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Peak-to-Mean Power Control in OFDM, Golay
Complementary Sequences, and Reed—Muller Codes

James A. Davis and Jonathan Jedwab

Abstract—We present a range of coding schemes for OFDM power. If the peak envelope power is subject to a design or
transmission using binary, quaternary, octary, and higher order  regulatory limit then this has the effect of reducing the mean

modulation that give high code rates for moderate numbers onyejope power allowed under OFDM relative to that allowed
of carriers. These schemes have tightly bounded peak-to-mean

envelope power ratio (PMEPR) and simultaneously have good Under constant envelope modulation. If battery power is a
error correction capability. The key theoretical result is a pre- constraint, as is typically the case with portable equipment,
viously unrecognized connection between Golay complementary then the power amplifiers required to behave linearly up to
sequences and second-order Reed-Muller codes over alphabetghe peak envelope power must be operated inefficiently (with
%?\’/‘”'E;’}f obtain additional flexibility in trading off code rate, ., \iqerahle backoff from compression). Digital hard limiting
, and error correction capability by partitioning the . . .
second-order Reed—Muller code into cosets such that codewordsOf the transmitted signal has been shown to alleviate the
with large values of PMEPR are isolated. For all the proposed problem [29], but only at the cost of spectral sidelobe growth
schemes we show that encoding is straightforward and give an and consequent performance degradation.
frzﬂ‘?grtn?secgﬂgg tﬁg%gtgirr? ig‘éﬁg’::gs ”;;‘e'tig:l‘?b‘:‘:;d“:ﬁ?&agdam This gives a clear motivation to find other ways of control-
formal generator matrix weg can deal adaptively with varying e'mg the_ peak.-to-mean envglt_)pe power ratlo. (PMEPR) of the
channel constraints and evolving system requirements. transmitted signal. A promising method which has attracted
considerable interest, introduced in [28] and developed in
[51], is to use block coding to transmit across the carri-
ers only those polyphase sequences with small PMEPR. As
originally described, this entails exhaustive search to identify
I. THE ENVELOPE POWER PROBLEM IN OFDM TRANSMISSION  the best sequences and requires large look-up tables for
RTHOGONAL frequency-division multiplexing €ncoding and decoding. Several authors, for example [16],
(OFDM) is a method of transmitting data simultaneouslfp2], have proposed simpler implementations of this method
over multiple equally spaced carrier frequencies, using Fourlé§ing systematic (or at least constrained) methods of coding.
transform processing for modulation and demodulation [10Jonetheless, [16] declares that.* there are no known
The method has been proposed or adopted for many typeles concerning selection of the allowed signals [having
of radio systems such as wireless local-area networRYEPR below a certain threshold] in a structured way.”
[2] and digital audio and digital video broadcasting [1]Moreover, these schemes do not address the problem of error
[44]. OFDM offers many well-documented advantages fgorrection at all. An alternative method [26] instead takes
multicarrier transmission at high data rates, particularly e transmitted codewords from a coset of a linear error-
mobile applications. Specifically, it has inherent resistance ¢orrecting code, choosing the coset representative or “mask
dispersion in the propagation channel [5]. Furthermore, wheactor” by computationally intensive search in order to reduce
coding is added it is possible to exploit frequency diversitine PMEPR. In this way the error correction properties are
in frequency-selective fading channels to obtain excelleagsured but the appropriate choice of linear code and coset
performance under low signal-to-noise conditions [43]. Fdepresentative for optimal PMEPR remains an open problem.
these reasons OFDM is often preferable to constant envelopén this paper we present a highly flexible coding scheme
modulation with adaptive equalization (and indeed is argualfiyr binary, quaternary, octary, and higher order modulation
less complex to implement [32]). which incorporates aspects of both of the above methods. It
The principal difficulty with OFDM is that when the sinu-uses theoretical considerations to guarantee low PMEPR and
soidal signals of the: carriers add mostly constructively thesimultaneously to provide good error correction capability.
peak envelope power is as muchrasmes the mean envelopelt allows simple changes to properties such as code rate,
PMEPR, and error correction capability to deal adaptively with
Manuscript received January 5, 1998; revised April 9, 1999. The materi@rying channel constraints, and provides a clear evolution
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code rate is high). An example of such an application specific method is given to generalize from a binary sequence
a wireless local-area network (LAN) employing low-cosinto M-ary case,” is incorrect for any valu = 2*; in fact,
portable communicating devices. For this application the cdbie principal example of [37], contained in (16) and (18) of
constraint limits the amount of processing and, therefore, ttieat paper, consists of the quaternary lengtsequences

number of carriers, while the negative consequences of even 3
an occasional high-power signal strongly favor tight envelope  9(z, 1, + z33) + Z crn + ¢, for ¢, cx € Z4
power control. P

. The remalnder of the paper is structured as follows. Se\f\:/hich occur as a special case of [13, Theorem 2].
tion Il motivates the use of Golay sequences (i.e., sequences
belonging to Golay complementary pairs) as a first solution
to the envelope power problem in OFDM. We explicitly
determine a large class of Golay sequences @yenf length ~ We represent the value assigned to e carrier of an

2™ in terms of generalized Boolean functions. Section IPFDM system during a given symbol period as an elemgnt
shows that in the binary cage= 1, these Golay sequences0f the ringZ;; for someH > 2, wherei =0, 1, ---, n—1.1In
occur as cosets of the first-order Reed—Muller code with@&ch symbol period, théy-ary sequencéag, ay, -+, an—1)

the second-order Reed—Muller code. This connection betwedgioss the: carriers forms a codeword. Codewords in succes-
Golay sequences and Reed—Muller codes has not previougiie symbol periods belong to a code whose alphabgtis
been recognized, and is a key result leading to the practiéad in the cases/ = 2, 4, or 8, the code is called binary,
and flexible OFDM coding schemes of this paper. For tHgJaternary, or octary, respectively. In signal processing, it is
nonbinary casek > 1 we introduce two new linear codes oveimore common to consider the sequence of complex modulated
the ringZ,. as generalizations of the Reed—-Muller code ariRlues(£®, £, -, £%=1), where{ = exp (2mv/—1/H) is
demonstrate a corresponding connection with the nonbindyprimitive Hth root of unity. (In some implementations this
Golay sequences previously determined. We establish &Rguence is multiplied by the constasp (7+/—1/H).) This
minimum Hamming and Lee distance of these new codes @&dulation is called?-phase shift keying, which in the cases
measures of their error correction capability. Section IV prd = 2 or 4 is also known as binary phase-shift keying or
poses an OFDM coding scheme, based on the Golay sequeri&sirature phase-shift keying, respectively.

of Section II, involving cosets of one generalized Reed—Muller The transmitted OFDM signal is the real part of the complex
code within another. We then show that by varying the set 8nvelope

Il. GOLAY SEQUENCES

cosets of the first generalized Reed—Muller code within the n—1
second we can obtain a much more general range of solutions s(t) = Z gu®+H Lt (1)
to the envelope power problem, not necessarily restricted i=0

to Golay sequences. In this way we can make tradeofffere, is the frequency of théth carrier ands;(t) is constant

between PMEPR, code rate, and error correction capabilif,er 5 symhol period. In order to ensure orthogonality, the
The essential observation is that partitioning the second-orgef iar frequencies are related by

Reed—-Muller code into cosets in this way appears naturally to
isolate those codewords with large values of PMEPR. Section fi=f+iAf 2)
V presents highly efficient decoding algorithms for all o
the proposed coding schemes. These algorithms apply
fast Hadamard transform repeatedly in a novel manner. W the signal is the real-valued functioR(¢) = |s(#)|2, and
background on classical coding theory, see [30] or [31]. substitution from (1) and (2) gives

Some of the results of this paper, in particular the connec-
tion between Golay sequences and second-order Reed—Muller P(t) = Z guO=ai(OFHE=DASE (3)
codes, were announced without proof in [13]. There is limited i,j
overlap between the results in Sections Il and Il of this PaPELt the constant value of;(#) over a symbol period such as
and recent independent work on OFDM. Translated into the_ Aft < 1bea;, and call the resulting continuous function
notation of the present paper, van Nee [35] essentially sho _t) over the synﬁbol period thenvelope poweP, () of the
how to obtain recursively a subset of the Golay sequences Qb ience, — (a0, a1, -+, an_1). Then by puttingj = i + u
Corollary 4 corresponding tex cosets of RMx (1, m), and . “ihe expressio;w fo}F’a(tS given by (3) we obtain
Ochiai and Imai [37] do likewise but for a subset correspond-
ing to a single coset rather than #e. In contrast Corollaries P,(t)=n+ Z Z grimairu—Huldft (4)
6 and 9 explicitly identifym!/2 such cosets within a specified u£0 i

linear code, and Theorem 3 and Corollary 5 show how {gnere here and in (5) below the summations are understood to
arrange the identified sequences into Golay complementgly o, only those integer values for which botindi + lie

pairs. Moreover, [35] and [37] do not make the cruciglsin {0, 1, ---, n—1}. Since theaperiodic autocorrelation
connection between Golay sequences and Reed-Muller coges 4 displacement: is by definition

and, consequently, do not identify the range of coding options
presented here and their attendant advantages. We also note Colu) = Z i it (5)
that the claim of [37], that in the announcement [13].“no i

Eﬁr some constantf, where Af is an integer multiple of
& OFDM symbol rate. Thénstantaneous envelope power
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we can rewrite (4) as function (1) can be easily generated using the inverse fast
B HuAft Fourier transform. We also assume tt#t = 2" for some
Pa(?) _”+Z Calu)€ : (6) 4 > 1 and then in each symbol period the OFDM signal
uF0 contains exactlyh code bits per carrier. We now give an

The peak envelope powefPEP) of the sequence is the explicit form for a large class of Golay complementary pairs
supremum over a symbol period Bf (t). From (5) and (6), the overZ,. of length2™, and deduce the form of a set of Golay
mean envelope power of any sequenaaver a symbol period sequences. We first require some notation.

is 7, and so thepeak-to-mean envelope power rafPMEPR) A Boolean functionis a function f from

of a is the ratio PER!. Alternative names for PMEPR are ™

peak-to-average power ratif83] and peak factor[47]; the Zy' = (w1, @2, o, &)@ €{0, 13}

square root of the PMEPR is called tleest factor[7]. A

X to Zo. Wi d -1 iable x; itself bei
PMEPR ofR is often expressed d$) log,, £ (dB). From (6) 0 f2. WE TEgard eac vanaple xi as Iset being a

Boolean functionf;(z1, x2, -, m) = z; and consider the

we see that 2™ monomials
n—1
P,(t)<n+ Z |Co(w)] -1 <n+2 Z(n —u) =n? 1,1, To, -+, Tyn, T1T2, T1T3, * -,
u0 u=l Tm—1Lm, * " L1T2 " " Tm- (7)

so the PEP of any sequengds at mostn? and the PMEPR . . .

