an odd prime
and r�1.

(iii) A (2r, 2r�2, 1) BS on Zr
4 relative to Zr

2 , where r�1.

(iv) A (8, 4, 2) BS on Z2
4_Z2 relative to the subgroup Z2

2 of Z2
4 .

Theorem 7.6(i) is just a restatement of Corollary 4.2. Theorem 7.6(ii) and
(iii) are equivalent to Jungnickel's result [28] that semi-regular RDSs, with
parameters ( pr, pr, pr, 1) and (2r, 2r, 2r, 1) respectively, exist for the stated
groups and subgroups. (Nonexistence results for RDSs show that no other
abelian group and subgroup can be substituted in Theorem 7.6(ii) for r=1
[26] or r=2 [36], or in Theorem 7.6(iii) for any r [24].) Theorem 7.6(iv)
is due to Arasu and Sehgal [3], as described in Section 2.
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Suppose we apply Theorem 7.5 directly to the BSs of Theorem 7.6(i) to
obtain BSs with parameters ( p(d+c&1)r, pdr, p(d&c+1) r). By Theorem 2.2
this gives semi-regular RDSs with parameters ( p2dr, pr, p2dr, p(2d&1)r) for
d�1. For fixed pr, successive values of the first RDS parameter p2dr differ
by a factor p2r. We show in the first corollary that we can reduce this factor
to p2 by producing BSs which give RDSs with parameters ( p2dr+2i, pr,
p2dr+2i, p (2d&1) r+2i) for each i in the range 0�i<r. We do so by contract-
ing the initial BSs using Lemma 4.5 before applying Theorem 7.5. (This
is preferable to first applying Theorem 7.5 and then contracting,
because it allows us to keep the group rank small.) In the second and third
corollaries we will achieve a reduction in the corresponding factor from
pr to p.

Corollary 7.7. Let p be prime and let i and r satisfy 0�i<r. For each
d and c satisfying 1�c�d, there exists a ( p(d+c&1) r+i, pdr+i, p(d&c+1) r+i)
BS on any group Gd, c of order p(d+c) r+i and exponent at most pc relative to
any subgroup Ud, c$Zr

p , where, for d>1 and c=d, Gd, c�Ud, c contains
a subgroup of index pr and exponent at most pd&1 and where, for i>0
and c in the range max[1, ((d&1) r+i)�(r+i)]<c�d, rank(Gd, c �Ud, c)�
2r+i.

Proof. We begin with a ( pr+i, pr+i, pr+i) BS on Z2(r+i)
p relative to

Zr+i
p from Theorem 7.6(i), and use Lemma 4.5 with W=Z i

p to obtain a
( pr+i, pr+i, pr+i) BS on Z2r+i

p relative to Zr
p . This provides the initial BS

on Gc� , c� relative to Uc� , c� in Theorem 7.5, taking a=t=pi and c� =1. We then
obtain the required BS on Gd, c relative to Ud, c provided that, for each c in
the range 1�c�d, the following condition on j is satisfied for each j in the
range 1� j �c&1: Gd, c �Ud, c contains a subgroup of index p(d+c&2j&1)r

and exponent at most p j. We now show that this set of conditions can be
replaced by the smaller set stated in the theorem by distinguishing four
cases: firstly c�((d&1) r+i)�(r+i), when no condition on j will be
needed; secondly c�d&1, when the condition on j=1 will suffice; thirdly
c=d and i=0, when the condition on j=d&1 will suffice; and fourthly
c=d and i>0, when the condition on j=1 and j=d&1 will together suf-
fice. (In the theorem, the condition on j=1 is written in the equivalent
form: rank(Gd, c �Ud, c)�2r+i.) Since the range of j is 1� j �c&1, we
shall assume c>1 throughout.

The group Gd, c �Ud, c has order p(d+c&1) r+i and exponent at most pc, so
we can write it as >c

u=1 Z
:u
p u , where :u�0 and

:
c

u=1

u:u=(d+c&1) r+i. (10)
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Clearly Gd, c�Ud, c contains a subgroup of index pwj and exponent at most
pj, where

wj= :
c

u=j+1

(u&j ) :u . (11)

We shall repeatedly use the fact that

:
C

u=j+1

(u&j ) :u�\C&j
C&;+ :

C

u=j+1

(u&;) :u (12)

for any integer ;�j.
In the first case, when c�((d&1) r+i)�(r+i ), we consider j in the

range 1� j �c&1. Put ;=0 and C=c in (12) and substitute from
(11) to show that wj�((c&j )�c) �c

u=j+1 u:u . (10) then implies that wj�
((c&j)�c) ((d+c&1) r+i). Rearrangement gives wj&(d+c&2j&1) r�
( j (r+i)�c)(c&((d&1) r+i)�(r+i))&i( j&1). Since c�((d&1) r+i)�
(r+i), we obtain wj&(d+c&2j&1)r�0. Therefore by the definition
of wj , Gd, c �Ud, c always contains a subgroup of index p(d+c&2j&1)r and
exponent at most p j for each j in the range 1� j �c&1.

In the second case, when c�d&1, we assume the condition on j=1
holds and consider j in the range 2� j �c&1. Take ;=1 and C=c in (12)
and use (11) to deduce that wj�((c&j )�(c&1)) w1 . Now the condition on
j=1 can be written as w1�(d+c&3)r and so wj&(d+c&2j&1) r�
(( j & 1)�(c & 1))(c + 1 & d ) r. Since c � d & 1, we obtain wj & (d + c &
2j&1)r�0.

In the third case, when c=d and i=0, we assume the condition on
j=d&1 holds and consider j in the range 1�j�d&2. We can rewrite (11)
as wj=(d&j ) :d+�d&1

u=j+1 (u&j ) :u and then put ;=0 and C=d&1 in
(12) to show that wj�(d&j ) :d+((d&1&j )�(d&1)) �d&1

u=j+1 u:u . (10)
then implies that wj�(d&j ) :d+((d&1&j )�(d&1))((2d&1) r&d:d ).
Hence wj&(2d&2j&1)r�( j�(d&1))(:d&r). Now the condition on
j=d&1 gives wd&1�r, which from (11) is equivalent to :d�r. Therefore
wj&(2d&2j&1) r�0.

In the fourth case, when c=d and i>0, we assume the condition on
j=1 and j=d&1 to hold and consider j in the range 2� j �d&2. Rewrite
(11) as wj=(d&j ) :d+�d&1

u=j+1 (u&j ) :u . Take ;=1 and C=d&1 in
(12) and use (11) to deduce that wj�(d&j ) :d+((d&1&j )�(d&2))
(w1&(d&1) :d ). Now the condition on j=1 gives w1�(2d&3) r and so
wj&(2d&2j&1) r�(( j&1)�(d&2))(:d&r). The condition on j=d&1
then gives wd&1=:d�r, and so wj&(2d&2j&1) r�0.

This completes the proof. K
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The condition on Gd, d�Ud, d in Corollary 7.7 is a consequence of
the increase in group exponent from pd&1 to pd. The condition on
rank(Gd, c �Ud, c) derives from the initial BS, which is defined on Z2r+i

p . We
note that the range of values of d, i and c in Corollary 7.7 for which
Gd, c �Ud, c must be constrained could be slightly improved because it is
sufficient to ensure that wj&(d+c&2j&1) r<1 in the proof rather than
wj&(d+c&2j&1) r�0. We have chosen the presented form for clarity; it
is straightforward to check in individual cases whether the conditions are
guaranteed to hold.

