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Peak-to-Mean Power Control in OFDM, Golay
Complementary Sequences, and Reed–Muller Codes

James A. Davis and Jonathan Jedwab

Abstract—We present a range of coding schemes for OFDM
transmission using binary, quaternary, octary, and higher order
modulation that give high code rates for moderate numbers
of carriers. These schemes have tightly bounded peak-to-mean
envelope power ratio (PMEPR) and simultaneously have good
error correction capability. The key theoretical result is a pre-
viously unrecognized connection between Golay complementary
sequences and second-order Reed–Muller codes over alphabets
2

. We obtain additional flexibility in trading off code rate,
PMEPR, and error correction capability by partitioning the
second-order Reed–Muller code into cosets such that codewords
with large values of PMEPR are isolated. For all the proposed
schemes we show that encoding is straightforward and give an
efficient decoding algorithm involving multiple fast Hadamard
transforms. Since the coding schemes are all based on the same
formal generator matrix we can deal adaptively with varying
channel constraints and evolving system requirements.

Index Terms—Code, complementary, envelope, Golay, OFDM,
power, Reed–Muller, sequence.

I. THE ENVELOPE POWERPROBLEM IN OFDM TRANSMISSION

ORTHOGONAL frequency-division multiplexing
(OFDM) is a method of transmitting data simultaneously

over multiple equally spaced carrier frequencies, using Fourier
transform processing for modulation and demodulation [10].
The method has been proposed or adopted for many types
of radio systems such as wireless local-area networks
[2] and digital audio and digital video broadcasting [1],
[44]. OFDM offers many well-documented advantages for
multicarrier transmission at high data rates, particularly in
mobile applications. Specifically, it has inherent resistance to
dispersion in the propagation channel [5]. Furthermore, when
coding is added it is possible to exploit frequency diversity
in frequency-selective fading channels to obtain excellent
performance under low signal-to-noise conditions [43]. For
these reasons OFDM is often preferable to constant envelope
modulation with adaptive equalization (and indeed is arguably
less complex to implement [32]).

The principal difficulty with OFDM is that when the sinu-
soidal signals of the carriers add mostly constructively the
peak envelope power is as much astimes the mean envelope
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power. If the peak envelope power is subject to a design or
regulatory limit then this has the effect of reducing the mean
envelope power allowed under OFDM relative to that allowed
under constant envelope modulation. If battery power is a
constraint, as is typically the case with portable equipment,
then the power amplifiers required to behave linearly up to
the peak envelope power must be operated inefficiently (with
considerable backoff from compression). Digital hard limiting
of the transmitted signal has been shown to alleviate the
problem [29], but only at the cost of spectral sidelobe growth
and consequent performance degradation.

This gives a clear motivation to find other ways of control-
ling the peak-to-mean envelope power ratio (PMEPR) of the
transmitted signal. A promising method which has attracted
considerable interest, introduced in [28] and developed in
[51], is to use block coding to transmit across the carri-
ers only those polyphase sequences with small PMEPR. As
originally described, this entails exhaustive search to identify
the best sequences and requires large look-up tables for
encoding and decoding. Several authors, for example [16],
[52], have proposed simpler implementations of this method
using systematic (or at least constrained) methods of coding.
Nonetheless, [16] declares that “ there are no known
rules concerning selection of the allowed signals [having
PMEPR below a certain threshold] in a structured way.”
Moreover, these schemes do not address the problem of error
correction at all. An alternative method [26] instead takes
the transmitted codewords from a coset of a linear error-
correcting code, choosing the coset representative or “mask
vector” by computationally intensive search in order to reduce
the PMEPR. In this way the error correction properties are
assured but the appropriate choice of linear code and coset
representative for optimal PMEPR remains an open problem.