. . L Any Boolean functionf can be uniquely expressed as a linear
'S at mostn. (See [47] for a similar argument giving a generaéombination ovet, of these monomials, where the coefficient
upper bound on the PEP afin terms of C,(u), and [17] for 2 '

the derivation of a lower bound on the PMEPRagfom (6).) of each monomial belongs %, [31]. The resulting expression
The upper bound ofr for PMEPR is attained by -the for f is called thealgebraic normal form[42]. We spe_cify

sequences — (0, 0, ---, 0), which can occur in an uncoded® sequencef of length 2™ corresponding tof by listing

OFDM system. But by restricting the set of allowed sequenctehse values taken by (z1, 3, -+, 2m) 8S (21, L2, =+ Tm)

to Golay sequences we can reduce the PMEPR from ranges over all it®™ values in lexicographic order. In other

. words, if (41, %0, ---, 1 is the binary representation of
maximum value ofn to at most2, as we now show. (i, i, - ) y rep

the integeri = 7', 4;2™7 then theith element of f
Definition 1: Let (numbering the leftmost element &% is f(i1, @2, -+, im).
For example, form = 3 we have
a = (O/Oa A1, ", a/n—l)
and £ =(f(0,0.0), /0,0, 1), (0, 1,0), f(0. 1, 1),

b= (b07 b17 T bn—l)

wherea;, b; € Zy. The sequences andb are called &olay
complementary pair ovef iy of lengthn if C,(u)+Cy(u) =0 and sol = (11111111), &3 = (00001111), 2 = (00110011),
for eachu # 0. Any sequence which is a member of a Golay; = (01010101), and 2,22 + 2a23 = (00010010).

complementary pair is called @olay sequence We define ageneralized Boolean functido be a functionf

Theorem 2:The PMEPR of any Golay sequence is at nibst ffom 23" to Z,., whereh > 1. Itis straightforward to modify
Proof: Let @ andb be a Golay complementary pair, sdhe proof of the algebraic normal form result stated above
that by definitionC,(x) + C,(u) = 0 for eachw # 0. Then 10 show that any such function can be uniquely expressed as
from (6), P, (t) + P,(t) = 2n and sinceP,(t) = |s,(t)]? > 0 @ linear combination oveZ,. of the monomials (7), where
we deduceP, (t) < 2n. The result follows from the definition the coefficient of each monomial belongs Zg.. As above,
of PMEPR. 0 Wwe specify a sequencg of length 2" corresponding to the
) s ) generalized Boolean functiofi. For example, forh = 2 and

Theorem 2 was obtained by_ Popo\i1] (in terms of the_ ‘m = 3 we have3z; = (00003333), 2x1x223 = (00000002),
cres_t factor of the real-valued signal envelope) by generahmggd @1 + 3Tamws + 2 - 1 = (22212232). (Technically, for
earlier work of Boyd [7]. Golay complementary pairs o g ch expressions to be valid we must embed the range space
were introduced by Golay [18], [19] in connection with inzm of the monomials (7) irZ7:.) Henceforth, we shall drop
frar_ed multislit spectrometry and ha\{e since found applicatiQRe distinction between a generalized Boolean function and
in fleld_s such as optical tlme_-domaln reflectometry [34] aqgs corresponding sequence, and use the notatitm refer to
acoustic surface-wave encoding [48]. They are known to exishin.
for all lengthsn = 2*107267, wherea, 3, ¥ > 0[49], butdo  \jth this notation we are now ready to describe the Golay
not exist for any lengt having a prime factor cqngruent tocomplementary pairs ovet,. of length 2™,
3 modulo4 [14]. For a survey of results on nonbinary Golay
complementary pairs, see [15, Ch. 13]. We note that a GolayTheorem 3: Let

£(1,0,0), f(1,0, 1), f(1,1,0), f(1,1, 1))

complementary pair ovet, is equivalent to a pair of “complex m—1 m
Golay sequences,” as defined in [12]. flz1, o, -y Tyy) = 2071 Z Tr(k)Tr(kt1) T Z CrLE
Henceforth we impose the restrictiom = 2™ so that k=1 k=1

the sampled OFDM signal corresponding to the continuous (8)
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wherer is a permutation of the symboldl, 2, ---, m} and Combining these cases we see tigafw)+C,(u) comprises
¢k € Z5.. Then the sequences zero contributions (as in Case 1), and contributions which sum
azr, Tay -, @) = f(x1, T2y -, Tm) + € to zero in pairs (as in Case 2). Therefouéy;, =2, - -, a:,_n)
and b(xy, xa, ---, x,,) are a Golay complementary pair, by
and Definition 1. O
b(.’L’l, To, -, xrn) — f(:L'l’ To, -, xrn) + 2h—1$ﬂ_(1) +C/

Corollary 4: For any permutations of the symbols

are a Golay complementary pair ovés. of length 2™ for {1,2, ---, m} and for anye, cx € Zon

any c, ¢ € Zyn.
Proof: The casem = 1 is easily checked by hand, 1
so assumem > 2 and fix u # 0. By the definition of a(wy, w2, s ) = 270 Y wn( (e

m—1

aperiodic autocorrelation (5)C,(u) + Cy(w) is the sum o k=L

over i of terms &%~ %+« 4 ¢bi—bita where¢ is a primitive

2"th root of uné;ty. For aggiven integet, ietj :p 4+ u +kz—1 Rkt C

and let (¢, @2, -+, &) and (ji, j2, - - -, jm) be the binary

representation of and j, respectively. The sequence elemeri§ @ Golay sequence ovéy. of length2™.

a; is given bya(ii, iz, -+, im), @s discussed above, which corollary 4 explicitly determine*(™+1) . m!/2 Golay

implies that sequences overZ,. of length 2™ (using the factorm!/2
b —a;=2""liy+d —c (9) rather thanm! because the expressioﬁz;_fL T (k) T (et 1)

is invariant under the mapping — =’, where «’(k) =
_— . #(m + 1 — k)). Numerical evidence suggests that there are
a; —a; — b +0; = 2" (Jr1) — tr(1)) no other Golay sequences ov&j. of this length, although
o) we do not have a proof of this. Theorem 3 also shows how to
et form sets of Golay complementary pairs:
Sa;—aj/gb;—bj — 52 = 1.

Case 1: j(1) # ix(1)- From (9), overZ,. we have
— 2h—1

Corollary 5: Let

Therefore, &% —% + ¢bi—b = 0. F=fan, 22, Tm)
Case 2: j(1) = in1). Sincej # i we can defines to be - T " N
the smallest integer for whicl,, # jr..). Let ¢ be the h—1 N\ -
. : v) 7 Jw(v =2 () Tk e
integer whose binary representation ; ORI C ; Tk
(i1, 42, -y T —dn(uo1), =+ im) wherer is a permutation of the symboll, 2, ---, m} and

. ) ) » o cx € Zon. Then any sequence in the set
differs from that of: only in positionw(v — 1), and similarly

let 5/ have binary representation A={f+c [+ 2"_1(3777(1) + Tr(m)) +clc € Zyn}  (10)

(s d2, 5 L= Jn(oerys 7 Jim)- forms a Golay complementary pair ovés. of length 2™
By assumptioni(,_1y = jx(»,—1) and soj’ = ¢’ +u. We have, with any sequence in the set
therefore, defined an invertible map from the ordered pair - , - Py
(4, §) to (i, §/), and both pairs contribute 16, (u) + Cy(u). > — {(f+2" ary+s FH2" gy +¢|¢ € T} (1)
Now substitution for: and <’ in (8) gives Proof: Consider a single sequene®f the form f+c. By
fr—fi = 2" Vi 2" Ny Fero—1) — 26x(u—1)in(w—1) TheOrem 3, this sequence forms a Golay complementary pair
ith each of the2 sequence$ f + 2" 1z (1) + | € Zu.}.
ow if 7 is replaced by the permutation’ defined by
1 . 7' (k) = m(m+1—Fk), f+cis invariant butf + 2"tz 1)+
a; = a; — ay + ay =27 (Jr(u-2) ~ in(v-2)) maps to f + 2"—1%(,,,) + . Therefore,a also forms a
+2"_1(j,r(,,,.) — () Golay complementary pair with each of ti# sequences
{f 4+ 2" () + | € Zyn }. We have shown that forms
a Golay complementary pair with each sequebee B, and
it follows from Definition 1 that for each:, every sequence
by the definition ofy. Then (9) implies that b € B has the same value &g (u).
Similarly, we can show that a single sequehad the form
I+ 2"—1%(1) + ¢ forms a Golay complementary pair with
each of the2"+! sequences € A and that, for each, every
sequence: € A has the same value @fs(u). Therefore, any

(unlessv = 2, in which case we just delete terms involvin
#(v — 2) here and in what follows). Therefore,

- 2077('1;—1) (jTr('v—l) - iw('v—l))
— 2h—1

bi—b; —by+by =a;—a; —ay +ay = oh—1,

Arguing as in Case 1, we obtain

£HTU 4 gurma = ) sequence: € A forms a Golay complementary pair with any
and sequencé € B. O
bi—by | gby—by _ . .
£ +¢ =0. Corollary 5 explicitly determineg2(*+1) . ghm=2 . p1/2

Therefore,(£% % 4 ¢¥ b)) 4 (¢av—ay 4 ¢bv =ty = 0. Golay complementary pairga, b} over Z,. of length2™. It
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also suggests a natural partition of the Golay sequencesatfo presented results which show that the number of binary
Corollary 4 into2"~2.m! /2 classes of size"*2, each class Golay sequences of lengtti® given by Golay's recursive
comprising a setd of 2"+! sequences of the form (10) and aonstruction is2™+! . m!/2. Although we have received
set B of 2"t sequences of the form (11). a modified version (private communication, July 1998) of
However, the true number of Golay complementary paithis paper which notes a connection between these binary
{a, b} overZ,. of length2™ can be greater than that calcu-Golay complementary sequences and Reed—Muller codes, the
lated above because in some caggsgu) = Ca/(u), for allu, modified manuscript carries a date later than the publication
for two distinct setsd, A’ of the form (10). For example, for date of our announcement [13].)
h = 2andm = 3, by Corollary 5 any of the eight sequences in We remark that [20] introduced a definition of equivalence
of binary Golay complementary pairs that was taken up by
A ={2@122 + 2203) + ¢ @102 + 2223) + 201+ 285 aier authors, particularly when counting the number of such
+ cle € Z4} pairs of small length by computer search. We believe that the
underlying structure of Golay complementary pairs o¥er
of length2™ is more apparent if this definition, and its obvious
generalization forh > 1, is not used.

forms a quaternary Golay complementary pair of lergyttith
any sequence in

B ={2(x122 + m213) + 231 + ¢, 2(x1202 + T273) + 273
+d|d € 24}, Ill. REED-MULLER CODES

Binary Reed—Muller codes first appeared in print in 1954
and remain .. one of the oldest and best understood families
A" ={2(x2x1 + z123) + 332 + 3 + ¢, 2(w2w1 + T143) of codes” [31, p. 370]. They have good error correction
+ 2o 4 323+ clc € Zy) properties, provided the block length is not too large, and have
the important practical advantage of being easy to decode. The
forms a Golay complementary pair with any sequence in ,th—order binary Reed—Muller code RM m) of length 2™
B' = {2(xox1 + x1003) + 2 + 23 + ¢, 2w2w1 + w1203) is generated by the mono_mials in the Boolean functi@ns
o of degree at most [31]. This allows us to restate the binary
+ 3wy + 3zs + ¢ € Za} caseh = 1 of Corollary 4 as:

Similarly, any one of the eight sequences in

But in fact direct calculation shows that Corollary 6: Each of them!/2 cosets of RM1, m) in
(Ca(w)lu=0,1,---,7)=(Ca(w)u=0,1,---,7) RM (2, m) having a coset representative of the form
=(8,-1,0,3,0,1,0,1) m—1
so these 32 sequences collectively give risel@d = 256 kz_l Fr)Frlit)
Golay complementary pairs rather than the expecte&? = B
128. comprise2™t! binary Golay sequences of leng@i®, where
In 1961, Golay [20] gave an explicit construction for binaryr is a permutation of the symboldl, 2, ---, m}.