Corollary 7.8. Let p be an odd prime and let i and r satisfy 0�i<2r.
There exists a ( pr+i, p(r+i)�2, 1) BS on Z2r+i

p relative to Zr
p . For each d and

c satisfying 1�c�d, there exists a ( p(d+c) r+i, p((2d+1) r+i)�2, p(d&c+1)r) BS
on any group Gd, c of order p(d+c+1 )r+i and exponent at most pc relative to
any subgroup Ud, c$Zr

p , where, for d>1 and c=d, Gd, c�Ud, c contains a
subgroup of index pr and exponent at most pd&1 and where, for c in the range
max[1, (dr+i)�(2r+i)]<c�d, rank(Gd, c �Ud, c)�3r+i.

Proof. By Theorem 7.6(ii) and Lemma 4.5 there exists ( pr+i, p(r+i)�2, 1)
BS on Z2r+i

p relative to Zr
p , as required. Then by Theorem 4.3 there exists

a ( p2r+i, p(3r+i)�2, pr) BS on Z3r+i
p relative to Zr

p . This provides the initial
BS on Gc� , c� relative to Uc� , c� in Theorem 7.5, taking a=pr+i and t=c� =1.
We then obtain the required BS on Gd, c relative to Ud, c provided that, for
each c in the range 1�c�d, the following condition on j is satisfied for
each j in the range 1� j �c&1: Gd, c �Ud, c contains a subgroup of index
p(d+c&2j&1)r and exponent at most p j. These conditions on j are identical
to those in the proof of Corollary 7.7 and can likewise be replaced by a
smaller set of conditions. The only difference is that here Gd, c �Ud, c has
order p(d+c&1) r+(r+i) rather than p(d+c&1)r+i. Since the replacement of
conditions on j in the proof of Corollary 7.7 does not rely on the inequality
i<r, this part of the proof carries over completely with r+i used instead
of each occurrence of i. K

Corollary 7.9. Let i and r satisfy 0�i<2r. There exists a (2r+i,
2(r+i)�2, 1) BS on Zr

4_Z i
2 relative to the subgroup Zr

2 of Zr
4 . For each d and

c satisfying 2�c�d, there exists a (2(d+c&2) r+i, 2((2d&1)r+i )�2, 2(d&c+1) r)
BS on any group Gd, c of order 2(d+c&1) r+i and exponent at most 2c relative
to any subgroup Ud, c$Zr

2 , where Ud, c is contained in a subgroup of Gd, c

isomorphic to Zr
4 and where all of the following hold:

(i) For c=d, Gd, c �Ud, c contains a subgroup of index 2min[r, i] and
exponent at most 2d&1.
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(ii) For i<r and d>2 and c=d&1, Gd, c �Ud, c contains a subgroup
of index 2r+i and exponent at most 2d&2.

(iii) For i>r and c in the range max[1, ((d&2) r+i)�i]<c�d,
rank(Gd, c �Ud, c)�r+i.

Proof. By Theorem 7.6(iii) and Lemma 4.5 there exists a (2r+i, 2(r+i)�2, 1)
BS on Zr

4_Z i
2 relative to the subgroup Zr

2 of Zr
4 . Then by Theorem 4.3

and Lemma 4.4 there exists a (22r+i, 2(3r+i)�2, 2r) BS on Zr+u
4 _Zr+i&2u

2

relative to the subgroup Zr
2 of Zr

4 for each u in the range 0�u�min[r, i].
Equivalently, there exists a (22r+i, 2(3r+i)�2, 2r) BS on any group G2, 2 of
order 23r+i and exponent at most 4 relative to any subgroup U2, 2$Zr

2 ,
where U2, 2 is contained in a subgroup of G2, 2 isomorphic to Zr

4 and where
G2, 2 �U2, 2 contains a subgroup of index 2min[r, i] and exponent 2. This is
the case d=c=2 of the Corollary. We claim that this implies the existence
of the required BS on Gd, c relative to Ud, c provided that, for each c
in the range 2�c�d, the following condition on j is satisfied for each
j in the range 1� j �c&1: Gd, c �Ud, c contains a subgroup of index
2(d+c&2j&2) r+min[r, i] and exponent at most 2 j. This claim does not
follow directly from Theorem 7.5 with c� =2 because of the presence of a
subgroup condition on G2, 2 �U2, 2 . However the proof of Theorem 7.5 can
be modified to establish the claim. The constraint that Ud, c is contained
within a subgroup of Gd, c isomorphic to Zr

4 (which derives from the corre-
sponding constraint on Uc� , c� ) is equivalent to rank(Gd, c �Ud, c)=rank(Gd, c)
and so can be regarded as a constraint on Gd, c which does not affect the
analysis of Gd, c �Ud, c which follows.

For i�r the conditions on j are identical to those in the proof of
Corollary 7.7 with p=2, the only difference being that here Gd, c �Ud, c has
order 2(d+c&1) r+(i&r) for i in the range r�i<2r rather than 2(d+c&1) r+i

for i in the range 0�i<r. Therefore the replacement of conditions on j in
the proof of Corollary 7.7 carries over completely with i&r used instead of
each occurrence of i.

For i<r, the remainder of the proof is similar to that of the first and
third cases of Corollary 7.7, with the equation �c

u=1 u:u=(d+c&2) r+i
replacing (10). When c�((d&2)r+i)�r, we do not assume any con-
dition on j and consider j in the range 1� j �c&1. The inequality wj�
((c&j )�c) �c

u=j+1 u:u previously found now implies that wj&(d+c&
2j & 2) r & i � ( jr�c)(c & ((d & 2) r + i)�r) � 0. When c > ((d & 2) r + i)�r
(which implies that c=d&1 or c=d ), we assume the condition on j=
c&1 holds and consider j in the range 1� j �c&2. Following the same
argument as previously, wj�(c&j ) :c+((c&1&j )�(c&1)) �c&1

u=j+1 u:u�
(c&j ) :c+((c&1&j )�(c&1))((d+c&2) r+i&c:c). In the case c=d&1
we obtain wj & (2d & 2j & 3) r & i � ( j�(d & 2))(:d&1 & (r + i )) and the
assumed condition on j=d&2 implies :d&1�r+i, whereas in the case
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c=d we obtain wj&(2d&2j&2) r&i�( j�(d&1))(:d&i ) and the assumed
condition on j=d&1 implies :d�i. K

The condition in Corollary 7.9 that Ud, c$Zr
2 is contained in a subgroup

of Gd, c isomorphic to Zr
4 is necessary when r+i is odd, by Lemma 7.4.

Corollary 7.10. There exists a (8, 4, 2) BS on Z2
4_Z2 relative to the

subgroup Z2
2 of Z2

4 . For each d and c satisfying 2�c�d, there exists a
(22d+2c&3, 22d, 22d&2c+3) BS on any group Gd, c of order 22d+2c&1 and expo-
nent at most 2c relative to any subgroup Ud, c$Z2

2 , where Ud, c is contained
in a subgroup of Gd, c isomorphic to Z2

4 and where, for d>2 and c=d,
Gd, c �Ud, c contains a subgroup of index 4 and exponent at most 2d&1.