In this paper we present a highly flexible coding scheme
for binary, quaternary, octary, and higher order modulation
which incorporates aspects of both of the above methods. It
uses theoretical considerations to guarantee low PMEPR and
simultaneously to provide good error correction capability.
It allows simple changes to properties such as code rate,
PMEPR, and error correction capability to deal adaptively with
varying channel constraints, and provides a clear evolution
path for physical systems from binary to quaternary to octary
modulation. In all cases, we provide straightforward and
efficient algorithms for encoding and decoding. The presented
coding schemes are particularly suited to applications requiring
tight control of PMEPR for which the number of carriers
is no more than around 32 (in which case the resulting
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code rate is high). An example of such an application is
a wireless local-area network (LAN) employing low-cost
portable communicating devices. For this application the cost
constraint limits the amount of processing and, therefore, the
number of carriers, while the negative consequences of even
an occasional high-power signal strongly favor tight envelope
power control.

The remainder of the paper is structured as follows. Sec-
tion II motivates the use of Golay sequences (i.e., sequences
belonging to Golay complementary pairs) as a first solution
to the envelope power problem in OFDM. We explicitly
determine a large class of Golay sequences overof length

in terms of generalized Boolean functions. Section III
shows that in the binary case , these Golay sequences
occur as cosets of the first-order Reed–Muller code within
the second-order Reed–Muller code. This connection between
Golay sequences and Reed–Muller codes has not previously
been recognized, and is a key result leading to the practical
and flexible OFDM coding schemes of this paper. For the
nonbinary cases we introduce two new linear codes over
the ring as generalizations of the Reed–Muller code and
demonstrate a corresponding connection with the nonbinary
Golay sequences previously determined. We establish the
minimum Hamming and Lee distance of these new codes as
measures of their error correction capability. Section IV pro-
poses an OFDM coding scheme, based on the Golay sequences
of Section II, involving cosets of one generalized Reed–Muller
code within another. We then show that by varying the set of
cosets of the first generalized Reed–Muller code within the
second we can obtain a much more general range of solutions
to the envelope power problem, not necessarily restricted
to Golay sequences. In this way we can make tradeoffs
between PMEPR, code rate, and error correction capability.
The essential observation is that partitioning the second-order
Reed–Muller code into cosets in this way appears naturally to
isolate those codewords with large values of PMEPR. Section
V presents highly efficient decoding algorithms for all of
the proposed coding schemes. These algorithms apply the
fast Hadamard transform repeatedly in a novel manner. For
background on classical coding theory, see [30] or [31].

Some of the results of this paper, in particular the connec-
tion between Golay sequences and second-order Reed–Muller
codes, were announced without proof in [13]. There is limited
overlap between the results in Sections II and III of this paper
and recent independent work on OFDM. Translated into the
notation of the present paper, van Nee [35] essentially shows
how to obtain recursively a subset of the Golay sequences of
Corollary 4 corresponding to cosets of RM , and
Ochiai and Imai [37] do likewise but for a subset correspond-
ing to a single coset rather than to. In contrast Corollaries
6 and 9 explicitly identify such cosets within a specified
linear code, and Theorem 3 and Corollary 5 show how to
arrange the identified sequences into Golay complementary
pairs. Moreover, [35] and [37] do not make the crucial
connection between Golay sequences and Reed–Muller codes
and, consequently, do not identify the range of coding options
presented here and their attendant advantages. We also note
that the claim of [37], that in the announcement [13] “no

specific method is given to generalize from a binary sequence
into -ary case,” is incorrect for any value ; in fact,
the principal example of [37], contained in (16) and (18) of
that paper, consists of the quaternary lengthsequences

for

which occur as a special case of [13, Theorem 2].

II. GOLAY SEQUENCES

We represent the value assigned to theth carrier of an
OFDM system during a given symbol period as an element
of the ring for some , where . In
each symbol period, the -ary sequence
across the carriers forms a codeword. Codewords in succes-
sive symbol periods belong to a code whose alphabet is,
and in the cases , , or , the code is called binary,
quaternary, or octary, respectively. In signal processing, it is
more common to consider the sequence of complex modulated
values , where is
a primitive th root of unity. (In some implementations this
sequence is multiplied by the constant .) This
modulation is called -phase shift keying, which in the cases

or is also known as binary phase-shift keying or
quadrature phase-shift keying, respectively.