Golay complementary paurs Of. lengthr gnd later noted Note that the PMEPR of a sequence depends on the order
[21] that the construction implies the existence of at least

2m+1 . m1/2 binary Golay sequences of this length. Thesd which its elements occur, so here and elsewhere we do not

results correspond to the binary cake= 1 of Theorem 3 adopt the coding theory convention that regards two codes

and Corollary 4, and indeed our proof of Theorem 3 i%s equivalent if one can be obtained from the other by a

N : ermutation of coordinates.
modeled on Golay's original construction [20]. However, th .
i We wish to make an analogous statement to Corollary 6
nonbinary casek > 1 of Theorem 3 have not been constructe ; .
s : . or the nonbinary cased > 1 of Corollary 4. To do this,
explicitly elsewhere. Moreover, we shall prove in Section | .
. we follow the landmark paper [25] and defindimaear code
the new result, announced in [13], that the Golay sequences O n
over Zy of length» to be a subset o} such that the
Corollary 4 form a subcode of the second-order Reed—Muller .
. . . sum of any two codewords is a codeword. Reference [25]
code (suitably generalized for nonbinary cases). L S .
demonstrates that defining linear codes in this way, over rings

Golay [20] also presented a recursive construcnon_ for bt_at are not fields, preserves many of the properties of classical
nary Golay complementary pairs involving concatenation ades even though not every element of the code alphabet
interleaving of sequences. B&dh [8], building on earlier

! . has a multiplicative inverse. In particular, such a code can
work of Sivaswamy [46], gave a more general recursive

construction for Golay complementary pairs and showed th%? specified in terms of a generator matrix such that the code

. . consists of all distinct linear combinations ov&y of the rows
the set of all binary Golay complementary pairs of length . : ;
i ) N ) ! . of the matrix. We now define two new linear codes o¥er
obtainable from it coincides with those given explicitly b

Golay [20] (as described above). Paterson [38] has sh Yot length2™ in terms of the generalized Boolean functias

. O8scribed in Section 1.
that the set of all Golay complementary pairs ovgy. of
length 2™ obtainable by Golay’s recursive constructi@i = Definition 7: For &~ > 1 and0 < » < m, the rth-order
1) and by Budsin's (h > 1) coincides with those given linear code RM: (r, m) over Z,. of length2™ is generated
explicitly in Theorem 3. (Urbanke and Krishnakumar [50by the monomials in the:; of degree at most.
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Definition 8: For 2 > 1 and0 < » < m + 1, therth-order Corollary 9: Each of them!/2 cosets of RM.(1, m) in
linear code ZRM. (r, m) overZ,. of length2™ is generated ZRM,. (2, m) having a coset representative of the form

by the monomials in the; of degree at most — 1 together m—1

with two times the monomials in the; of degreer (with the 2h—1 Z T (k)T (1)

convention that the monomials of degred andm + 1 are k=1

equal to zero). . . comprises2™(m+1) Golay sequences ovét,. of length 2™,
The code RM. (7, m) generalizes the binary Reed-Mullefyherer is a permutation of the symbold, 2, ---, m} and

code RM(r, m) from the alphabeZ, (the caseh = 1) tothe , o 1

alphabetZ,.. Likewise, the code ZRM (r, m) generalizes _

the quaternary Reed—-Muller code ZRM m) defined in [25] We have seen in Theorem 2 that the PMEPR of any Golay
from the alphabetZ, (the caseh = 2) to the alphabet Sequence is at mogf and Corollaries 6 and 9 give concise and
Z,.. In both cases, the formal generator matrix is unchanggHuctured representations for large sets of Golay sequences in

as h varies, but the alphabet over which it is interpretethe cases = 1 andh > 1, respectively. These representations
changes. The number of monomials in the of degreer readily lend themselves to implementation in an OFDM coding

scheme having tight envelope power control. If we did not
wish to consider using sequences other than Golay sequences
for OFDM transmission then it would be more natural to
replace the multiple in Definition 8 by the multiple2"—!
oh ST L o=1)(7) and to extend the definition of ZRM(r, m) to the case
h = 1; in that case, Corollary 9 would hold for all cases
h > 1. However, by taking more cosets of BM1, m) in
codewords. Note these generalizations of the Reed—Mull@RM.: (2, m) we can increase the rate of OFDM transmission
code are distinct from the generalized Reed—Muller codé the cost of progressively larger values of PMEPR, as we
GRM(r, m) [40], which is defined over a field, and the quaterdiscuss in Section IV. To allow such design freedom, our
nary Reed-Muller code QRKE, m) [25], which generalizes objective in defining ZRM. (r, m) was that the linear code
the quaternary representation of the Kerdock code. ZRMy: (2, m) should be the largest superset of the Golay

For example, RM.(1, 4) has the generator matrix showrsequences of Corollary 4 which does not compromise the
in (12) at the bottom of this page and conta®i¥ codewords minimum Hamming or Lee distance, as we now describe.
for h > 1, and ZRM,. (2, 4) has the generator matrix shown Let a = (ao, a1, -+, a,—1) be a sequence ovety of
below (12) (also at the bottom of this page) and contaitgngthn. The Hamming weighof « is the number of nonzero
25% . 26(~=1) codewords forh > 1. a; and theLee weightf40] of a is 31— min (a;, H — ;).

We are particularly interested in the code ZRNR, m), The Hamming (or Leellistancebetween two such sequences
comprising 2(—Dm(m—1)/2 cosets of the subcodea andbisthe Hamming (or Lee) weight af—b (when written
RM,x (1, m), each coset containin@"(™+1) codewords. as a sequence ovéiy). The Hamming distance measures the
We can restate the casés> 1 of Corollary 4 in terms of number of positions in whicl andb differ, whereas the Lee
these codes as: distance takes into account the magnitude of the difference

is (™), 50 RMyi (7, m) contains2" 22— (7) codewords and
ZRM,:. (r, m) contains

(12)
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over Zy at each position; these coincide in the binary case By a similar induction ork the minimum Hamming and Lee
H = 2. For example, the Hamming distance between thigstance for RM. (r, m) is at least2™~", and the codeword
sequencess, 7, 0, 1) and (3, 7, 7, 6) over Zg is 3 whereas 1z - -z, has Hamming and Lee weigBt*~". O

the Lee distance i8+0+ 1+ 3 = 6. The minimum Hamming

or minimum Lee distance of a code, which is taken over e minimum Hamming and Lee distance of ZRN-, )

pairs of distinct codewords, is a measure of its error correcti%w not compromised by using the multiptein Definition 8
capability: if the (Hamming or Lee) minimum distance i%nstead of the multiple"—!

d then we can always correct errors of (Hamming or Le€) \ye conclude this section with a short discussion of bent
weight less thani/2. If the transmission channel renders a'%unctions, which will be useful when describing encoding

H —1 possible errors for a given codeword position equallyyiions in Section IV. Fom even, abent functioris a Boolean

likely then the traditional Hamming distance metric is afunction f(z1, 2, -+, @) for which all the Hadamard trans-
appropriate measure. However, if errors involving a transitiGg,m coefficients of thet1 sequencé—1)/ @ @2, #m) have
between adj_acent_ values mH are much L likely tha'? magnitude2™/2. A bent function is equivalent to a Hadamard
other errors in a given position then the Lee distance metricgerence set in the groupy'. The functionEZZf Lok 1Tk

more appropriate [40]. We consider both metrics to be usefdl pent, and any affine transformation of a bent function is
measures of error correction capability for OFDM transmissiof)sg pent. AKerdock code of length™ is the union of2"—1
and so we now derive the minimum Hamming and Legysets of RM1, m) in RM(2, m), wherem > 4 is even.
distance for the codes RM(r, m) and ZRM.(r, m). The One of the coset representativesDigso RM(1, m) itself is
method uses the fact that the minimum Hamming distance @ntained in the code), and all the others are bent functions
the binary code RMr, m) is 27" having the property that the sum of any two of them is also
Theorem 10: The following expressions (shown at the bot& Pent f“”_Ct'O”'l The minimum Hamming distance of any
tom of this page) hold fob < r < m. such code i~ — 2(m=2)/2_ For details of these and other
Proof: For any linear code the minimum distance equar§SU|tS’ see [31]. We now show that far even, "?‘" the plnary
@olay sequences of Corollary 6 are bent functions; since these

the minimum weight of the nonzero codewords, in both th s of i1 RM (2
Hamming and Lee case. For each of the four values requil%%quences occur as cosets of Riyim) in (2, m), some

by the theorem we derive a lower bound on the minimufl®Y also belong to a Kerdock code.
distance and then exhibit a codeword whose weight equalsTheorem 11:For m even, each of then!/2 cosets of

The proof of Theorem 10 demonstrates our earlier claim that

that lower bound. RM (1, m) in RM(2, m) having a coset representative of
We first use induction o > 2 to establish the minimum the formzzg1 Tr(k) Tr(k41) comprise™*! bent functions,

Hamming and Lee distance of ZRM, m). The caser =0 wherer is a permutation of the symbold, 2, ---, m}.

is trivial and can be excluded. Let= (ag, a1, -+, azm_1) Proof: We show that the function

be any nonzero codeword in ZRM, ) and defineb =

(bo, b17 BRI bgm,,l) by b, = ai(monh_l) and b; € ZQh—l m_l il

for eachi. Now b is a codeword in ZRM._ (r, m) if h > 2 D TR Tatirn) T Chik+C

and is a codeword in RN — 1, m) if h = 2. k=1 k=1

Case 1: b = 0. In this casea = 2"~1a’ for a nonzero ) )2 .
codeworda’ in RM (r, m), soa’ has Hamming weight at leastc@n be obtained from_, ) wax—122: by a sequence of affine
9m—r_ Therefore,a has Hamming weight at leagt> " and transformations, for any, ¢, € Z,. The linear transformation

Lee We|ght at IeaSEh_l Lom=r > 2771,—1’—1—1. 1 — X1 + X3, X3z — T3 =+ Ty, ) Tm—3 '_>/x27n—3 + L1,
Case 2: b # 0. In this caséh has Hamming weight at Ieasta”gfli — x; for all other z;, maps} ;" o172 10

2m—" and Lee weight oveZ,. . at least2”™—"+1, using the X_r_1 ZkZk+1. Then the linear transformatiaty — z(;) +
induction hypothesis if. > 2. Therefore,a has Hamming bi, Where each; € 7 is determined by a single;, maps
weight at leas™ ", and has Lee weight ovéf,. at least this to
2m—r+1 (sincemin (a;, 2" — a;) > min (b;, 21 — b;) when

m—1 m
a; = b; or b; + 2"71). T
i i i ) x(k)Tr(k+1) T otk +b
Furthermore, the codewor* 'z, - - - z,, has Hamming kz_:,l (WEmerd) ;

weight 2m~", and the codeword:;zo - - z,—1 (or 1 if » =
1) has Lee weight2™~"+1, This completes the proof for for b = ¢ or ¢ + 1. If necessary, we can apply a translation to
ZRMy: (7, m). add1 and so obtain the required function. O

‘ RMwﬁym)‘ ZRM,. (r, m)

(h>1) (h>1)
minimum Hamming distance 2m=r 2m=r
minimum Lee distance gm-r gm—r+l
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IV. ENCODING 1 can always be corrected, as can an error of Lee weight

The combination of the new results of Sections Il anit MOSt3. The code rate is3/8 and the information rate
Il immediately suggests a practical OFDM coding schendd 9/8. Given 18 information bits, three are used to select
using 2"*-phase shift keying: allow as codewords only thos@"€ of the eight coset_ representatlves_and th_e remaining 15
Golay sequences described in Corollaries 6 (foe 1) and are regarded as the binary repr_esentanon _of f|_ve information
9 (for h > 1). This simultaneously confers tight envelop&YMPOIS 1, iz, us, uy, u. The linear combinations z, +
power control, by Theorem 2, and good error correctiofp?2 T Us¥s + uszy + u is calculated with reference to
capability, by Theorem 10. The Golay sequences in questi generator matrix (12).for RM1, 4) and added to Fhe .
occur asm!/2 cosets of RM.(1, m) and for convenience selected coset representatlve._Suppose the 18 information bits
of implementation we use® of these cosets, wher® is are()1110111101111_0110. The first three b|t3)1_1 select f[he
the largest integer power & no greater thann!/2. Under coset representativid004040000400444) (labeling the first

this scheme, we encode + h(m + 1) information bits per eight coset representative80, 001, ---, 111). The remaining

OFDM symbol period. We usev bits to encode the choice 15 b|t36 s_ele(étlfgf3(;|g3elag42c:(§)$blnatlcﬁs]ml SFEZI\Q/I * ?:jxngrrd
of coset representative using a look-up table. The remaini%4 +6 = ( N 53), so the codewo

g
h(m + 1) bits are converted ten + 1 information symbols 1S (6413070631242417)' . .