Proof. The (8, 4, 2) BS is given in Theorem 7.6(iv). By Theorem 4.3
and Lemma 4.4 there exists a (32, 16, 8) BS on any group G of order 128
and exponent 4 relative to U$Z2

2 , where U is contained within a subgroup
of G isomorphic to Z2

4 . This provides the initial BS on Gc� , c� relative to Uc� , c�

in Theorem 7.5, taking p=r=2, a=8 and t=c� =2. By making use of the
additional constraint that Uc� , c� is contained within a subgroup isomorphic
to Zr

p 2 we then obtain the required BS on Gd, c relative to Ud, c provided
that, for each c in the range 2�c�d, the following condition on j is
satisfied for each j in the range 2� j �c&1: Gd, c �Ud, c contains a subgroup
of index 22(d+c&2j&1) and exponent at most 2 j. The remainder of the proof is
similar to that of the first and third cases in the proof of Corollary 7.7. As in
the proof of Corollary 7.9, the constraint that Ud, c is contained within a sub-
group of Gd, c isomorphic to Z2

4 does not affect the analysis of Gd, c �Ud, c .
When c�d&1 we do not assume any condition on j and consider j in

the range 2� j �c&1. By similar reasoning to that used previously
we show that wj&2(d+c&2j&1)�(2j�c)(c+1&d)+( j&c)�c�0. When
c=d we assume the condition on j=d&1 to hold, so that :d�2, and
consider j in the range 2� j �d&2. We obtain wj&2(2d&2j&1)�
(1�(d&1))( j (:d&2)+j+1&d )�0. K

Further examples of BSs can be constructed from those in Corollaries
7.7�7.10 using Lemma 2.1. We believe the set of BSs so produced to be
complete in the sense that no other examples could be obtained from the
four sources of initial BSs of Theorem 7.6 using the underlying construction
of Theorem 4.3. In Section 8 we discuss further some implications of
Corollaries 7.7�7.10.

A fifth source of initial BSs is given by Chen, Ray-Chaudhuri and
Xiang's construction [7] of a (22r&1, 2r, 22r&1, 2r&1) semi-regular RDS in
any group G of order 23r&1 and exponent 4 relative to U$Zr

2 , where U is
contained within a subgroup of G isomorphic to Zr

4 and r�1 is odd. We
can regard this as a (22r&1, 2(2r&1)�2, 1) BS on the stated group and
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subgroup and use the above procedure to obtain an additional corollary.
It can be shown that the resulting BSs have parameters in the same
families as those of Corollary 7.9 and that (apart from initial examples) the
BSs are defined on substantially the same set of groups. Nonetheless this
method allows a relaxation of condition (iii) of Corollary 7.9, involving
rank(Gd, c �Ud, c) for i>r, for certain values of i when r�5. For example,
the minimum rank of Gd, c when r=5 and i=8 can be reduced from 13 to
12 in this way.

We conclude this section by modifying Theorem 7.5 to deal with groups
whose order is not a prime power.

Theorem 7.11. Let W be a group of order w�1, let p be a prime not
dividing w and let r�1. Suppose there exists a ( praw, pr

- awt , prt) BS on
any group Gc� , c� _W, whose Sylow p-subgroup Gc� , c� has order p2ra and expo-
nent at most pc� , relative to any subgroup Uc� , c� $Zr

p, where a>pc� (2r&1)&2r&1

and c� �1. Then for each d and c satisfying c� �c�d, there exists a
( p(d+c&2c� +1) raw, p(d&c� +1) r

- awt , p(d&c+1)rt) BS on any group Gd, c_W,
whose Sylow p-subgroup Gd, c has order p(d+c&2c� +2) ra and exponent at most
pc, relative to any subgroup Ud, c$Zr

p , provided that, for each j in the range
c� � j �c&1, Gd, c�Ud, c contains a subgroup of index p(d+c&2j&1)r and expo-
nent at most p j.

Furthermore the theorem remains true for c� �2 if Uc� , c� is additionally con-
strained to be contained within a subgroup of Gc� , c� isomorphic to Zr

p 2 ,
provided that each Ud, c is likewise contained within a subgroup of Gd, c

isomorphic to Zr
p 2 .

Theorem 7.11 can be proved from Theorem 7.1 in a similar manner to
Theorem 7.5: the important calculations involve only the Sylow p-subgroup
Gd, c and not the group W. We did not give this more general form earlier
in order to avoid the introduction of several new parameters at the
same time. In particular cases, the conditions on subgroups of Gd, c�Ud, c

in Theorem 7.11 can be replaced by a smaller set of conditions, as in
Corollaries 7.7�7.10. Theorem 7.11 could have been used in this way to
prove the results of Corollary 7.3. Moreover Theorem 7.11 has potential
use in determining the existence of new families of BSs, subject to finding
appropriate initial BSs on groups whose order is not a prime power.

8. APPLICATION TO SEMI-REGULAR RELATIVE
DIFFERENCE SETS

In this section we use Theorem 2.2 to deduce the existence of families of
semi-regular RDSs in groups G relative to subgroups U$Zr

p from the BSs
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constructed in Section 7. In particular we show that the order of G can
grow without bound for fixed rank 2r. We are not aware of any abelian
groups G known to contain semi-regular RDSs relative to an elementary
abelian subgroup which are not covered by these results.

We begin with the special case of a subgroup U of order pr=2. This is
a rich source of RDSs in groups G whose order has distinct prime factors,
deriving from the (m((m&1)�2), m, 4, +) covering EBSs on groups M
constructed in Corollary 6.7(i).

Corollary 8.1. Let M be either the trivial group or the group
>i Z2

3:i_>j Z4
pj

, where :i�1 and where pj is an odd prime, and let
|M|=m2. For each d�1 the following exist:

(i) A (22dm2, 2, 22dm2, 22d&1m2) semi-regular RDS in Gd_M relative
to any subgroup Ud of order 2, where Gd is any group of order 22d+1 and
exponent at most 2d+1.

(ii) A (22d+1m2, 2, 22d+1m2, 22dm2) semi-regular RDS in Gd_M
relative to any subgroup Ud of order 2 contained in a subgroup of Gd

isomorphic to Z4 , where Gd is any group of order 22d+2 and exponent at
most 2d+2.

Proof. For (i), Gd contains a subgroup of index 2 and exponent at most
2d containing Ud . Apply Theorem 2.2 to the case c=d of Corollary 7.3(i).

For (ii), Gd contains a subgroup S of index 2 and exponent at most 2d+1

such that Ud is contained in a subgroup of S isomorphic to Z4 . Put
c=d in Corollary 7.3(ii), replace d by d+1 throughout and then apply
Theorem 2.2. K

Corollary 8.1 was proved for trivial M by Ma and Schmidt [37] and for
all appropriate groups M (as described in Section 6) by Jedwab [27] via
lengthy computations on binary arrays. (Jungnickel [28] earlier noted
that a Hadamard difference set with parameter N=2d&1m in a group Wd

of order 22dm2 can be used to construct a RDS with the parameters of
Corollary 8.1(i) in the subset of groups having the ``splitting'' form
Ud_Wd .) Davis [11] used techniques introduced by Turyn [55] to show
that the exponent bound of 2d+1 on Gd in Corollary 8.1(i) is necessary as
well as sufficient for trivial M, and Pott [47] proved the corresponding
result for the exponent bound 2d+2 in Corollary 8.1(ii). Exponent bounds
on Gd when M is nontrivial can be obtained for both parts of the Corollary
by similar methods, subject to number theoretic conditions. As already
noted, the condition in Corollary 8.1(ii), that Ud is contained in a sub-
group of Gd isomorphic to Z4 , is necessary by Lemma 7.4. Jungnickel [28]
has shown that the existence of a (2m, 2, 2m, m) semi-regular RDS (not
necessarily in an abelian group) implies the existence of a Hadamard
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matrix of order 2m, which in turn implies that m=1 or m is even (see
Seberry and Yamada [51] for a recent survey of Hadamard matrices).
Therefore we cannot substitute the value d=0 in Corollary 8.1(ii) when M
is nontrivial (although we can when M is trivial).