The transmitted OFDM signal is the real part of the complex
envelope

(1)

where is the frequency of theth carrier and is constant
over a symbol period. In order to ensure orthogonality, the
carrier frequencies are related by

(2)

for some constant , where is an integer multiple of
the OFDM symbol rate. Theinstantaneous envelope power
of the signal is the real-valued function , and
substitution from (1) and (2) gives

(3)

Let the constant value of over a symbol period such as
be , and call the resulting continuous function

over the symbol period theenvelope power of the
sequence . Then by putting
in the expression for given by (3) we obtain

(4)

where here and in (5) below the summations are understood to
be over only those integer values for which bothand lie
within . Since theaperiodic autocorrelation
of at displacement is by definition

(5)
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we can rewrite (4) as

(6)

The peak envelope power(PEP) of the sequence is the
supremum over a symbol period of . From (5) and (6), the
mean envelope power of any sequenceover a symbol period
is , and so thepeak-to-mean envelope power ratio(PMEPR)
of is the ratio PEP/. Alternative names for PMEPR are
peak-to-average power ratio[33] and peak factor [47]; the
square root of the PMEPR is called thecrest factor [7]. A
PMEPR of is often expressed as (dB). From (6)
we see that

so the PEP of any sequenceis at most and the PMEPR
is at most . (See [47] for a similar argument giving a general
upper bound on the PEP ofin terms of , and [17] for
the derivation of a lower bound on the PMEPR offrom (6).)

The upper bound of for PMEPR is attained by the
sequence which can occur in an uncoded
OFDM system. But by restricting the set of allowed sequences
to Golay sequences we can reduce the PMEPR from its
maximum value of to at most , as we now show.

Definition 1: Let

and

where . The sequences and are called aGolay
complementary pair over of length if
for each . Any sequence which is a member of a Golay
complementary pair is called aGolay sequence.

Theorem 2:The PMEPR of any Golay sequence is at most.
Proof: Let and be a Golay complementary pair, so

that by definition for each . Then
from (6), and since
we deduce . The result follows from the definition
of PMEPR.

Theorem 2 was obtained by Popović [41] (in terms of the
crest factor of the real-valued signal envelope) by generalizing
earlier work of Boyd [7]. Golay complementary pairs over
were introduced by Golay [18], [19] in connection with in-
frared multislit spectrometry and have since found application
in fields such as optical time-domain reflectometry [34] and
acoustic surface-wave encoding [48]. They are known to exist
for all lengths , where [49], but do
not exist for any length having a prime factor congruent to

modulo [14]. For a survey of results on nonbinary Golay
complementary pairs, see [15, Ch. 13]. We note that a Golay
complementary pair over is equivalent to a pair of “complex
Golay sequences,” as defined in [12].

Henceforth we impose the restriction so that
the sampled OFDM signal corresponding to the continuous

function (1) can be easily generated using the inverse fast
Fourier transform. We also assume that for some

and then in each symbol period the OFDM signal
contains exactly code bits per carrier. We now give an
explicit form for a large class of Golay complementary pairs
over of length , and deduce the form of a set of Golay
sequences. We first require some notation.

A Boolean functionis a function from

to . We regard each – variable as itself being a
Boolean function and consider the

monomials

(7)

Any Boolean function can be uniquely expressed as a linear
combination over of these monomials, where the coefficient
of each monomial belongs to [31]. The resulting expression
for is called thealgebraic normal form[42]. We specify
a sequence of length corresponding to by listing
the values taken by as
ranges over all its values in lexicographic order. In other
words, if is the binary representation of
the integer then the th element of
(numbering the leftmost element as) is .
For example, for we have

and so , , ,

, and .
We define ageneralized Boolean functionto be a function

from to , where . It is straightforward to modify
the proof of the algebraic normal form result stated above
to show that any such function can be uniquely expressed as
a linear combination over of the monomials (7), where
the coefficient of each monomial belongs to . As above,
we specify a sequence of length corresponding to the
generalized Boolean function. For example, for and

we have , ,
and . (Technically, for
such expressions to be valid we must embed the range space

of the monomials (7) in .) Henceforth, we shall drop
the distinction between a generalized Boolean function and
its corresponding sequence, and use the notationto refer to
both.