. . The above coding scheme is restricted to the Golay se-
Uy, Ua, v, Um, 4 € Zon by taking each consecutive group

of h bits to be the binary representation of an element gpences described in Sections Il and Ill. These sequences

' 13 ” H H -
Z,.. The information symbols are then used to form the lineQr<Yr asm!/2"Golay cosets” of RM:.(1, m) within a second

combinationy™" | w;; -+, in which each symbol multiplies order linear code, where the second-order linear code is
=1 e 1 . . _ .
one row of the standard generator matrix for RN¥L, m). RM(2, m) in the binary caseé = 1 and is ZRM.(2, m)

. S : in the nonbinary casegé > 1. We can increase the code
This linear combination can be calculated in hardwar@"in .
. . O . rate, at the cost of progressively larger values of PMEPR, by
clock cycles using the encoding circuit for R m) given

in [31, p. 420]. The sum (ovef,:.) of this linear combination including additional cosets of RM(1, m) within the same

. o second-order code. These additional cosets do not necessaril
with the selected coset representative is the OFDM codewordC . . y
comprise or even contain Golay sequences. Nonetheless we

(ao, a(lj? - '?2’”11)’ _\I’_vhh'Chd'S mcidulated Ipmt)f: to tr?nsn}lsts;]lonhave found that partitioning the second-order code into cosets
according to (1). Thecode rate namely the ratio of the of RM,. (1, m) is an effective means of isolating codewords

numbher of ;nforr;:’cfllon b'(tjs to éh(fa_ nutr;_b?r of (t:_odedtbtlts, Rith large values of PMEPR. Alternatively, we can increase
(w+ .(m+ N/ ), and we iefine thenformatlon ratelo - yhe minimum Hamming distance, at the cost of a lower code
be h times the code rate. The information rate describes the | by choosing fewer that” of the originalm!/2 Golay

increased rate at which information bits are encoded when we . ™ |- this way we can trade off code rate, PMEPR, and
change the code from binary to quaternary, ' ' :

from quatemnaly. o correction capability to provide a range of solutions to the
to octary, and so on.. i . envelope power problem. For implementation convenience we
For example, consider the octary case wlth 16_ carrefSaon’ cosets of RM. (1, m) for some integer’ to encode
(h = 3, m = 4). The 12 coset representatives given by, ., 1 information bits, storing the coset representatives
Corollary 9 are in a look-up table. We can determine the possible options for
given h and m by arranging all the cosets of RM(1, m)

(within the appropriate second-order code) in increasing order
(0004040000044044) = 4(x 122 + w224 + 2324) of their maximum PEP over tha@"("+1) codewords in the
(0000044000440404) = 4(z1 23 + To3 + Tom4) coset, as we now illustrate.
(0004040000400444) = 4(x1 23 + 2324 + ToT4)
(0000044004040044) I4(.T1.’L’4 + oy + .’L’Q.’L’g) A. The Binary Case
(0004004004000444) = 4(2124 + 2324 + ¥2%3) Consider the binary case with 16 carriets=£ 1, m = 4).
(0004000400404404) = 4(z122 + 123 + T324) Tables | and Il list the2™(m~1)/2 — 64 cosets of RM(1, 4)
(0004000404004044) = 4(z1 72 + 7174 + T374) in RM3(2, 4) in increasing order of their maximum PEP over
(0000004404400404) = 4(2a5 + w125 + w174) 'the 32 codewords in the coset. The F.>EP. of_ each codeword
is calculated using’ times oversamplingfinding P(t) =
(0000040404400044) = (w24 + w124 + 2123) |s(#)|* from (1) at each sample poirit= i/(2"t/Af) for
(0000040400444004) = 4(z123 + w122 + T224) i=0,1,---, 27"t —1 and taking the largest sample value of
(0000004404044004) = 4(z2z5 + 7172 + T174) P(t). The value ofj is increased until the maximum calculated

PEP over the coset is stable. The first 12 cosets of Tables | and
of which we choose eight (say the first eight), @0= 3. Il are them!/2 Golay cosets of Corollary 6, each of which has
The union of the eight cosets of R, 4) having these a maximum PMEPR of at mo&t(since PMEPR= PEPH and
coset representatives comprises the set of OFDM codewondg, have fixedn = 2™) in accordance with Theorem 2. The
all of which have PMEPR of at most. The code forms a final coset in the listis RM(1, 4) itself, which has a maximum
subcode of ZRM(2, 4) and has minimum Hamming and LeePMEPR of 2™ since it contains the sequen¢@ 0, -- -, 0).
distance4 and 8, respectively. An error of Hamming weightThe remaining cosets have intermediate values of maximum
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TABLE |
BiNARY CoODING WITH 16 CARRIERS THE 64 CoseTs oFRMa (1, 4) IN RMa(2, 4), ORDERED BY MAaximum PEP G/er THE CoseT. COSET
REPRESENTATIVESARE ), . ; uijw;xj AND THE PEPOF EACH SEQUENCE IS CALCULATED USING 256 TIMES OVERSAMPLING

Uiz U3 U4 Uz Ung U4 Coset representative Max PEP
1 0 0 1 0 1 (0001001000011101) 31.59
1 1 0 0 0 1 (0001000100101101) 31.94
0 1 0 1 1 0 (00000110001106101) 31.95
1 0 0 0 1 1 (0001010000011011) 31.98
0 1 0 0 1 1 (0001010000100111) 31.98
0 0 1 1 0 1 (0001001001000111) 31.98
0 1 1 0 1 0 (0000010101100011) 31.98
1 0 1 0 0 1 (0001000101001011) 31.98
1 1 0 0 1 0 0000010100111001) 31.99
1 0 1 1 0 0 (0000001101011001) 31.99
0 0 1 1 1 0 (0000011001010011) 32.00
0 1 1 1 0 0 (0000001101100101) 32.00
1 0 0 0 0 1 (0001000100011110) 49.82
0 0 1 1 0 0 (0000001101010110) 49.87
0 1 0 0 1 0 (0000010100110110) 49.98
0 1 1 0 1 1 (0001010001110010) 50.88
1 0 1 0 1 1 (0001010001001110) 51.10
1 1 0 1 1 0 (0000011000111010) 51.12
1 0 0 1 1 1 (0001011100011000) 51.65
0 0 1 1 1 1 (0001011101000010) 51.76
1 0 1 1 1 0 (0000011001011100) 51.81
1 1 1 0 1 0 (0000010101101100) 52.87
1 1 1 1 0 0 (0000001101101010) 52.90
0 1 1 1 0 1 (0001001001110100) 53.47
1 1 1 0 0 1 (0001000101111000) 53.56
0 1 0 1 1 1 (0001011100100100) 53.82
1 1 0 1 0 1 (0001001000101110) 53.99
0 0 0 0 1 1 (0001010000010100) 64.00
0 0 0 1 0 1 (0001001000010010) 64.00
0 0 0 1 1 0 (0000011000000110) 64.00
0 0 1 0 0 1 (0001000101000100) 64.00
0 0 1 0 1 0 (

0000010101010000) 64.00

[Continued in Table II]

PMEPR. Observe that the maximum PMEPR for the cosetsrigference option for 32 carriers is Option 7, which uses the
the first half of the list is no greater thanwe remark that this first 32 of these 60 cosets. Option 6 uses just the first coset
property holds for the binary case with 8 and 32 carriers toof the list. (We could derive a compromise between Options
Table VII summarizes some possible options for binay and 7 having minimum Hamming distan¢e based on a
coding for 16 and 32 carriers, most of which are derived froikerdock code of lengtt82. Although we have given only
the ordered list given in Tables | and II. The reference optidhe classical definition of a Kerdock code, far > 4 even,
for 16 carriers is Option 3, which uses the first eight (Golay25] defines a corresponding Kerdock code far> 3 odd
cosets of this ordered list. Option 4 uses the 32 cosets in twbich can be represented as the union26f-! cosets of
first half of the list and trades an increase in code rate for &M (1, m) in RM (2, m) and which has minimum Hamming
increase in maximum PMEPR frothto 4. Option 1 uses just distance2™~! — 2(»=1)/2 The number of information bits
the first coset of the list and trades an increase in minimuoh this compromise option will be determined by how many
Hamming distance from to 8 for a reduction in code rate. of the 16 Kerdock cosets are also Golay cosets.) Comparing
Option 2 is a compromise between Options 1 and 3, based®@ptions 1 and 3 with Options 6 and 7, respectively, we see
the Kerdock code of length6 whose coset representativeshat doubling the number of carriers from 16 to 32 incurs a
are [30]: 0, x1z2 + x173 + 7374, 7173 + T2x3 + T274, penalty in terms of code rate. However, it carries the advantage
T1To+Tola+T3%s, T1X4+ToT3+T32g, T123+T124+2224, that intersymbol interference in the transmitted signal will be
T1To+T124+ 2223, ANdr1 22+ 2123+ 2124+ 2223+ 2224+ reduced and consequently delay spread in the channel will
x3x4. Six of these eight coset representatives are of the foatso be reduced.
ZZ’:_ll T Txk+1) (@nd SO appear in the first 12 places of Alternatively, we can maintain the code rate as the number
the list), and by choosing any four of the six we obtain af carriers doubles, at the cost of increased PMEPR. It is
minimum Hamming distance d. straightforward to show that i and b are sequences over
The ordered list for binary coding with 32 carriers (noZy of lengthn having PMEPR at mosk then the sequence
shown here) contains 1024 cosets of RM 5) in RM2(2, 5) formed by interleaving or concatenating the elements afd
and is headed by the 60 Golay cosets of Corollary 6. Tlhéras PMEPR at mo&tR. For example, by encoding according
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TABLE I
CONTINUATION OF TABLE |