In the remainder of this section, the groups G containing RDSs will be
p-groups. The most extensive previous results for RDSs are for r=1, so we
next take the order of U to be an odd prime p.

Corollary 8.2. Let p be an odd prime.

(i) For each d�1, there exists a ( p2d, p, p2d, p2d&1) semi-regular
RDS in any group of order p2d+1 and exponent at most pd+1 relative to any
subgroup Ud of order p.

(ii) For each d�0, there exists a ( p2d+1, p, p2d+1, p2d) semi-regular
RDS in any group Gd of order p2d+2 and exponent at most pd+1 relative to
any subgroup Ud of order p, except possibly when G1$Z2

p2 or when
Gd�Ud$Zpd+1_Zpd for d>1.

Proof. The proof is by application of Theorem 2.2 to the following BSs.
For (i), Gd contains a subgroup of index p and exponent at most pd

containing Ud . The case r=1, i=0, c=d of Corollary 7.7 shows that there
exists a ( p2d&1, pd, p) BS on any group of order p2d and exponent at most
pd relative to any subgroup of order p.

For (ii), put r=1 and i=0 and consider the initial BS of Corollary 7.8
on Z2r+i

p together with the case d=1 of Corollary 7.8. This gives a
( p, p1�2, 1) BS on Z2

p relative to Zp and a ( p2, p3�2, p) BS on Z3
p relative

to Zp . This gives the result for d=0 and d=1. For d>1, we have excluded
the cases Gd=Z2

pd+1 and Gd=Ud_Zp d+1_Zpd . Therefore Gd contains a
subgroup S (containing Ud) of index p and exponent at most pd for which
S$% Ud_Z2

pd . The case r=1, i=0, c=d of Corollary 7.8 shows that there
exists a ( p2d, p(2d+1)�2, p) BS on any group Sd of order p2d+1 and exponent
at most pd relative to any subgroup Ud of order p except possibly when
d>1 and Sd�Ud$Z2

pd , which is equivalent to Sd$Ud_Z2
pd . K

Corollary 8.2(i) and many of the cases of Corollary 8.2(ii) were proved
by Ma and Schmidt [37]. Davis [11] showed that the exponent bound of
pd+1 in Corollary 8.2(i) is necessary, and Ma and Pott [36] established the
corresponding bound for Corollary 8.2(ii). It follows from this and from
our earlier discussion of the case pr=2 that for p prime, the only abelian
groups G of order pw+1 in which the existence of a ( pw, p, pw, pw&1) RDS
relative to a subgroup U of order p remains unknown have p odd,
w=2d+1, and either G=Z2

pd+1 or G=U_Zpd+1_Zpd . We have chosen to
express the existence condition in Corollary 8.2(ii) for d>1 in terms
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of Gd�Ud in order to emphasise the importance of the position of Ud

within Gd .
For r=1, all the RDSs arising from the BS families of Section 7 via

Theorem 2.2 can be obtained by taking c=d. However for r>1, each value
of c gives rise to different RDSs. For example, take d=4, r=2 and i=0
in Corollary 7.9. Using Theorem 2.2 we obtain a (218, 4, 218, 216) semi-
regular RDS in certain groups Gc containing a subgroup Sc of order 28+2c

and exponent at most 2c relative to a subgroup Uc$Z2
2 . In the case c=2,

the maximum exponent of Gc is 210 and the minimum rank is 6, both of
which are attained by G2=Z210_Z5

4 and any U2 . In the case c=3, the
maximum exponent of Gc is reduced to 29 but the minimum rank is now
5, attained by G3=Z2 9_Z3

8_Z4 and any U3 . In the case c=4, the
maximum exponent of Gc is further reduced to 28 but the minimum rank
becomes 4, attained by G4=Z2 8_Z3

16 and any U4 .
This shows that for the group G containing the RDS, a small rank is

associated with a small exponent. But for the subgroup S on which the
underlying BS is defined, we have the usual correspondence between small
rank and large exponent. (In the above example, minimum rank 6 and
maximum exponent 4, minimum rank 5 and maximum exponent 8, and
minimum rank 4 and maximum exponent 16.) For this reason we believe
that the natural place to consider exponent bounds is the BS group
S rather than the RDS group G. In our opinion the most interesting
RDS examples are those for which the underlying BS group has small
rank and large exponent. We shall therefore mostly concentrate on
the RDSs arising from Corollaries 7.7�7.10 for the value c=d. Further
RDSs can be obtained for c<d by direct reference to the Corollaries.
To highlight the central results we shall also omit RDSs arising from the
initial BSs of the Corollaries, which would require a separate statement of
conditions.

Henceforth we take r>1. We now review the previous state of
knowledge for a ( pw, pr, pw, pw&r) semi-regular RDS in an abelian group
G relative to U$Zr

p , where p is prime and w�r>1. The best known non-
existence results are that if such RDSs exist then the following exponent
bounds apply: exp(G )�p:+1 for w=2: [11]; exp(G )�p:+1 for p odd
and w=2:+1 [36]; and exp(G)�2:+2 for p=2 and w=2:+1 [47]. The
first exponent bound is attained for :�r and any p by G=Zp:+1_Zr+:&1

p

and any U$Zr
p . To show this, apply Theorem 2.2 to the BSs of Corol-

lary 4.2 followed by Lemma 4.5. The first bound is also attained for :�1
and p=r=2 by G=Z2:+1_Z4_G: , where U$Z2

2 is contained in the first
two direct factors of G and where G: is any group of order 2:&1 and
exponent at most 4, except possibly G3=Z4 . To show this for :�2,
apply Theorem 2.2 to the BSs of Theorem 5.1(ii) and (iii). (These examples
can also be obtained by taking the minimum value of c in certain of the
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Corollaries of Section 7.) As already discussed, we believe that the RDS
group is not the natural place to determine an exponent bound.

On the existence side, the previous state of knowledge for r>1 is sum-
marised in Table 1. In stating these results we have applied the method of
contraction of RDSs (the case t=1 of Lemma 4.5) as appropriate. The
construction of Leung and Ma [33] applies to many groups, of which we
have included only those of rank less than 5r. This is the only previous
construction for which the rank of G does not necessarily grow with the
order of the group. The RDSs in Table I can also be combined using the
``product'' construction, due to Davis [8] and Pott [48]. The product con-
struction carries over to BSs and we now state it in this form without
proof, but we shall only require the RDS part, namely the case t=t$=1.
The principal disadvantage of the product construction is that under
repeated application the rank of G is forced to grow.

Theorem 8.3. Let G be a group of order uaa$ containing a subgroup U
of order u, and let H and H$ be subgroups of G of order ua and ua$ respec-
tively, where H & H$=U. Suppose there exists a (a, - at , t) BS on H
relative to U and there exists a (a$, - a$t$, t$) BS on H$ relative to U. Then
there exists a (aa$, - aa$tt$, tt$) BS on G relative to U.