With this notation we are now ready to describe the Golay
complementary pairs over of length .

Theorem 3: Let

(8)
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where is a permutation of the symbols and
. Then the sequences

and

are a Golay complementary pair over of length for
any .

Proof: The case is easily checked by hand,
so assume and fix . By the definition of
aperiodic autocorrelation (5), is the sum
over of terms , where is a primitive

th root of unity. For a given integer, set
and let and be the binary
representation of and , respectively. The sequence element

is given by , as discussed above, which
implies that

(9)

Case 1: . From (9), over we have

so

Therefore, .
Case 2: . Since we can define to be

the smallest integer for which . Let be the
integer whose binary representation

differs from that of only in position , and similarly
let have binary representation

By assumption and so . We have,
therefore, defined an invertible map from the ordered pair

to , and both pairs contribute to .
Now substitution for and in (8) gives

(unless , in which case we just delete terms involving
here and in what follows). Therefore,

by the definition of . Then (9) implies that

Arguing as in Case 1, we obtain

and

Therefore, .

Combining these cases we see that comprises
zero contributions (as in Case 1), and contributions which sum
to zero in pairs (as in Case 2). Therefore,
and are a Golay complementary pair, by
Definition 1.

Corollary 4: For any permutation of the symbols
and for any

is a Golay sequence over of length .

Corollary 4 explicitly determines Golay
sequences over of length (using the factor
rather than because the expression
is invariant under the mapping , where

). Numerical evidence suggests that there are
no other Golay sequences over of this length, although
we do not have a proof of this. Theorem 3 also shows how to
form sets of Golay complementary pairs:

Corollary 5: Let

where is a permutation of the symbols and
. Then any sequence in the set

(10)

forms a Golay complementary pair over of length
with any sequence in the set

(11)

Proof: Consider a single sequenceof the form . By
Theorem 3, this sequence forms a Golay complementary pair
with each of the sequences .
Now if is replaced by the permutation defined by

, is invariant but
maps to . Therefore, also forms a
Golay complementary pair with each of the sequences

. We have shown that forms
a Golay complementary pair with each sequence , and
it follows from Definition 1 that for each , every sequence

has the same value of .
Similarly, we can show that a single sequenceof the form

forms a Golay complementary pair with
each of the sequences and that, for each , every
sequence has the same value of . Therefore, any
sequence forms a Golay complementary pair with any
sequence .

Corollary 5 explicitly determines
Golay complementary pairs over of length . It
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also suggests a natural partition of the Golay sequences of
Corollary 4 into classes of size , each class
comprising a set of sequences of the form (10) and a
set of sequences of the form (11).

However, the true number of Golay complementary pairs
over of length can be greater than that calcu-

lated above because in some cases , for all ,
for two distinct sets of the form (10). For example, for

and , by Corollary 5 any of the eight sequences in

forms a quaternary Golay complementary pair of lengthwith
any sequence in

Similarly, any one of the eight sequences in

forms a Golay complementary pair with any sequence in

But in fact direct calculation shows that

so these 32 sequences collectively give rise to
Golay complementary pairs rather than the expected

.
In 1961, Golay [20] gave an explicit construction for binary

Golay complementary pairs of length and later noted
[21] that the construction implies the existence of at least

binary Golay sequences of this length. These
results correspond to the binary case of Theorem 3
and Corollary 4, and indeed our proof of Theorem 3 is
modeled on Golay’s original construction [20]. However, the
nonbinary cases of Theorem 3 have not been constructed
explicitly elsewhere. Moreover, we shall prove in Section III
the new result, announced in [13], that the Golay sequences of
Corollary 4 form a subcode of the second-order Reed–Muller
code (suitably generalized for nonbinary cases).