<
[y
1%

U1z U4 U3 Uq u34[ Coset representative !Max PEP

(0001010001000001) 64.00

o 0 1 o0 1 1
o 1 0 o0 0 1 (0001000100100010) 64.00
o 1 0 1 0 0 (0000001100110000) 64.00
o 1 0 1 0 1 (0001001000100001) 64.00
0o 1 1 0 0 0 (0000000001100110) 64.00
0o 1 1 1 1 0 (0000011001100000) 64.00
0o 1 1 1 1 1 (0001011101110001) 64.00
1 0 0 0 1 0 (0000010100001010) 64.00
1 0 0 1 0 0 (0000001100001100) 64.00
1 0 0o 1 1 0 (0000011000001001) 64.00
1 0 1 0 0 0 (0000000001011010) 64.00
1 0 1 1 0 1 (0001001001001000) 64.00
10 1 1 1 1 (0001011101001101) 64.00
1 1 0 0 0 0 (0000000000111100) 64.00
1 1 0 0 1 1 (0001010000101000) 64.00
1 1 0 1 1 1 (0001011100101011) 64.00
1 1 1 0 0 0 (0000000001101001) 64.00
1 1 1 0 1 1 (0001010001111101) 64.00
1 1 1 1 0 1 (0001001001111011) 64.00
1 1 1 1 1 0 (0000011001101111) 64.00
11 1 1 1 1 (0001011101111110) 98.95
0 1 0 0 0 0 (0000000000110011) 99.72
0o 1 1 0 0 1 (0001000101110111) 101.43
1 1 0 1 0 0 (0000001100111111) 101.56
0 0 o0 1 0 0 (0000001100000011) 105.60
1 0 0 0 0 0 (0000000000001111) 105.85
o 0o o 1 1 1 (0001011100010111) 106.22
0O 0 0 0 1 0 (0000010100000101) 106.41
1 0 1 0 1 0 0000010101011111) 106.69
0o 0 0o 0 0 1 (0001000100010001) 109.48
0 0o 1 0 0 0 (0000000001010101) 109.75
0o 0 0 0 0 0 (0000000000000000) 256.00

to Option 1 twice independently, and either interleaving d8. The Quaternary Case
concatenating the resulting codeword elements, we obtain thg-,; the nonbinary caseé > 1 we form similar or-
composition coding scheme of Option 8 having the same coggreq Jists of the2(*—1)m(m—1)/2 cosets of RM: (1, m) in

rate buta max_imum PMEP_R df Decoding is Iikewis_e carried ZRM,. (2, m). Consider the quaternary case with 16 carriers
out by regarding the received codeword as two independept _ 2, m = 4). Tables Ill and IV list the 64 cosets

half-length codewords, which is indicated in Table VII by RMy(1, 4) in ZRMy(2, 4) in increasing order of their
writing the minimum Hamming distance for Option 8 asnaximum PEP over the 1024 codewords in the coset, headed
8; 8 (see also Section V). Examples of this technique @y the 12 Golay cosets of Corollary 9. The maximum PMEPR
interleaving or concatenating codewords to maintain code ra§® the cosets in the first half of the list is no greater than
and to control PMEPR for OFDM transmission have beep (as in the binary case), and the same is true for 8 and 32
noted previously [35], [45]. Option 10 is similarly derivedcarriers. Tables Il and IV contain a striking feature not present
from Option 3, with the following modification to improve in Tables | and II: the maximum PMEPR over each coset is an
the code rate slightly. Recall that there are 12 cosets listeddiact power o, and the same is true for 4, 8, and 32 carriers.
Tables | and Il having PMEPR at mogt of which Option  Table VIII summarizes options for quaternary coding for
3 uses the first eight. We can, therefore, fofi< 12-12 16 and 32 carriers, mostly derived from the ordered list of
ordered pairs of length6 coset representatives to be addegiables Ill and IV. These options are determined in similar
to the respective lengthé linear combinations in RM1, 4) manner to those having the corresponding option number
prior to interleaving or concatenating. In this way, Option 1fh Table IX. A similar method to the proof of Theorem
encodes’+2-5 = 17 rather thar2-3+2-5 = 16 information 10 shows that ifim > 4 is even and the set of cosets
bits. Likewise, Option 2 uses four cosets chosen from six, afg; + RMx(1, m)} is a Kerdock code of lengt™ then the
since2® < 6 -6 we can encodé + 2 -5 = 15 information minimum Hamming distance d2"'g; +RM,. (1, m)} over

bits in the composition coding scheme of Option 9. FinallyZ,,. is 271 —2(m=2)/2 for b, > 1. Option 2 exploits this result,
Option 5 is a composition coding scheme based on a singising coset representatives whose values are twice those of the
Golay coset of RM(1, 3). binary Option 2. Option 5a is a composition coding scheme
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TABLE 11l
QUATERNARY CODING WITH 16 CARRIERS THE 64 CoseTs oFRMy(1, 4) IN ZRM4 (2, 4), ORDERED BY MAXIMUM PEP Q/ER THE COSET. COSET
REPRESENTATIVESARE2 3, u;;;%; AND THE PEPOF EACH SEQUENCE IS CALCULATED USING 1 TIMES OVERSAMPLING

U1s U1z U4 Uz U4 Usdg Coset representative Max PEP
0 0 1 1 0 1 (0002002002000222) 32.00
0 1 0 0 1 1 (0002020000200222) 32.00
0 1 0 1 1 0 (0000022000220202) 32.00
0 1 1 1 0 0 (0000002202200202) 32.00
1 0 0 0 1 1 (0002020000022022) 32.00
1 0 0 1 0 1 (0002002000022202) 32.00
1 0 1 0 0 1 (0002000202002022) 32.00
1 0 1 1 0 0 (0000002202022002) 32.00
1 1 0 0 0 1 (0002000200202202) 32.00
1 1 0 0 1 0 (0000020200222002) 32.00
0 0 1 1 1 0 (0000022002020022) 32.00
0 1 1 0 1 0 (0000020202200022) 32.00
0 0 0 1 0 1 (0002002000020020) 64.00
0 0 0 1 1 0 (6000022000000220) 64.00
0 0 1 0 1 1 (0002020002000002) 64.00
0 0 1 1 0 0 (0000002202020220) 64.00
0 0 1 1 1 1 (0002022202000020) 64.00
0 1 0 0 0 1 (0002000200200020) 64.00
0 1 0 0 1 0 (0000020200220220) 64.00
0 1 0 1 0 1 (0002002000200002) 64.00
0 1 0 1 1 1 (0002022200200200) 64.00
0 1 1 0 0 0 (0000000002200220) 64.00
0 1 1 0 1 1 (0002020002220020) 64.00
0 1 1 1 0 1 (0002002002220200) 64.00
0 1 1 1 1 1 (0002022202220002) 64.00
1 0 0 0 0 1 (0002000200022220) 64.00
1 0 0 0 1 0 (0000020200002020) 64.00
1 0 0 1 0 0 (0000002200002200) 64.00
1 0 0 1 1 0 (0000022000002002) 64.00
1 0 0 1 1 1 (0002022200022000) 64.00
1 0 1 0 0 0 (0000000002022020) 64.00
1 0 1 0 1 1 (0002020002002220) 64.00

[Continued in Table IV]

based on three Golay cosets of RN, 3). Error correction for VIII. Option 2 uses coset representatives whose values are
this option can be done with respect to Lee distance (thoufgtur times those of the binary Option 2. Option 4 has smaller
not always with respect to Hamming distance, which is whypaximum PMEPR than the quaternary Option 4 because it
it does not occur in Table VII). Comparison of Tables Viuses 12 Golay cosets together with 20 of the 48 cosets having
and VIII demonstrates that choice of modulation scheme isreaximum PMEPR o8. The parameters of Option 5 coincide
further component of design freedom. The quaternary schemgth those proposed independently in [35].
have up to twice the information rate of the correspondin
binary schemes for the same minimum Hamming distanceg; Comments
together with enhanced error correction capability based onThe coset ordering process illustrated for binary, quaternary,
Lee distance. Their disadvantage is that quaternary modulatird octary modulation can clearly be applied to larger values of
leads to a smaller minimum Euclidean distance than binahy Since these coding schemes are all based on the same formal
modulation and so their transmission error rate is larger. generator matrix for RM. (1, m), interpreted over different
alphabetsZ7,., it is simple to change adaptively between
C. The Octary Case coding options according to the propagation channel and
Consider the octary case with 16 carriets={ 3, m = 4). evolving system requirements. In this way we obtain flexible
Tables V and VI list the 4096 cosets of RK, 4) in coding schemes which combine tight control of PMEPR with
ZRMg(1, 4) in increasing order of their maximum PEP ovepowerful error correction capability and structured encoding.
the 32768 codewords in the coset. The list is headed by th#icient methods of decoding will be discussed in Section V.
12 Golay cosets of Corollary 9, followed by 48 cosets whose The numerical results presented demonstrate, at least for
maximum PMEPR is exactlg. The maximum PMEPR for small values ofh andm, that partitioning the codewords of
the cosets in the first quarter of the list is no greater th&M.(2, m) (in the casé. = 1) or ZRM,. (2, m) (in the cases
4; for eight carriers this is true for the first half of the listh > 1) into cosets of RM.(1, m) is an effective method
Table IX summarizes options for octary coding for 16 and 3@ isolating those codewords with large values of PMEPR.
carriers, the option numbers corresponding to those in Taliteleed, the maximum PMEPR over the entire second-order
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TABLE IV
CONTINUATION OF TABLE Il

£
[~
£
w

U4 Uy Uze U4 | Coset representative | Max PEP

0000022002022200) 64.00

10 1 1 1 0 (

1 0 1 1 1 1 (0002022202002202) 64.00
1 1 0 0 0 0 (0000000000222200) 64.00
1 1 0 1 0 1 (0002002000202220) 64.00
1 1 0 1 1 0 (0000022000222020) 64.00
1 1 1 0 0 0 (0000000002202002) 64.00
1 1 1 0 0 1 (0002000202222000) 64.00
11 1 0 1 o0 (0000020202202200) 64.00
1 1 1 0 1 1 (0002020002222202) 64.00
11 1 1 0 0 (0000002202202020) 64.00
o 0 0 0 1 1 (00020200060020200) 64.00
0 0 1 0 o0 1 (0002000202000200) 64.00
o 0 1 0 1 0 (0000020202020000) 64.00
o 1 0 1 0 0 (0000002200220000) 64.00
o 1 1 1 1 0 (0000022002200000) 64.00
1 0 1 1 o 1 (0002002002002000) 64.00
1 1 0 o 1 1 (0002020000202000) 64.00
11 0 1 1 1 (0002022200202022) 64.00
1 1 1 1 0 1 (0002002002222022) 64.00
1 1 1t 1 1 0 (0000022002202222) 64.00
1 1 0 1 0 0 (0000002200222222) 128.00
o 0 o 0 o 1 (0002000200020002) 128.00
0 0 0o 0 1 0 (0000020200000202) 128.00
0 0 0o 1 0 0 (0000002200000022) 128.00
o 0 o 1 1 1 (0002022200020222) 128.00
o 1 1 0 o0 1 (0002000202220222) 128.00
1 o 1 0 1 0 (0000020202022222) 128.00
0 0 1 o0 0 0 (0000000002020202) 128.00
0o 1 0 0 0 0 (0000000000220022) 128.00
1 0 0 0 0 0 (0000000000002222) 128.00
1 1 1 1 1 1 (0002022202222220) 128.00
0o 0 0 0 0 0 (0000000000000000) 256.00

code space i2™, and yet for small values ok andm we We note that the octary Tables V and VI contain a striking
typically need reduce this space by a factor of only two or fodfieature that is not present in the comparable binary and
(losing just one or two encoding bits) to reduce the maximuguaternary Tables | and Il as well as Il and IV, namely,
PMEPR to at most. that 48 cosets of RM1, 4) in ZRMg(2, 4) have maximum
Based on numerical evidence for the quaternary case RBIEPR of exacthy3. Nieswand and Wagner [36] have partially
speculate that for alln the maximum PMEPR over anyexplained this by exhibiting, for each > 2, a total of2 - m!
coset of RM(1, m) in ZRM4(2, m) is an exact power of cosets of RM(1, m)in ZRMg(2, m) each of which contains a
2. Cammarano and Walker [9] have shown that the Golaydeword whose envelope powE(t) satisfiesP(0) = 3-2™;
cosets of Corollary 9 always attain the upper bound® @n in the casesn = 3 andm = 4 the 2 - m! cosets so identified
their maximum PMEPR, which establishes this speculation fare precisely those whose maximum PMEPR is exagtly
m!/2 of the 2m("~1)/2 quaternary cosets. (Reference [9] also
shows that the binary Golay cosets of Corollary 6 attain the
upper bound of on their maximum PMEPR whem is odd, An important attraction of the binary Reed—Muller code
and [38] contains further results along these lines.) for applications purposes is that it is easy to decode. In
We further speculate that a coset of RM, m) in particular, the first-order code RN, m) can be decoded
ZRM4(1, m) having maximum PMEPR of¢ comprises very efficiently by means of the fast Hadamard transform
sequences belonging to a Golay complementatytuple (FHT). In this section we give a fast decoding algorithm
(defined analogously to the case= 1 given in Definition for RM,.(1, m) for any h > 1, requiring ~» FHT's and h
1). A straightforward modification of Theorem 2 would therencoding operations in RM(1, m). This algorithm acts as a
give the correct maximum PMEPR. Paterson’s work [38ecoder for RM. (1, m) with respect to both Hamming and
contains significant results on this question, showing thhaée distance: it always corrects errors of Hamming or Lee
each such coset comprises sequences belonging to a Galajght less than the limit//2 = 2™~2 guaranteed by the
complementary2’-tuple for somes > « and that3 = o in  minimum Hamming or Lee distancé = 2™~ of the code
certain cases. These results allow tables such as Tables Il éwk Theorem 10). In fact, the class of errors which can always
IV to be predicted at least in part. be corrected by the algorithm includes many whose Hamming