(Leung and Ma [33] and Chen, Ray-Chaudhuri and Xiang [7] have
also given constructions for semi-regular RDSs in certain p-groups relative
to an arbitrary subgroup of order pr, and Schmidt [49] has exhibited a
(16, 4, 16, 4) RDS in U_Z4_Z2

2 with U$Z4 .) To our knowledge no

TABLE I

Source w Min rank(G ) Conditions

(A) Jungnickel [28] : : p=2 (V)
r+: p odd

(B) Davis [10] 2: r+: :�r
(C) Davis and Sehgal [16] 2: :+1 p=2, r=2, :�2 (V)

:+2 p=2, r=3, :�5 (V)
(D) Pott [47] (2d+1): (d+1): p=2, :�r, d�1 (V)

r+(d+1): p odd, :>r
(E) Leung and Ma [33] 2d: r+2: :�r, d�1, G=U_Z

2:
pd

(F) Chen, Ray-Chaudhuri 2:&1 (3:&1)�2 p=2, :�r, : odd,
and Xiang [7] exp(G )=4 (V)

Note. A (pw, pr, pw, pw&r) semi-regular RDS exists in any abelian group G relative to any
subgroup U isomorphic to Zr

p provided G has the specified minimum rank and w�r�1 and
the stated conditions are satisfied, where p is prime. (V) indicates the additional condition that
G contains a subgroup isomorphic to Zr

4 containing U.
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abelian groups other than those described have been previously shown to
contain semi-regular RDSs.

We now show how these results can be improved for U$Zr
p by applying

Theorem 2.2 to the Corollaries of Section 7, firstly taking p=2.

Corollary 8.4. There exists a (22dr+j, 2r, 22dr+j, 2(2d&1)r+j ) semi-
regular RDS in the following groups Gd of order 2(2d+1)r+j relative to any
subgroup Ud$Z r

2 , where j and r satisfy 0� j <2r:

(i) When j=0 and r=2. For each d�2, any group Gd containing a
subgroup Sd of index 8 and exponent at most 2d such that Ud is contained
in a subgroup of Sd isomorphic to Z2

4 and such that, for d>2, Sd�Ud contains
a subgroup of index 4 and exponent at most 2d&1.

(ii) When j is even. For each d�1, any group Gd containing a sub-
group Sd of index 2r+j�2 and exponent at most 2d such that, for d>1, Sd�Ud

contains a subgroup of index 2r and exponent at most 2d&1 and such that, for
j>0 and d>1, rank(Sd�Ud)�2r+j�2.

(iii) When j<r. For each d�2, any group Gd containing a subgroup
Sd of index 2r and exponent at most 2d such that Ud is contained in a
subgroup of Sd isomorphic to Z r

4 and such that Sd �Ud contains a sub-
group of index 2r and exponent at most 2d&1 and such that, for j>0,
rank(Sd�Ud)�2r+j.

(iv) When j=r. For each d�2, any group Gd containing a subgroup
Sd of index 22r and exponent at most 2d such that Ud is contained in a sub-
group of Sd isomorphic to Zr

4 and such that Sd �Ud contains a subgroup of
index 2r and exponent at most 2d&1.

(v) When j>r. For each d�1, any group Gd containing a subgroup
Sd of index 2r and exponent at most 2d+1 such that Ud is contained in a sub-
group of Sd isomorphic to Zr

4 and such that Sd �Ud contains a subgroup of
index 2 j&r and exponent at most 2d.

Proof. We apply Theorem 2.2 to certain of the families of BSs con-
structed in Corollaries 7.7, 7.9 and 7.10, putting p=2 and ignoring the
initial BSs.

For (i), use the BSs from Corollary 7.10 with c=d. For (ii), use the BSs
from Corollary 7.7 with c=d and set 2i=j. For (iii), use the BSs from
Corollary 7.9 with c=d and set i=j+r. For (iv), use the BSs from
Corollary 7.9 with c=d&1 and d�3, set i=j&r=0 and then replace d
by d+1 throughout. For (v), use the BSs from Corollary 7.9 with c=d
and d�2, set i=j&r and then replace d by d+1 throughout. K

The case j=r is dealt with separately from the case j>r in Corollary 8.4
because, when i=0, the set of BSs obtained from Corollary 7.9 with
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c=d&1 strictly contains the set of BSs obtained with c=d, by applying
Lemma 2.1 with s=2r (whereas when i>0 this is not the case).

Let P(i) be the number of partitions of the positive integer i. Then we
can take j=r and Sd$Z2r

2 d in Corollary 8.4(iv) to show that for each d�2
there exists a (2(2d+1)r, 2r, 2(2d+1) r, 22dr) semi-regular RDS in P(2r) non-
isomorphic groups Gd of rank 2r relative to any subgroup Zr

2 , including
Gd=Z2r

2 d+1 and Gd=Z2 d+2r_Z2r&1
2d . This shows that although the group

rank must be at least 2r in order to use the underlying construction of
Theorem 4.3, it need not grow any larger.

To illustrate in detail how Corollary 8.4 improves on previous results,
take r=2 and d=3 and consider which abelian groups G contain a (212+j,
4, 212+j, 210+j) semi-regular RDS relative to a subgroup U$Z2

2 . We shall
refer to the results of Table I, using (V) to indicate the condition that U is
contained in a subgroup of G isomorphic to Z2

4 .
When j=0, the RDS parameters are (212, 4, 212, 210) and G has order

214. Previously it was known that G could be any group of rank at least
8 using (B), any group of rank at least 7 such that (V) is satisfied using (C),
or the group U_Z4

8 of rank 6 using (E) with :=2, d=3. We can now use
part (i) of Corollary 8.4 to include five groups G of rank 4, namely
Z64_Z2

8_Z4 , Z32_Z16_Z8_Z4 , Z32_Z3
8 , Z3

16_Z4 and Z2
16_Z2

18 for any
U$Z2

2 , as well as many new groups of rank 5 and 6 such that (V) is
satisfied. Part (ii) of Corollary 8.4 is less powerful than part (i) in terms of
large exponent, but it does not require the condition (V) on G. Parts (i)
and (ii) together show that G can be any group of exponent at most 16 and
U any subgroup, except when G=Z2

2_Z3
16 and U intersects one or both of

the first two direct factors of G in a nonidentity element.
When j=1, the RDS parameters are (213, 4, 213, 211) and G has order

215. Assume that G and U mentioned in this paragraph satisfy (V), which
is necessary by Lemma 7.4. Previously it was known that G could be any
group of rank at least 10 and exponent at most 4 using (F), or any group
of rank at least 8 having the form Z2

4_Z2_G$ (where U is contained in
the first two direct factors) using the RDS product construction on (B)
with :=5 and (A) with :=3. We can now use part (iii) of Corollary 8.4
to include six groups of rank 5, namely Z32_Z3

8_Z2 , Z2
16_Z2

8 _Z2 ,
Z16_Z3

8_Z4 and Z5
8 for any U, and Z32_Z2

8_Z2
4 and Z2

16_Z8_Z2
4 for

any U which is not contained in the last two direct factors, as well as many
new groups of rank 6 and higher. Part (iii) also shows that G can be any
group of exponent at most 8 and U any subgroup.

When j=2, the RDS parameters are (214, 4, 214, 212) and G has order
216. Previously it was known that G could be any group of rank at least
9 using (B), any group of rank at least 8 such that (V) is satisfied using (C),
or the group Z2

4_Z4
8 of rank 6 where U is contained in the first two direct

factors using the RDS product construction on (A) with :=2 and (E) with
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:=2, d=3. We can now use part (iv) of Corollary 8.4 to include five
groups of rank 4 (five being the number of partitions of 2r=4), namely
Z128_Z3

8 , Z64_Z16_Z2
8 , Z2

32_Z2
18 , Z32_Z2

16_Z8 and Z4
16 for any U, as

well as many new groups of rank 5, 6 and 7 such that (V) is satisfied. We
can also use part (ii) of Corollary 8.4 to include examples not satisfying (V)
for which G has low rank, for example G=Z64_Z2_Z2

8_Z4_Z2 where U
is contained in the first two direct factors of G.