Golay [20] also presented a recursive construction for bi-
nary Golay complementary pairs involving concatenation and
interleaving of sequences. Budišin [8], building on earlier
work of Sivaswamy [46], gave a more general recursive
construction for Golay complementary pairs and showed that
the set of all binary Golay complementary pairs of length
obtainable from it coincides with those given explicitly by
Golay [20] (as described above). Paterson [38] has shown
that the set of all Golay complementary pairs over of
length obtainable by Golay’s recursive construction

and by Budǐsin’s coincides with those given
explicitly in Theorem 3. (Urbanke and Krishnakumar [50]

also presented results which show that the number of binary
Golay sequences of length given by Golay’s recursive
construction is . Although we have received
a modified version (private communication, July 1998) of
this paper which notes a connection between these binary
Golay complementary sequences and Reed–Muller codes, the
modified manuscript carries a date later than the publication
date of our announcement [13].)

We remark that [20] introduced a definition of equivalence
of binary Golay complementary pairs that was taken up by
later authors, particularly when counting the number of such
pairs of small length by computer search. We believe that the
underlying structure of Golay complementary pairs over
of length is more apparent if this definition, and its obvious
generalization for , is not used.

III. REED–MULLER CODES

Binary Reed–Muller codes first appeared in print in 1954
and remain “ one of the oldest and best understood families
of codes” [31, p. 370]. They have good error correction
properties, provided the block length is not too large, and have
the important practical advantage of being easy to decode. The
th–order binary Reed–Muller code RM of length

is generated by the monomials in the Boolean functions
of degree at most [31]. This allows us to restate the binary
case of Corollary 4 as:

Corollary 6: Each of the cosets of RM in
RM having a coset representative of the form

comprises binary Golay sequences of length , where
is a permutation of the symbols .

Note that the PMEPR of a sequence depends on the order
in which its elements occur, so here and elsewhere we do not
adopt the coding theory convention that regards two codes
as equivalent if one can be obtained from the other by a
permutation of coordinates.

We wish to make an analogous statement to Corollary 6
for the nonbinary cases of Corollary 4. To do this,
we follow the landmark paper [25] and define alinear code
over of length to be a subset of such that the
sum of any two codewords is a codeword. Reference [25]
demonstrates that defining linear codes in this way, over rings
that are not fields, preserves many of the properties of classical
codes even though not every element of the code alphabet
has a multiplicative inverse. In particular, such a code can
be specified in terms of a generator matrix such that the code
consists of all distinct linear combinations over of the rows
of the matrix. We now define two new linear codes over
of length in terms of the generalized Boolean functions
described in Section II.

Definition 7: For and , the th-order
linear code RM over of length is generated
by the monomials in the of degree at most.
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Definition 8: For and , the th-order
linear code ZRM over of length is generated
by the monomials in the of degree at most together
with two times the monomials in the of degree (with the
convention that the monomials of degree and are
equal to zero).

The code RM generalizes the binary Reed–Muller
code RM from the alphabet (the case ) to the
alphabet . Likewise, the code ZRM generalizes
the quaternary Reed–Muller code ZRM defined in [25]
from the alphabet (the case ) to the alphabet

. In both cases, the formal generator matrix is unchanged
as varies, but the alphabet over which it is interpreted
changes. The number of monomials in the of degree

is , so RM contains codewords and
ZRM contains

codewords. Note these generalizations of the Reed–Muller
code are distinct from the generalized Reed–Muller code
GRM [40], which is defined over a field, and the quater-
nary Reed–Muller code QRM [25], which generalizes
the quaternary representation of the Kerdock code.

For example, RM has the generator matrix shown
in (12) at the bottom of this page and contains codewords
for , and ZRM has the generator matrix shown
below (12) (also at the bottom of this page) and contains

codewords for .
We are particularly interested in the code ZRM ,

comprising cosets of the subcode
RM , each coset containing codewords.
We can restate the cases of Corollary 4 in terms of
these codes as:

Corollary 9: Each of the cosets of RM in
ZRM having a coset representative of the form

comprises Golay sequences over of length ,
where is a permutation of the symbols and

.