V. DECODING
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TABLE V
OcTARY CODING WITH 16 CARRIERS THE 4096 (seTs oFRMs(1, 4) iIN ZRMg(2, 4), ORDERED BY MAaxiMmum PEP QVER THE COSET.
COSET REPRESENTATIVESARE 2 ) . _ - u;;x;2; AND THE PEPOF EACH SEQUENCE |s CALCULATED USING 256 TIMES OVERSAMPLING

(0004000406604224) 48.00

(0000046200446204) 48.00

(0000040406426024) 48.00
)

(0000004404626204

1<j

U2 U13 U4 Uu23 U24 U3q Coset representative Max PEP
0 0 2 2 0 2 (0004004004000444) 32.00
2 0 0 0 2 2 (0004040000044044) 32.00
2 0 0 2 0 2 (0004004000044404) 32.00
2 0 2 0 0 2 (0004000404004044) 32.00
2 0 2 2 0 0 (0000004404044004) 32.00
2 2 0 0 0 2 (0004000400404404) 32.00
2 2 0 0 2 0 (0000040400444004) 32.00
0 0 2 2 2 0 (0000044004040044) 32.00
0 2 0 2 2 0 (0000044000440404) 32.00
0 2 0 0 2 2 (0004040000400444) 32.00
0 2 2 0 2 0 (0000040404400044) 32.00
0 2 2 2 0 0 (0000004404400404) 32.00
1 0 2 2 1 0 (0000024604042064) 48.00
1 2 1 0 2 0 (0000040402462064) 48.00
0 0 2 2 1 1 (0002024004060644) 48.00
0 1 2 2 0 1 (0002004604200464) 48.00
1 2 0 1 2 0 (0000042600442604) 48.00
0 2 0 1 2 1 (0002042000460464) 48.00
0 2 1 0 2 1 (0002040602400644) 48.00
2 0 0 1 1 2 (0004022000044664) 48.00
2 0 1 0 1 2 (0004020602064044) 48.00
2 1 0 1 0 2 (0004002600264404) 48.00
1 1 2 2 0 0 (0000004404262604) 48.00
2 1 1 0 0 2 (0004000402204664) 48.00
0 2 3 0 2 3 (0006040206400244) 48.00
2 0 0 3 3 2 (0004066000044224) 48.00
2 0 3 0 3 2 (0004060206024044) 48.00
2 3 0 3 0 2 (0004006200624404) 48.00
2 3 3 0 0 2

3 2 0 3 2 0

3 2 3 0 2 0

3 3 2 2 0 0

48.00

[Continued in Table VI]

or Lee weight greatly exceeds this limit. The algorithm can behere (i1, @2, - -, ) and (j1, jo, - -+, jm) are the binary
used for soft-decision as well as hard-decision decoding. Itrispresentation of and j, respectively. ThéHadamard trans-
scalable in the sense that the decoder for,RM(1, m) can formof the row vector = (yo, y1, "+, y2m_1) ISy = yHam.

be obtained directly from the decoder for RML1, ) simply The Hadamard transform of a sequence of length2™ can
by including one additional iteration. We also extend thie calculated rapidly by representiffy as the product ofn
decoding algorithm, while maintaining its favorable propertiesparse matrices; we then cgllthe fast Hadamard transform
to deal with an arbitrary union of cosets of BM1, m). This (FHT) of 4. The FHT can be implemented in software with
extension efficiently decodes any of the coding schemes ap™ additions, and in hardware using tBeeen machinavith

Section V. m stages.
We remark that Ashikhmin and Litsyn [4] give an extension If q is a sequence of length we shall denote bya); the
to nonbinary cases of the standard FHT method for decodifty element ofz for i = 0, 1, ---, n— 1. We shall write(—1)®

RM3(1, m) but their extension applies to GRM, m) rather for the sequence whosith element is(—1)( and write
than to RM. (1, m) (see Section lll). We also note that, mod 2* for the sequence whoséh element ig(a); mod 2%
van Nee [35] implicitly gives a hard-decision decoder fofnamely, the integerj € Z,. satisfying (a); — j = 0
RM.x. (1, 3) with respect to Hamming (and, therefore, bymod 2*)).

Theorem 10, Lee) distance but does not analyze which errors i ,
of Hamming weight greater thah can be corrected by this, oW suppose the codeword of RMz(1, m) is received

decoder and makes no mention of Lee weight. in error asr = (¢ + ¢) mod 2, wheree is a sequence over

We begin by summarizing the standard FHT method tdr2-_The decoding procedure for RiL, m) calculates the

decoding RM(1, m), as described in [31]. FHT 7 9f (.—1)” and deterrpines a value of € Zym for
o _ which (), is an element ofj of largest magnitude. It then
Definition 12:Th§ Sylvester—Hadamard matriddy= = setsw = 0 or 1 according as(j); is positive or negative,

(H;;) of order2™ is given by takes(wy, wy, - -, wy,) to be the binary representation gf

2

. and decodes as (3., w;z; + w) mod 2. (By truncating
H;; = (—1)Ek:1 ke fori, j € Zom intermediate results of the FHT this procedure can actually
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TABLE VI
CONTINUATION OF TABLE V

3
fin
IS

U13

-
<

=

%)

U3 Uzq  Uzg | Coset representative | Max PEP

(0006024404020640) 48.00

0 0 2 2 1 3

0 0 2 2 3 1 (0002064404060240) 48.00
0 0 2 2 3 3 (0006064004020244) 48.00
0 2 0 3 2 3 (0006046000420424) 48.00
0 2 1 0 2 3 (0006040202440640) 48.00
0 3 2 2 0 3 (0006004204600424) 48.00
1 3 2 2 0 0 (0000004404622640) 48.00
3 0 2 2 3 0 (0000064204046024) 48.00
0 2 0 3 2 1 (0002046400460420) 48.00
0 1 2 2 0 3 (0006004204240460) 48.00
2 0 0 1 3 2 (0004062400044260) 48.00
2 0 1 0 3 2 (0004060202064440) 48.00
2 1 0 3 0 2 (0004006200264440) 48.00
1 0 2 2 3 0 (0000064204042460) 48.00
1 2 3 0 2 0 (0000040406422460) 48.00
0 2 0 1 2 3 (0006042400420460) 48.00
0 2 3 0 2 1 (0002040606440240) 48.00
0 3 2 2 0 1 (0002004604640420) 48.00
2 0 0 3 1 2 (0004026400044620) 48.00
2 0 3 0 1 2 (0004020606024440) 48.00
2 1 3 0 0 2 0004000406244260) 48.00
2 3 1 0 0 2 (0004000402644620) 48.00
1 2 0 3 2 0 (0000046200442640) 48.00
3 0 2 2 1 0 (0000024604046420) 48.00
3 1 2 2 0 0 (0000004404266240) 48.00
2 3 0 1 0 2 (0004002600624440) 48.00
3 2 0 1 2 0 (0000042600446240) 48.00
3 2 1 0 2 0 (0000040402466420) 48.00
0 0 2 2 0 1 (0002004604060442) 54.63
0 2 0 0 2 1 (0002040600460442) 54.63

[4032 lines of table omitted)

0 0 0 0 0 3 (000600060006000 6) 218.51
0 0 0 0 0 0 (0000000000000000) 256.00

TABLE VII
BINARY CobDING OPTIONS WITH 16 AND 32 CARRIERS d; d DESCRIBESMINIMUM DISTANCE IN A
CompPosITION CODING SCHEME

# Max possible | Max actual Min # info Code Info
carriers PMEPR PMEPR Hamming | bits per rate rate
(dB) (dB) distance | codeword
1 16 12.0 3.0 8 5 0.31 0.31
2 3.0 6 7 0.44 0.44
3 3.0 4 8 0.50 0.50
4 6.0 4 10 0.62 0.62
5 6.0 4;4 8 0.50 0.50
6 32 15.1 3.0 16 6 0.19 0.19
7 3.0 8 11 0.34 0.34
8 6.0 8;8 10 0.31 0.31
9 6.0 6;6 15 0.47 0.47
10 6.0 4;4 17 0.53 0.53

be implemented in software with fewer tham2™ additions is 42" for a unique valugj = .J and is0 for eachj # .J.
[3].) The decoding procedure relies on the fact that thEhe effect of the error, having Hamming weightvt (¢), is
columns ofH;- together with the columns ef H,-» comprise to reduce the magnitude ¢f), from 2™ by exactly2wt (¢)
2m+1 sequences of the forif-1)“, wherea ranges over the and to increase the magnitude (@), for eachj # J from 0
codewords of RM(1, m). So, in the absence of errorg}); by at most the same amouBivt (¢). Therefore, provided
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TABLE VI

QUATERNARY CODING OPTIONS WITH 16 AND 32 CARRIERS

# Max possible | Max actual Min Min # info Code Info
carriers PMEPR PMEPR | Hamming Lee bits per rate rate
(dB) (dB) distance | distance | codeword
1 16 12.0 3.0 8 8 10 0.31 0.62
2 3.0 6 8 12 0.38 0.75
3 3.0 4 8 13 0.41 0.81
4 6.0 4 8 15 0.47 0.94
5 6.0 4;4 4;4 16 0.50 1.00
5a 6.0 2;2 4;4 19 0.59 1.19
6 32 151 3.0 16 16 12 0.19 0.38
7 3.0 8 16 17 0.27 0.53
8 6.0 8;8 8;8 20 0.31 0.62
9 6.0 6;6 8;8 25 0.39 0.78
10 6.0 4:4 8;8 27 0.42 0.84
TABLE X
OcTARY CoDING OPTIONS WITH 16 AND 32 CARRIERS
# Max possible | Max actual Min Min # info Code Info
carriers PMEPR PMEPR | Hamming Lee bits per rate rate
(dB) (dB) distance | distance | codeword
1 16 12.0 3.0 8 8 15 0.31 0.94
2 3.0 6 8 17 0.35 1.06
3 3.0 4 8 18 0.38 1.12
4 4.8 4 8 20 0.42 1.25
5 6.0 4;4 4:4 24 0.50 1.50
5a 6.0 2;2 44 27 0.56 1.69
6 32 15.1 3.0 16 16 18 0.19 0.56
7 3.0 8 16 23 0.24 0.72
8 6.0 8;8 8;8 30 0.31 0.94
9 6.0 6;6 8;8 35 0.36 1.09
10 6.0 4;4 8;8 37 0.39 1.16

wt (e) < 2m~2 the decoding procedure correctly decodes
to ¢. (See Section Il for a discussion of the relationship
between Boolean functions and binary representations.)
The following definition will be useful in describing the
decoding algorithm for RM. (1, m).

Definition 13: Let a = (ag, a1, -~
ger sequence and let be an integer. We definevt,. ()
to be min (¢ mod 2%, 2¢ — (4 mod 2*)) and wt.«(a) to be

-1
2i=o

octary caseh = 3. Suppose the codeword € RMg(1, m)
is received in error a3 = (¢ + ¢) mod 8, wheree is a
sequence ovefs. Write ¢ = (3>

-, anp—1) be an inte-

wior (a;). wign(a) is equal to theLee weight oveZ,.
of the sequence mod 2* (see Section IlI).