When j=3, the RDS parameters are (215, 4, 215, 213) and G has order
217. Assume that all G and U mentioned in this paragraph satisfy (V),
which is necessary by Lemma 7.4. Previously it was known that G could
be any group of rank at least 9 using (D) with :=3, d=2, or the group
Z2

4_Z2_Z4
8 of rank 7 (where U is contained in the first two direct factors)

using the RDS product construction on (A) with :=3 and (E) with :=2,
d=3. We can now use part (v) of Corollary 8.4 to include three groups of
rank 4, namely Z32_Z3

16 for any U, and Z64_Z2
16_Z8 and Z2

32_Z16_Z8

for any U which does not intersect the last direct factor in a nonidentity
element, as well as many new groups of rank 5 to 8. Part (v) also shows
that G can be any group of exponent at most 16 and U any subgroup.

Finally we apply Theorem 2.2 to the Corollaries of Section 7 for p odd.
This also gives substantial improvements over previous results.

Corollary 8.5. Let p be an odd prime. There exists a ( p2dr+j, pr,
p2dr+j, p (2d&1) r+j ) semi-regular RDS in the following groups Gd of order
p(2d+1) r+j relative to any subgroup Ud$Zr

p , where j and r satisfy 0� j <2r:

(i) When j is even. For each d�1, any group Gd containing a sub-
group Sd of index pr+j�2 and exponent at most pd such that, for d>1, Sd�Ud

contains a subgroup of index pr and exponent at most pd&1 and such that, for
j>0 and d>1, rank(Sd�Ud)�2r+j�2.

(ii) When j<r. For each d�2, any group Gd containing a subgroup
Sd of index pr and exponent at most pd&1 such that, for d>2, Sd�Ud con-
tains a subgroup of index pr and exponent at most pd&2 and such that, for
d>2, rank(Sd�Ud )�4r+j.

(iii) When j�r. For each d�1, any group Gd containing a subgroup
Sd of index pr and exponent at most pd such that, for d>1, Sd�Ud contains
a subgroup of index pr and exponent at most pd&1 and such that, for d>1,
rank(Sd�Ud)�2r+j.

Proof. The proof is similar to that of Corollary 8.4, using Corollaries
7.7 and 7.8. K

In particular, we can take j=0 and Sd$Z2
p d in Corollary 8.4(ii) and

Corollary 8.5(i) to show that for each d�1 and for any prime p there exists
a ( p2dr, pr, p2dr, p(2d&1)r) semi-regular RDS in P(r) nonisomorphic groups
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Gd of rank 2r relative to any subgroup Zr
p , including Gd=Zr

p d+1_Zr
pd and

Gd=Zpd+r_Z2r&1
pd . (P(r) represents the number of partitions of r.)

9. OPEN PROBLEMS AND NONABELIAN CONSTRUCTIONS

We briefly note here some developments which occurred after submission
of the original manuscript.

1. Chen [5, 6] constructed a new family of difference sets with
parameters

(v, k, *, n)=\4q2d+2 \q2d+2&1
q2&1 + , q2d+1 \2(q2d+2&1)

q+1
+1+ ,

q2d+1(q&1) \q2d+1+1
q+1 + , q4d+2+ (13)

for integer d�0 and q a power of 2, 3 or p2, where p is an odd prime. With
d=0 the parameters (13) correspond to the Hadamard parameters with
N=q; with q=2 the parameters (13) correspond to the new family of
parameters (4); and with q=3 the parameters (13) correspond to the
Spence parameters with d replaced by 2d+1.

Expressed in terms of the definitions of this paper, the difference sets
constructed by Chen arise from a (q2d+1((q&1)�2), q2d+1, 4((q2d+2&1)�
(q2&1)), +) covering EBS on the elementary abelian group of order q2d+2

for q=3r or p2r, and from a (q2d+1(q&1), q2d+1, 2((q2d+2&1)�(q2&1)), +)
covering EBS on the elementary abelian group of order 2q2d+2 for q=2r.
The authors [14] have shown that these covering EBSs can be recursively
constructed within the unifying framework of this paper by modifying
Theorems 3.2 and 4.3 to deal with (a, m, t) BSs having m{- at . Such BSs
always give rise to semi-regular divisible difference sets.

2. Jungickel and Schmidt [30] proposed that difference sets whose
parameters (v, k, *, n) satisfy gcd(v, n)>1 should be considered as a spe-
cial class. Indeed the five known parameter families satisfying this condi-
tion (namely Hadamard, McFarland, Spence, and parameter families (4)
and (13)) are also the five families which have been shown to be amenable
to the methods of this paper.

3. Schmidt [50] reduced the exponent bound in Corollary 5.5 from
8 to 4. Combined with Corollary 5.3(iv) this gives a necessary and sufficient
condition for the existence of difference sets with parameters (4), provided
that 2 is self-conjugate modulo the group exponent, with the possible
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exception of the group Z3
4_Z5 . Schmidt [50] also obtained exponent

bounds for difference sets with parameters (13).

4. Davis, Jedwab and Mowbray [15] constructed new families of
semi-regular RDSs in groups whose order is not a prime power, and
applied the recursive construction of Theorem 7.11 followed by Theorem
2.2 to obtain further such families. The forbidden subgroup in these con-
structions has order 2r or 3, whereas previously the only known examples
were those of Corollary 8.1 in which the forbidden subgroup has order 2.

In the remainder of this section, we list some open problems which are
suggested by the techniques and results of this paper. We then discuss two
possible approaches to generalising the definitions and constructions to
deal with nonabelian groups.

It appears from our results that the objects we have called BSs and
covering EBSs are fundamental to the construction of difference sets and
semi-regular RDSs. We believe that future research could usefully consider
the following questions (all groups are still implicitly abelian):

1. Can the unifying framework of this paper be extended to encom-
pass all known parameter families of difference sets, including projective
geometries, the Paley-Hadamard family and the twin prime power family?

2. Can we find suitable BSs and covering EBSs for use in Theorem
3.2 (modified as in [14] if necessary) to construct difference sets via
Theorem 2.4 whose parameters do not belong to any currently known
family?

3. The construction of Hadamard difference sets in Section 6 relies
on the existence of a (m((m&1)�2), m, 4, +) covering EBS on a group of
odd order m2. Can we find any examples apart from those of Theorem 6.6
and their compositions under Theorem 6.5?

4. The construction of Hadamard difference sets in Section 6 for
which n=N2 is not a prime power depends on Theorem 6.5. Is there an
analogous composition theorem for McFarland difference sets or for dif-
ference sets with parameters (13)?

5. A construction for McFarland difference sets with q=2r in Sec-
tion 5 relies on the existence of a (2qd, qd, qd�2) BS on a group G of order
2qd+1 relative to a subgroup of order q. Can we find any examples for q>4
apart from on G=Z (d+1) r+1

2 and Z4_Z (d+1) r&1
2 ? In particular, can we

find a (16, 8, 4) BS on a group of order 128 and exponent 4 (other than
Z4_Z5

2) relative to a subgroup of order 8, or a (32, 16, 8) BS on a group
of order 512 and exponent 4 (other than Z4_Z7

2) relative to a subgroup of
order 16?
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6. Is there a (320, 88, 24, 64)-difference set in Z3
4_Z5 , the single

exceptional group of Corollary 5.3(iv)? Theorem 3.2 would establish exist-
ence for this group if a (16, 8, 4) BS on Z3

4 relative to either Z4 or Z2
2 could

be found.