We have seen in Theorem 2 that the PMEPR of any Golay
sequence is at most, and Corollaries 6 and 9 give concise and
structured representations for large sets of Golay sequences in
the cases and , respectively. These representations
readily lend themselves to implementation in an OFDM coding
scheme having tight envelope power control. If we did not
wish to consider using sequences other than Golay sequences
for OFDM transmission then it would be more natural to
replace the multiple in Definition 8 by the multiple
and to extend the definition of ZRM to the case

; in that case, Corollary 9 would hold for all cases
. However, by taking more cosets of RM in

ZRM we can increase the rate of OFDM transmission
at the cost of progressively larger values of PMEPR, as we
discuss in Section IV. To allow such design freedom, our
objective in defining ZRM was that the linear code
ZRM should be the largest superset of the Golay
sequences of Corollary 4 which does not compromise the
minimum Hamming or Lee distance, as we now describe.

Let be a sequence over of
length . TheHamming weightof is the number of nonzero

and theLee weight[40] of is .
The Hamming (or Lee)distancebetween two such sequences

and is the Hamming (or Lee) weight of (when written
as a sequence over ). The Hamming distance measures the
number of positions in which and differ, whereas the Lee
distance takes into account the magnitude of the difference

(12)
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over at each position; these coincide in the binary case
. For example, the Hamming distance between the

sequences and over is whereas
the Lee distance is . The minimum Hamming
or minimum Lee distance of a code, which is taken over all
pairs of distinct codewords, is a measure of its error correction
capability: if the (Hamming or Lee) minimum distance is

then we can always correct errors of (Hamming or Lee)
weight less than . If the transmission channel renders all

possible errors for a given codeword position equally
likely then the traditional Hamming distance metric is an
appropriate measure. However, if errors involving a transition
between adjacent values in are much more likely than
other errors in a given position then the Lee distance metric is
more appropriate [40]. We consider both metrics to be useful
measures of error correction capability for OFDM transmission
and so we now derive the minimum Hamming and Lee
distance for the codes RM and ZRM . The
method uses the fact that the minimum Hamming distance of
the binary code RM is .

Theorem 10:The following expressions (shown at the bot-
tom of this page) hold for .

Proof: For any linear code the minimum distance equals
the minimum weight of the nonzero codewords, in both the
Hamming and Lee case. For each of the four values required
by the theorem we derive a lower bound on the minimum
distance and then exhibit a codeword whose weight equals
that lower bound.

We first use induction on to establish the minimum
Hamming and Lee distance of ZRM . The case
is trivial and can be excluded. Let
be any nonzero codeword in ZRM and define

by and
for each . Now is a codeword in ZRM if
and is a codeword in RM if .

Case 1: . In this case for a nonzero
codeword in RM , so has Hamming weight at least

. Therefore, has Hamming weight at least and
Lee weight at least .

Case 2: . In this case has Hamming weight at least
and Lee weight over at least , using the

induction hypothesis if . Therefore, has Hamming
weight at least , and has Lee weight over at least

(since when
or ).

Furthermore, the codeword has Hamming
weight , and the codeword (or if
) has Lee weight . This completes the proof for

ZRM .

By a similar induction on the minimum Hamming and Lee
distance for RM is at least , and the codeword

has Hamming and Lee weight .

The proof of Theorem 10 demonstrates our earlier claim that
the minimum Hamming and Lee distance of ZRM
is not compromised by using the multiplein Definition 8
instead of the multiple .

We conclude this section with a short discussion of bent
functions, which will be useful when describing encoding
options in Section IV. For even, abent functionis a Boolean
function for which all the Hadamard trans-
form coefficients of the sequence have
magnitude . A bent function is equivalent to a Hadamard
difference set in the group . The function
is bent, and any affine transformation of a bent function is
also bent. AKerdock code of length is the union of
cosets of RM in RM , where is even.
One of the coset representatives is(so RM itself is
contained in the code), and all the others are bent functions
having the property that the sum of any two of them is also
a bent function. The minimum Hamming distance of any
such code is . For details of these and other
results, see [31]. We now show that foreven, all the binary
Golay sequences of Corollary 6 are bent functions; since these
sequences occur as cosets of RM in RM , some
may also belong to a Kerdock code.

Theorem 11:For even, each of the cosets of
RM in RM having a coset representative of
the form comprises bent functions,
where is a permutation of the symbols .