We now introduce the decoding algorithm by outlining th&/Sing the FHT, the decoding algorithm recovers the valye

m

i1 u;z; + 1) mod 8, where

u;, u € Zs. Let (vi2, vi1, vi0) be the binary representation of/2;

u; and let (v, v1, vo) be the binary representation af so
thatu; = 4v;2 + 2v;1 + v;0 andu = 4wvs + 2v; +vo. Then

where

¢c=(4f2+2f1 + fo) mod 8

-

=1

Z VioX; + v2> mod 2

r = (4(f2 +e2) +2(f1 +e1) + (fo + eo)) mod 8.

=
o

m

=1

=1

Z V15 + v1> mod 4
Z Vo + vo> mod 8.

¢ is then recovered from (13).

2411

(15)

(16)

Write the errore uniquely ase = 4es + 2¢; + ¢g, Wwhere each
e IS a sequence ovefs, so that

17

by reducing modul@, then (assumingy has been determined
correctly) the valuef; by reducing modulo4, and finally
(assumingf, and f; have been determined correctly) the value

Now 7 mod 2 = (fo mod 2 + ¢p) mod 2, and we know
from (16) thatf, mod 2 is a codeword in RM(1, ). There-

fore, providedwt»(eg) < 2™~2 we can use the standard binary

(13)

decoder for RM(1, m) to recover the binary coefficients
v;0, Yo for fo mod 2, and then calculatg, from (16).

We next set; = (» — fo) mod 8. From (17),r; mod 4 =
(2(f1 mod 2) + (2¢1 + €p)) mod 4. From (15), f1 mod 2
is a codeword in RM(1, m). We define the sequenaeby

(14)

()i =1 —wty((r1);) fori =0, 1, ---, 2™ — 1 and takej to

be the FHT ofy. Now if ¢y = 0 theny = (—1){/i+e1)mod 2
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and so this stage of the algorithm simply decodlesiod 2 in Proof: Write

the presence of the erref using the standard binary method; m

1, is £2™ for a unique valugi = J and is0 for eachy # J. = <Z ;T + u) mod 2"

However, if e # 0 then (y); = 0 for all positions¢ such =

that (eg); = 1. This effectively removes from consideration

those elements of identified as error positions by the FHT where u;, w € Zon. Let (vi,5-1, vi,n-2, **, vio) be the
from the previous stage. We shall show that the effect of a7y representation od; and let (vn-1. U’L 2, -+, vo) be

errore is to reduce the magnitude @§); from 2™ by exactly the binary representation of, so that

wta(2e1 4 ¢¢), and to increase the magnitude(gf; for each w; = 2" 1 42" %0 o -+ vio
j # J from 0 by at most the same amoumtt4(2¢; + eg). and
Therefore, providesvt,(2e; +¢o) < 27! we can recover the
binary coefficients;;, v; for f; mod 2 from the position and
sign of the transform sequence element of largest magnituggen,
and then calculateg; from (15).

The last stage of the decoding algorithm is to sgt= c=2" 1+ 2" fusn + -+ fo) mod 2"
(r1 — 2f1) mod 8. From (17)

w=2""ty 1 + 2" 2y s+ .

where
To = (4(f2 mod 2) + (des + 2e1 + eo)) mod 8 m
S = Z virx; + vg | mod 2°7F (18)
and from (14), fo mod 2 is a codeword in RM(1, m). i=1
We define the sequencg by (y); = 2 — wis((r2)i) for o0 1 1 ... 5 1. Write the errore uniquely as
i =0,1,---,2™ — 1 and takey to be the FHT ofy. If
e1 = ¢o = 0 theny = 2(—1){2He2)med2 5o that this stage e=2""tep 1 +2" 2, o+t (19)

reduces to the standard decodingfefimod 2 in the presence
of the errore,. Otherwise,(y); takes the valud, 0 or —1

for all positionsi such that(2e; + ¢g); # 0; this modifies the
result of the FHT according to the error positions identified , = (2’“1(fh_1 ten_1) + 2" fu_e Fen_2) + -

where eache;, is a sequence ovef,, so that the received
codewordr = (¢ + ¢) mod 2" is given by

by both of the previous FHT's. We shall show that provided h

wig(dea + 2¢1 + eg) < 2- 2m~1 we can recoverf, mod 2 +(fot 60)) mod 2. (20)

and hencefs. The algorithm has passed, 1, ---, A — 1, and on pass
Finally, we recover: from (13). The conditions for correctly 1 we determine the value of.. Assume that the values

decodingc+c to c arewiz(e) < 272, wig(e) < 2™, and  fy, fi, -+, fu_1 have been determined correctly. Then Step

wtg(e) < 2™, 4) shows that

We now give a formal description of the decoding algorithm bl
for any value ofh > 1. i mod 28Tt = (r — fo —2f1 —2°fo —

_2k 1 - d 2k—|—1
Algorithm 14—Decoding Algorithm for RM(1, m): Jim1) mo
1) Input the received codeworelas a sequence ové@. and by (19) and (20) we obtain
of length2™. Setk = 0 andry = r. B+l _ /ok k41 ktl
2) Define the sequenagby (1) = 21 — whyers ((r1):) rr mod 27 = (27(f, mod 2) 4+ ¢ mod 2°7") mod 2
fori=0,1,--.,2™ — 1. Now it is straightforward to verify the identity
3) Lety be the FHT ofy and determine a value gfe Zm

k—1 k — arok—1
for which (), is an element ofj of largest magnitude. 27 = whpn (2Ra + ) = (1720 — wigen (),

Letw beOor1 accordlng asgy); is positive or negative, forall « € Z3, 8 € Zgr+1
;?O; lestgtul’ wa, "+, wp) be the binary representatlonfor any integerk > 0. Therefore, by Step 2), we have
m ()i = (=D)VEmed D25 — whgea ((e)i).
L= w;x; +w | mod o=k ] m )
Ji <; ) Since (9); = Zf:o Yy ;H;;, where H = (H,;) is the

Sylvester—-Hadamard matrix of ord2¥, we then have
4) If £ = h — 1 then output the decoded codeword yw X W v

(2" fy 42" 2 f o+ + fo) mod 2" j); =2+ z 1)Ukmod 2 gy
Else setry11 = (1% — 2* f.) mod 2", then increment o
and go to Step 2). _ Z 1)med i gt (e);)
Theorem 15:Let ¢ be a codeword of RM.(1, m) and let i=0
¢ be a sequence ovet,.. Given the input(c + ¢) mod 2", 27" —1
Algorithm 14 outputsc provided wiyii:(¢) < 27++=2 for =2 (=) H) = Y diwiann((e):) (21)

kIO,l,"-,h—l. =0
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where eachd;; = (—1)emed2if,. takes the valuel We, therefore, set
or —1. Since fy mod 2 is a codeword in RM(1, m),
((=1)femed2p) . is £2™ for a unique valuej = J and fo = (z1 + x2 + x3) mod 8 = (0011112211222233)

is 0 for eachj # J. Therefore, eitheil;; = 1 for all ¢ or gpq
d;; = —1 for all <. We then see from (21) that the effect of the
error ¢ is to reduce the magnitude ¢f), from 2+~1. 2™ py
exactly wt,x11(e) for a unique valuej = J, and to increase
the magnitude ofg); for eachj # .J from 0 by at most the
same amount. By assumptiont,:i1(c) < 2m+%=2 so we
can recover the binary coefficients,, v, for f; mod 2 from
the position and sign of the transform sequence element of
largest magnitude, and then calculgiefrom (18). O and

Note that whenk = 0, Step 2) of Algorithm 14 sets 3 =(3, -5, —5,3,3, =5, -1, =9, 1,1,-3, =3,1,1,1, 1).
y = (=1)"m°42 /2, so pas9) of the algorithm is the standard
binary decoder for RM(1, m) except that the valuex1/2 We, therefore, set
are used instead af1. For implementation convenience we
can choose to work witBy instead ofy on pass. Note also  f; = (2 + x5 + x4 + 1) mod 4 = (1223233012232330)
that we can choose in Step 3) to calculgtemodulo2” rather and

han modulo2"—* with ffecting the result.
than modulo thout affecting the result rs = (1 — 2f1) mod 8 = (0042141404724440).

r1 = (ro — fo) mod 8 = (2400527420300220).
On passk = 1 we find

Y= (_1717171707 _170717 _17170717 17 _17 _17 1)

Corollary 16: Algorithm 14 acts as a decoder for
RMa. (1, m) with respect to Hamming distance and wittOn passk = 2 we find
respect to Lee distance.
Proof: Let ¢ be a codeword of RM (1, m) and lete  y=(2,2, -2,0,1, -2,1, -2,2, —2,1,0, -2, —2, —2,2)
be a transmission error having Hamming weight(e). By
Theorem 10 it is sufficient to show that Algorithm 14 correcthand
decodegc+e) mod 2" to c provided thatwt (¢) < 2™ 2. This
follows from Theorem 15 by noting thattoe1(e) < 28wt (e)  §=(-3,5,1,9,9,1,9,1, 3, 3, 11, =5, —1, —17, 3, 3).
fork=0,1,---, h—1. O

The full power of Algorithm 14 is demonstrated not bywe’ therefore, set

Corollary 16 but by Theorem 15. For example, consider the
octary caseh = 3 with m = 4. Theorem 10 and Corollary /2 = (@1 + 22 + 24 +1) mod 2 = (1010010101011010).
16 guarantee only that an error of Hamming (or Lee) weig
at most3 can be corrected and yet by Theorem 15 the err
¢ = (4002101000760400), having Hamming weight and
Lee weightl5, can be corrected using Algorithm 14 because
it satisfieswtz(e) = 3, wta(e) = 7, andwtg(e) = 15. We now
illustrate the use of the decoding algorithm for these values
h, m, ande, taking the codeword to be

?Pe output of the decoding algorithm is
(4f2 4+ 2f1 + fo) mod 8 = (6417530631642053)

\gpich is the original codeword.
Under the encoding schemes of Section IV information sym-
bolsw;, u€Z,. are used to form the codewof¥"" | w;z+u)
mod 2" of RM,. (1, m). These information symbols can be
recovered directly using the above decoding algorithm: in the
above example the output is determined (d6éx; + 22 +
e+ 1) +2(xa+ 23+ 24+ 1)+ (21 + 22+ 23)) mod 8 =
(521 + Tx2 + 323 + 624 + 6) mod 8. Furthermore, the binary
representation of the information symbois, « gives the
original information bits, so these can also be recovered
directly from the algorithm as the coefficients;, v for
k= 0,1,---,h — 1. Now passk of the algorithm can
determine incorrectly the valug, if the errore does not satisfy
whant1(e) < 2mFT*=2_|f this happens then subsequent passes
can determine incorrectly the valuegi1, frt2, -+, fa_1

5x1 + Txe + 3x3 + 624 + 6 = (6417530631642053).