7. (Due to Jungnickel and Schmidt [30]) Most exponent bounds for
difference sets in the class gcd(v, n)>1 depend on a self-conjugacy condi-
tion which does not necessarily hold. Can we find an example for which
such an exponent bound is exceeded?

8. Examples of semi-regular RDSs are known for which the forbid-
den subgroup is not elementary abelian (see the comment following
Theorem 8.3). Can Theorem 4.3 be modified to construct BSs relative to a
subgroup which is not elementary abelian to bring these RDSs within the
framework of this paper?

9. The construction of families of BSs in Section 7 and semi-regular
RDSs in Section 8 relies on the existence of initial (a, - at , t) BSs. Can we
find any examples apart from those of Theorem 7.6 and those mentioned
after Corollary 7.10? In particular, is the (8, 4, 2) BS of Theorem 7.6(iv)
the case r=2 of an infinite family of BSs relative to a subgroup U$Zr

2?

10. Is there a ( p2d+1, p, p2d+1, p2d) semi-regular RDS in Z2
pd+1 or

U_Zpd+1_Zp d relative to a subgroup U of order p, these being the two
exceptional cases of Corollary 8.2(ii)?

11. We have argued in Section 8 that it is more appropriate to con-
sider exponent bounds for a BS than for a semi-regular RDS. What can be
said about a ( pd+w, pd, pd&w) BS relative to a subgroup of order pr?

We have seen in Section 1 that the existence pattern for difference sets
in nonabelian groups is fundamentally different from that in abelian
groups. We now consider how to modify the methods of this paper to deal
with nonabelian groups, dropping the implicit assumption that all groups
are abelian. Our first approach is based on techniques due to Dillon [20],
and generalises Theorems 2.2 and 2.4:

Theorem 9.1. Let G be an abelian group.

(i) Suppose there exists a (a, - at , t) BS on G relative to a subgroup
U of order u, where at>1. Then there exists a (at, u, at, at�u) semi-regular
RDS in G$ relative to U, where G$ is any (possibly nonabelian) group con-
taining a central subgroup of index t isomorphic to G.

(ii) Suppose there exists a (a, m, h, \) covering EBS on G. Then
there exists a (h |G |, ah\m, ah\m&m2, m2)-difference set in any (possibly
nonabelian) group G$ containing a central subgroup of index h isomorphic
to G.
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Proof. We give the proof of (ii), the proof of (i) being similar. Let
k1=1G$ , k2 , ..., kh # G$ be coset representatives of G in G$. Let [Bi ] be a
(a, m, h, \) covering EBS on G, where the building block containing a\m
elements is B1 , and form the subset D=�i kiBi of G$. If G$ is abelian
then we already know Theorem 2.4 and the proof of Lemma 2.3 that D is
a difference set in G$ with the stated parameters. By the characterisation of
difference sets in the group ring Z[G$] this is equivalent to DD(&1)=
m21G$+*G$, where *=ah\m&m2=(a�|G | )(ah\2m) (using the relation-
ship between covering EBS parameters given after Theorem 2.4 for the last
equality). We can therefore obtain the result by showing that the same
equation for DD(&1) holds when G$ is nonabelian as when G is abelian. By
the definition of D we can write DD(&1) as the sum of two group ring
elements:

DD(&1)=:
i

ki Bi B (&1)
i k&1

i + :
i{j

kiBiB (&1)
j k&1

j .

Since G is a central subgroup of G$, the first group ring element
�i kiBiB (&1)

i k&1
i is equal to �i Bi B (&1)

i whether G$ is nonabelian or
abelian, as required.

It remains to consider the second group ring element S=
�i{j kiBi B (&1)

j k&1
j , taking i{j. For all nonprincipal characters / of G we

have /(Bi B(&1)
j )=/(Bi) /(Bj)=0, where the last equality uses the defini-

tion of covering EBS. Therefore BiB (&1)
j =cijG for some integer cij , and by

a counting argument cij=|Bi | |Bj |�|G |. The definition of covering EBS
gives cij=a(a\m)�|G | when i or j is 1 and cij=a2�|G | otherwise. Since
G is central and therefore normal in G$, substitution for BiB (&1)

j in S
gives the sum �i{j cijki k&1

j G. The terms of this sum having j=1 are
(a�|G | )(a\m) �u{1 kuG. Likewise the terms of the sum having i=1 are
�j{1 c1j1G$k&1

j G=(a�|G | )(a\m) �u{1 kuG, since � j{1 k&1
j G=�u{1 kuG.

The remaining terms of the sum are (a2�|G | ) �i{j | i, j{1 kik&1
j G. Regarding

ki k&1
j G as a coset of G, we can write kik&1

j G as the product of cosets
(ki G )(kjG )&1. Since the cosets [kuG | u{1] form a (h, h&1, h&2, 1)-
difference set in G$�G (the complement of the trivial (h, 1, 0, 1)-difference
set [k1G] in G$�G), the remaining terms of the sum are (a2�|G | )
(h&2) �u{1 ku G=(a2�|G | )(h&2)(G$&G). Therefore S=(a�|G| )(ah\2m)
(G$&G)=*(G$&G), which holds whether G$ is nonabelian or abelian.
This completes the proof. K

The constructions of difference sets and semi-regular RDSs in abelian
groups given in this paper can be extended to numerous nonabelian groups
using Theorem 9.1 (including the special case when G$ can be written in the
form G_K for some group K.) In the following discussion we shall concen-
trate on the construction of difference sets in nonabelian groups using
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Theorem 9.1(ii), but equally we can obtain semi-regular RDSs in many
nonabelian groups by applying Theorem 9.1(i) to the BS families con-
structed in Corollaries 7.3 and 7.7�7.10.

We begin by using the covering EBSs constructed in Theorem 5.2 to
obtain difference sets in nonabelian groups with parameters from the
McFarland family, Spence family or the new family (4). Applying Theorem
9.1(ii) to these covering EBSs shows that Corollary 5.3 remains true for
nonabelian groups provided each occurrence of ``subgroup'' is replaced by
``central subgroup''. For example, Corollary 5.3(i) becomes: for each d�0,
there exists a McFarland difference set with q=pr in any (possibly non-
abelian) group of order qd+1((qd+1&1)�(q&1)+1) containing a central
subgroup isomorphic to Z (d+1) r

p , where p is prime and r�1. This result
was given by Dillon [20] and was used in Section 2 to introduce building
blocks.

We could similarly apply Theorem 9.1(ii) to the covering EBSs of
Corollary 6.7(iii) to obtain difference sets in nonabelian groups with
Hadamard parameters. But we can obtain more general results than this
for Hadamard difference sets by taking advantage of a family of BSs con-
structed in Section 7:

Theorem 9.2. Let M be either the trivial group or the group
>i Z2

3: i_> j Z4
pj

, where :i�1 and where pj is an odd prime, and let |M|=m2.
Then the following exist:

(i) A (2d+c&1m2, 2dm, 2d&c+2, &) covering EBS on Gd, c_M, where
d and c satisfy 1�c�d and Gd, c is any abelian group of order 2d+c and
exponent at most 2c.