Proof: We show that the function

can be obtained from by a sequence of affine
transformations, for any . The linear transformation

,
and for all other , maps to

. Then the linear transformation
, where each is determined by a single , maps

this to

for or . If necessary, we can apply a translation to
add and so obtain the required function.

RM ZRM

minimum Hamming distance
minimum Lee distance
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IV. ENCODING

The combination of the new results of Sections II and
III immediately suggests a practical OFDM coding scheme
using -phase shift keying: allow as codewords only those
Golay sequences described in Corollaries 6 (for ) and
9 (for ). This simultaneously confers tight envelope
power control, by Theorem 2, and good error correction
capability, by Theorem 10. The Golay sequences in question
occur as cosets of RM and for convenience
of implementation we use of these cosets, where is
the largest integer power of no greater than . Under
this scheme, we encode information bits per
OFDM symbol period. We use bits to encode the choice
of coset representative using a look-up table. The remaining

bits are converted to information symbols
by taking each consecutive group

of bits to be the binary representation of an element of
. The information symbols are then used to form the linear

combination , in which each symbol multiplies
one row of the standard generator matrix for RM .
This linear combination can be calculated in hardware in
clock cycles using the encoding circuit for RM given
in [31, p. 420]. The sum (over ) of this linear combination
with the selected coset representative is the OFDM codeword

, which is modulated prior to transmission
according to (1). Thecode rate, namely the ratio of the
number of information bits to the number of coded bits, is

, and we define theinformation rateto
be times the code rate. The information rate describes the
increased rate at which information bits are encoded when we
change the code from binary to quaternary, from quaternary
to octary, and so on.

For example, consider the octary case with 16 carriers
( , ). The 12 coset representatives given by
Corollary 9 are

of which we choose eight (say the first eight), so .
The union of the eight cosets of RM having these
coset representatives comprises the set of OFDM codewords,
all of which have PMEPR of at most. The code forms a
subcode of ZRM and has minimum Hamming and Lee
distance and , respectively. An error of Hamming weight

can always be corrected, as can an error of Lee weight
at most . The code rate is and the information rate
is . Given 18 information bits, three are used to select
one of the eight coset representatives and the remaining 15
are regarded as the binary representation of five information
symbols . The linear combination

is calculated with reference to
the generator matrix (12) for RM and added to the
selected coset representative. Suppose the 18 information bits
are . The first three bits select the
coset representative (labeling the first
eight coset representatives ). The remaining
15 bits select the linear combination

, so the OFDM codeword
is .

The above coding scheme is restricted to the Golay se-
quences described in Sections II and III. These sequences
occur as “Golay cosets” of RM within a second-
order linear code, where the second-order linear code is
RM in the binary case and is ZRM
in the nonbinary cases . We can increase the code
rate, at the cost of progressively larger values of PMEPR, by
including additional cosets of RM within the same
second-order code. These additional cosets do not necessarily
comprise or even contain Golay sequences. Nonetheless we
have found that partitioning the second-order code into cosets
of RM is an effective means of isolating codewords
with large values of PMEPR. Alternatively, we can increase
the minimum Hamming distance, at the cost of a lower code
rate, by choosing fewer than of the original Golay
cosets. In this way we can trade off code rate, PMEPR, and
error correction capability to provide a range of solutions to the
envelope power problem. For implementation convenience we
use cosets of RM for some integer to encode

information bits, storing the coset representatives
in a look-up table. We can determine the possible options for
given and by arranging all the cosets of RM
(within the appropriate second-order code) in increasing order
of their maximum PEP over the codewords in the
coset, as we now illustrate.