The received codeword is
ro = (¢ + e) mod 8 = (2411631631522453).
On passk = 0 we find

2y = (17 17 _17 _17 17 _17 _17 17

—-1,-1,-1,1,1,1, -1, 1) 5o that the decoded codeword can have large Lee distance

from the original codeword. However, provided the values

and Jo, f1, -+, fx—1 are all determined correctly, at ledsin+1)
- information bits (namely, the coefficients;;, v; for ¢ =
2y=(-2,-2,6,6, -2, -2, -2, 1,2,---,mandj = 0,1, ---k — 1) out of the original

-2,2,2,2,2 2,210, —=6). h(m + 1) will be determined correctly.
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The principal computational requirement for Algorithm 14 7) Letw be 0 or 1 according ag” is positive or negative,

is h integer-valued FHT's andh summations of the form and let(w;, ws, ---, w,,) be the binary representation
(> wiz; + w)mod 2*. Each summation can be calcu- of J. Set

lated using whatever software or hardware procedure is used m

to encode the information symbols;, » as the element fr = <szwz+w> mod 2"k

(> wiw; + u) mod 2" of RMyu (1, m). —

We have presented Algorithm 14 as a hard-decision decoder ) .
(acting on a sequence whose elements are integers.i)) Remove fromG each coset representatiyefor which
but it can also be used as a soft-decision decoder (acting 9 mod 28+ £ 2.
on a sequence whose elements are real numbers in the rang® If ¥ =/ —1 then output the decoded codeword
0, 2")). We simply need to extend Definition 13 fertyx (i 1 2 L
t[o de;I with real-valued by taking i mod 2* to be the Ee)al (9+27 fn1 + 27 fa2 4 fo) mod 2
number; in the rangd0, 2*) satisfyingi—j =0 (mod 2%).

Algorithm 14 can be modified as follows. Replace the
definition of i in Step 2) byv = (73 mod 2¥+1)/2% and
y = (=1)¥, calculatec, = (v + fi) mod 2 at the end of In the caseh = 1, Algorithm 17 reduces to the standard
Step 3), and replace the equation far,; in Step 4) by supercode decoding method and can be used to decode the
Fegl = (7‘k—2’“(fk+ek)) mod 2. Then, on pasé, assuming binary coding schemes of Section IV (involving one or more
fo, fi, -+, fe—1 have been determined correctly, Step 2) se®sets of RM(1, m) in RMz(2, m)). In the casesh > 1
y = (—1)Uster)mod2 gand Step 3) uses the standard binaye can use Algorithm 17 to decode efficiently the nonbinary
decoder for RM(1, m) to find f, mod 2 (and hencef;) and coding schemes of Section IV (involving one or more cosets
cx. The modified conditions for correcting the errodefined 0f RMa. (1, m) in ZRMyu (2, m)).
by (19) arewty(ex) < 272 for k=0, 1,---, h=1.Both  Theorem 18:Let @ = {4} be a set of coset representatives
the original Algorithm 14 and this modification act as decodefs RM, (1, m) in ZRM,1 (2, m), let ¢ be a codeword of the

for RMax (1, m)_ with respect to Hamm_in_g and Lee distanceéode{g + RM,. (1, m)|g € G} and lete be a sequence over
beyond the limit guaranteed by the minimum distance of t%h_ Given the input(c + ¢) mod 2", Algorithm 17 outputs:

for the single remainingy € G. Else, setry41 =
(r— 2% f;,) mod 2", then incremenk and go to Step 2).

code both perform well but neither is uniformly better thaBrovided that fork = 0. 1. --- h—1
the other. T
m—+k—3 i i / i
We now extend Algorithm 14 to decode efficiently an 2 ’ if G(I:ontegnlsé,kgb V\t/rgcr: arte
arbitrary union of cosets of RM(1, m). The supercode wtari1(e) < equda|m2(3€+ul ut distine
decoding method for decoding the union of cosets of a code gmetk—2 glﬁe?vﬁse

C, as described in [11] for binary codes, involves subtracting
each possible coset representative in turn from the receive
codeword and decoding the result as an elemen€pthe ™ N
best decoding result i6" determines the coset representative. c=1g9+ Z ;i +u | mod 2

We shall modify this method by interleaving the subtraction =1 ) .

of the coset representatives with thepasses of Algorithm Wheréw;, u € Z,» andg € G. Write g uniquely as
14 to give a substantially faster algorithm (fbr> 1) than g=2""tg_1+2" g o4+ -+ g0
would be obtained by applying Algorithm 14 in full to eachypere eachy, is a sequence ovet,. Then

coset of RM. (1, m).
Ml ( ) c—= (g + 2h—1fh_l + 2h_2fh—2 S fO) mod 2h
and the received codeword= (c + ¢) mod 2" is given by

d Proof: The proof is similar to that of Theorem 15. Write

Algorithm 17—Decoding Algorithm for an Arbitrary Union
of Cosets of RM.(1, m):

. Io—1
1) Input the received codewordas a sequence ové. r=E" g+ s +en1)
of length2™ and input the predetermined s8t= {¢} +2" (g2t fa2ten2)+ -
of coset representatives of RM1, m). Setk = 0 and + (go + fo + o)) mod 2"
g = T.

where fi. and ¢ are as previously.

The algorithm has passed), 1, ---, A — 1, and on pas#
we determine the value gf, and g, and discard any’ € G
for which g}, # gi. On passk Steps 3)—6) perform an FHT for

2) Let {z, 22, ---, 2, } be the distinct values of mod
2k+1 asg takes all values iz, Setl =1 andY = 0.
3) Define the sequence by

()i = 2871 — Whorst (e — 20)1) each remaining group of coset representatives imaving the
same value modul®***, and select one such group by finding
fore =0,1,---,2™ — 1. a transform sequence element of largest magnitude among
4) Lety be the FHT ofy and determine a value gfe Z, all the FHT's. Assume that the valugg, fi, ---, fi—1 and
for which (3); is an element ofj of largest magnitude. go, g1, - -+, gr—1 have been determined correctly. Note that
5) If |(#);] > Y] then setY = (g);, J =4, andL = 1. all the remaining coset representativesGhmust be equal

6) If I = s then go to Step 7). Else, incremehind go modulo2*. If they are also all equal modu2f+! then g, is
to Step 3). determined and; can be recovered as in the proof of Theo-
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rem 15 because by assumptiam,:i1(c) < 2™+*=2, There- parallel those FHT’s which choose between groups of coset
fore, assume that? contains a coset representatiyé for representatives.
which The decoded coset representatjvean be output separately
g mod 2M = 2kl 4 okl 4920 44 by Algorithm 17. The infc_)rmation bits used in any of the.
encoding schemes of Section IV to select a coset representative
(or an ordered pair of coset representatives, in the case of a
composition coding scheme) can be found by inverting the
Tt encoding look-up table.
(rr — 1) mod 2 When all the cosets of RM(1, m) in Algorithm 17 belong
= (2%((gx — g} + f) mod 2) 4+ ¢ mod 2**1) mod 2¥*.  to a code with known error correction properties we can op-
By a similar argument to that used previously it follows thafionally truncate the selection procedure for coset representa-
e tives modula2*t1, specified by Steps 3)-6), when a transform
(1), :Qk—l((_l)(gk—gi+fk)xnod 2H);— ZdithQkﬂ((C)i) sequence element of sufficiently large magnitude is encoun-
0 tered. For example, the nonbinary coding schemes of Section
(22) IV involve cosets all belonging to the code ZBM2, m). We
where eachl;; = (—1)(ss—gi+fi)med 2): f.. takes the value know that in this case the original codewardan be recovered
1or —1andH = (H;;) is the Sylvester—Hadamard matrix opubject to the conditions given in Theorem 18. If we assume
- (] .
order 2. Now f; mod 2 is a codeword in RM(1, m) and that t.hese conditions hold then the p.roof of the theorem shows
we see (by expressing andg!, in similar manner to (18)) that that in the cases > 1 gyv[\en there is more than one coset
(gx — g,) mod 2 is a codeword in RM(2, m)\RM(1, m). representative modul@**! to choose from on pask) the
Since the minimum Hamming distance of R\, m) is 2m—2  correct value ofy;, is indicated uniquely when the magnitude
we conclude thaf(—1)(—gi+f)med 21) - has magnitude at Of (9); calculated in Step 4) exceedgth—l — gmth=3 —
most2™ — 2. 2~2 = 2m—1 for eachj. Equation (22) then 3 - 2m++=3_ Therefore, upon encountering such a value of
implies that(3); has magnitude at mogt™+*=2 4 w1 (¢) (#); we can choose to ignore further coset representatives
for eachj. Z141, 2142, -+, 25 On this pass by replacing the condition
In contrast, if Step 3) selects the valte= g mod 2*+! we [ = s in Step 6) by the conditioft’| > 3 - 2™+*=2 or [ = s.
know from the proof of Theorem 15 théf); has magnitude As a further example of this truncation technique, consider
exactly2m++=1 _ wt,..1 () for a unique value of and has the nonbinary coding schemes of Section IV for whieh>
magnitude at most ..+ (¢) for each otherj. By assumption 4 is even and each coset representativednis of the

whort1(e) < 2m*T*=3 and, therefore, we can recovef form 2"~1g,_;, where the binary cosef,_1 + RMa(1,m)
and gy. ] belongs to a Kerdock code of leng#t". Then for distinct

2" =1g, 1,2"1g),_, in G we know from Section Ill that
Corollary 19: Algorithm 17 acts as a decoder for an arbi{g;_; —gj,_, + fn—1) mod 2 is a bent function and, therefore,

trary union of cosets of RM (1, m) in ZRMy. (2, m) with that ((—1)(@—1 91 Hfu-1)med2 iy - has magnitude™/? for

respect to Hamming distance and with respect to Lee distangg.;. Then, following the proof of Theorem 18, the conditions

Proof: The proof for Hamming distance follows fromfor correcting the erroz improve from those given in Theorem

Theorem 10 in similar manner to the proof of Corollary 1618 to

For Lee distance, note that the condition ko= 0 in Theorem . 2h—3(gm _ 2m/2), fork=h-1

18 is wiz(e) < 22 because all coset representatives of 2t (€) < gmtk=2 fork=0,1,---, h—2.

RMax (1, m) in ZRM,« (2, m) are equal modul@. The result Tha coset representatives @& are all equal modul@+!

follows from Theorems 10 and 18 sine&xx1(c) < wian(c)  except on pasa — 1; to speed up this pass we can optionally
for k=0,1,---,h—1 and the Lee weight oveZ,. of ¢ iS |se a truncation criterion off| > 20=3(2m 4 2m/2) In

whan (€). O particular, Option 2 of Table IX, described in Section IV,

The number of encoding operations in RML, ) required IS derived from such a code with = 3 andm = 4.

by Algorithm 17 ish. The number of FHT's required is atThe conditions for correcting the errer are wha(e) < 4
leasth and at mosth + |G| — 1: if ¢, ' € G are equal wta(e) < 8, andwtg(e) < 12, and we can use a truncation

modulo 2% but distinct modulo2**! then the algorithm can criterion of [¥'| > 20 on pass2 of the decoding algorithm.

. . As before, provided the conditions on the erkothold we
chook;se b?t;v:_?,n themb uslmg t\r/;/o FH-IC;S' In fac;, the exphectggn obtain the benefit of (potentially) reduced computation,
number o s can be less thant- (|G| —1)/2 because the 1, ,qing the truncation technique, without affecting the ability
algorithm can choose between groups of coset representatiyishe algorithm to recover correctly the original codeword.
For example, consider the code to be the union of the f'rStAIgorithm 17 can be used for soft-decision as well as

32 cosets of RM(1, 4) in ZRMs(2, 4) listed in Tables V and hard-decision decoding. It can also be modified, in similar
VI (given as Option 4 in Table IX) and suppose the actughanner to the modification of Algorithm 14 described earlier,
coset representative is not one of the first twelve of the lish act as an alternative decoder for a union of cosets of
Since these twelve cosets are all equal modulthey can RM,. (1, m) in ZRM,. (2, m) with respect to Hamming and
be eliminated from consideration with a single FHT on passe distance. Replace the definition ¢f in Step 3) by

1. Algorithm 17 can be further speeded up by calculating in = ((rx — ) mod 2¥*1)/2* and y = (-1)¥, calculate

where g}, # gx.
Suppose that Step 3) selects the valye= ¢’ mod 2¢+1,
Then Step 8 shows that
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