(ii) A Hadamard difference set with N=2dm in any ( possibly non-
abelian) group Gd_M of order 22d+2m2, where either d=0 or Gd contains
a central subgroup of order 2d+c and exponent at most 2c such that d and
c satisfy 1�c�d.

Proof. For (i), the proof is by induction on d. The case c=d has
already been proved in Corollary 6.7(iii), so the case d=1 is true and we
can take c�d&1. Assume the case d&1 to be true. By Corollary 7.3(i)
there is a (2d+c&1m2, 2dm, 2d&c+1) BS on Gd, c_M relative to any sub-
group Ud, c of order 2, and by the inductive hypothesis there is a
(2d+c&2m2, 2d&1m, 2d&c+1, &) covering EBS on (Gd, c�Ud, c)_M (since
c�d&1). The case d then follows from Theorem 3.2.

For (ii), the case d=0 has already been proved in Corollary 6.7(iv). All
other cases are obtained by applying Theorem 9.1(ii) to the covering EBSs
of (i). K
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Theorem 9.2(ii) establishes the existence of Hadamard difference sets
in large classes of nonabelian groups. Each value of c in Theorem 9.2(ii)
produces examples which are not found at any other value of c. For larger
values of c the required order of the central subgroup becomes larger but
the group is allowed to have smaller rank. The case c=d of Theorem 9.2(i),
for which the number of building blocks is 4, was given in Corollary 6.7(iii)
and used to construct Hadamard difference sets in abelian groups in
Corollary 6.7(iv). The cases c<d of Theorem 9.2(i) do not improve on
Corollary 6.7(iv) for abelian groups but can be used to deal with many
nonabelian groups, as described. It would be interesting to know in which
2-groups the existence of a Hadamard difference set (currently an open
problem for groups of order at least 256) remains unknown after taking
into account Theorem 9.2(ii) and the two known nonexistence results for
nonabelian 2-groups (see [13]). In particular, how many of the 56,092
groups of order 256 remain open?

Theorem 9.1(i) and (ii) require G to be a central subgroup of G$. The
method of Dillon [20] shows that this condition can sometimes be replaced
by the weaker condition that G is a normal abelian subgroup of G$. Under
this condition the proof of the Theorem is unchanged with respect to the
group ring element �i{j kiBi B (&1)

j k&1
j , and it suffices to force the group

ring element �i kiBi B(&1)
i k&1

i =�i (ki Bik&1
i )(kiBik&1

i )(&1) to reduce to
�i Bi B(&1)

i . This will clearly be the case if the coset representatives ki can
be chosen so that [kiBi k&1

i ]=[Bi], in other words so that the map
Bi [ kiBik&1

i is a permutation of the building blocks Bi . (When G is con-
tained in the centre of G$ the permutation is trivial.) Dillon's conjecture
[19] (expressed in the language of this paper) is that the coset repre-
sentatives can always be chosen to ensure a permutation of the building
blocks of a (2d, 2d, 2d+1, &) covering EBS on Zd+1

2 , which would imply
that a Hadamard difference set with N=2d exists in any group of order
22d+2 containing a normal subgroup isomorphic to Zd+1

2 . Davis [9] gave
a scheme for choosing coset representatives for this covering EBS which
proves some cases of Dillon's conjecture and Meisner [43] gave further
supporting evidence, but the conjecture remains open. (The scheme of [9]
can be modified to deal with other covering EBSs, subject to the additional
condition that each building block kiBik&1

i is contained in the original
collection [Bi].)

The case m=1 of Theorem 9.2(i) constructs a (2d+c&1, 2d, 2d&c+2, &)
covering EBS on any abelian group of order 2d+c and exponent at most 2c,
where 1�c�d. Suppose it were possible to choose coset representatives to
ensure a permutation of building blocks for each value of c in this range
(the case c=1 being Dillon's conjecture), so that the case m=1 of
Theorem 9.2 (ii) would remain true with ``central'' replaced by ``normal
abelian''. This would still not deal with every 2-group containing a
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Hadamard difference set, because Davis and Smith [17] have constructed
a Hadamard difference set with N=2d in the group Gd=(x, y | x2d+3

=
y2 d&1

=1, yxy&1=x2d+2+1) for each d�2, and Gd does not contain a
normal abelian subgroup of order 2d+c and exponent at most 2c for any c
satisfying 1�c�d. Furthermore the existence of a Hadamard difference set
in Gd cannot rely on the existence of a covering EBS on an abelian group
contained as a normal subgroup in Gd because Theorem 9.1(ii) would then
give a Hadamard difference set in the abelian group (x, y | x2d+3

=
y2 d&1

=1, yx=xy) of order 22d+2 and exponent 2d+3, which is ruled out
by Turyn's exponent bound [55].

This provides the motivation for our second (more speculative)
approach to nonabelian groups, namely to generalise the definition of
building block, BS and covering EBS to allow the group G in Theorem 9.1
to be nonabelian. Liebler [34] has promoted the use of representation
theory to study difference sets in nonabelian groups, as a natural general-
isation of the use of character theory for abelian groups. A representation
, of a group G is a homomorphism from G to the multiplicative group of
s_s matrices, where the degree s of the representation is determined by G.
Lemma 1.1(i) generalises to: the k-element subset D of a group G of order
v is a (v, k, *, n)-difference set in G if and only if ,(D) ,(D) $=- n Is for
every nontrivial irreducible representation , of G, where ,(D)$ is the con-
jugate transpose of ,(D) and Is is the s_s identity matrix. We might define
a building block B in a group G with modulus m to be a subset of G such
that for all nontrivial irreducible representations ,, the representation sum
,(B)=�g # B ,(g) is either 0 or satisfies ,(B) ,(B) $=mIs . Then a (a, m, t)
building set on G relative to U would be a collection of t building blocks
in G with modulus m, each containing a elements, such that for every non-
trivial irreducible representation , of G exactly one building block has non-
zero representation sum if , is nontrivial on U and no building block has
nonzero representation sum if , is trivial on U. We could similarly extend
the definition of EBS. Although we believe this approach could be fruitful,
it will not allow us to replace ``central'' by ``normal'' in Theorem 9.1(i),
even when G is still assumed to be abelian. For example, by Theorem 4.2
there is a (2, 2, 2) BS on Z2

2 relative to Z2 , but there is no (4, 2, 4, 2) RDS
in D8 (the dihedral group of order 8) relative to the central subgroup of
order 2 even though D8 contains a normal subgroup of index 2 isomorphic
to Z2

2 . The difficulty appears to arise because the restriction of an irre-
ducible representation to a normal subgroup is not necessarily irreducible.

The following construction of Meisner [44] for Hadamard difference
sets (which generalises the result of applying Theorem 2.4 to the case
h=t=1 of Theorem 3.2) may be of importance in formulating a general
nonabelian approach to the construction of difference sets and semi-regular
RDSs involving representation theory.
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Theorem 9.3. Suppose that there exists a (4N2, 2, 4N 2, 2N2) semi-
regular RDS in a group H of order 8N2 relative to a central subgroup (x)
of order 2. Suppose also that there exists a Hadamard difference set with
parameter N in H�(x). Then there exists a Hadamard difference set with
parameter 2N in any group G$ containing H as a subgroup of index 2 for
which x is a central element of G$.

Meisner [44�46] has shown that Theorem 9.3 (together with a partial
generalisation of Theorem 4.3) can be used to construct Hadamard dif-
ference sets in certain nonabelian groups containing a normal abelian
subgroup M, as used in Theorem 9.2(ii), for which M is not a central sub-
group. These fall outside the scope of Theorem 9.2(ii).
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