A. The Binary Case

Consider the binary case with 16 carriers ( , ).
Tables I and II list the cosets of RM
in RM in increasing order of their maximum PEP over
the 32 codewords in the coset. The PEP of each codeword
is calculated using times oversampling, finding

from (1) at each sample point for
and taking the largest sample value of

. The value of is increased until the maximum calculated
PEP over the coset is stable. The first 12 cosets of Tables I and
II are the Golay cosets of Corollary 6, each of which has
a maximum PMEPR of at most(since PMEPR PEP/ and
we have fixed ) in accordance with Theorem 2. The
final coset in the list is RM itself, which has a maximum
PMEPR of since it contains the sequence .
The remaining cosets have intermediate values of maximum
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TABLE I
BINARY CODING WITH 16 CARRIERS: THE 64 COSETS OFRM2(1; 4) IN RM2(2; 4), ORDERED BY MAXIMUM PEP OVER THE COSET. COSET

REPRESENTATIVESARE i<j uijxixj AND THE PEPOF EACH SEQUENCE IS CALCULATED USING 256 TIMES OVERSAMPLING

PMEPR. Observe that the maximum PMEPR for the cosets in
the first half of the list is no greater than; we remark that this
property holds for the binary case with 8 and 32 carriers too.

Table VII summarizes some possible options for binary
coding for 16 and 32 carriers, most of which are derived from
the ordered list given in Tables I and II. The reference option
for 16 carriers is Option 3, which uses the first eight (Golay)
cosets of this ordered list. Option 4 uses the 32 cosets in the
first half of the list and trades an increase in code rate for an
increase in maximum PMEPR fromto . Option 1 uses just
the first coset of the list and trades an increase in minimum
Hamming distance from to for a reduction in code rate.
Option 2 is a compromise between Options 1 and 3, based on
the Kerdock code of length whose coset representatives
are [30]: , , ,

, , ,
, and

. Six of these eight coset representatives are of the form
(and so appear in the first 12 places of

the list), and by choosing any four of the six we obtain a
minimum Hamming distance of.

The ordered list for binary coding with 32 carriers (not
shown here) contains 1024 cosets of RM in RM
and is headed by the 60 Golay cosets of Corollary 6. The

reference option for 32 carriers is Option 7, which uses the
first 32 of these 60 cosets. Option 6 uses just the first coset
of the list. (We could derive a compromise between Options
6 and 7 having minimum Hamming distance based on a
Kerdock code of length . Although we have given only
the classical definition of a Kerdock code, for even,
[25] defines a corresponding Kerdock code for odd
which can be represented as the union of cosets of
RM in RM and which has minimum Hamming
distance . The number of information bits
of this compromise option will be determined by how many
of the 16 Kerdock cosets are also Golay cosets.) Comparing
Options 1 and 3 with Options 6 and 7, respectively, we see
that doubling the number of carriers from 16 to 32 incurs a
penalty in terms of code rate. However, it carries the advantage
that intersymbol interference in the transmitted signal will be
reduced and consequently delay spread in the channel will
also be reduced.

Alternatively, we can maintain the code rate as the number
of carriers doubles, at the cost of increased PMEPR. It is
straightforward to show that if and are sequences over

of length having PMEPR at most then the sequence
formed by interleaving or concatenating the elements ofand

has PMEPR at most . For example, by encoding according
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TABLE II
CONTINUATION OF TABLE I

to Option 1 twice independently, and either interleaving or
concatenating the resulting codeword elements, we obtain the
composition coding scheme of Option 8 having the same code
rate but a maximum PMEPR of. Decoding is likewise carried
out by regarding the received codeword as two independent
half-length codewords, which is indicated in Table VII by
writing the minimum Hamming distance for Option 8 as

(see also Section V). Examples of this technique of
interleaving or concatenating codewords to maintain code rate
and to control PMEPR for OFDM transmission have been
noted previously [35], [45]. Option 10 is similarly derived
from Option 3, with the following modification to improve
the code rate slightly. Recall that there are 12 cosets listed in
Tables I and II having PMEPR at most, of which Option
3 uses the first eight. We can, therefore, form
ordered pairs of length coset representatives to be added
to the respective length linear combinations in RM
prior to interleaving or concatenating. In this way, Option 10
encodes rather than information
bits. Likewise, Option 2 uses four cosets chosen from six, and
since we can encode information
bits in the composition coding scheme of Option 9. Finally,
Option 5 is a composition coding scheme based on a single
Golay coset of RM .

B. The Quaternary Case

For the nonbinary cases we form similar or-
dered lists of the cosets of RM in
ZRM . Consider the quaternary case with 16 carriers
( , ). Tables III and IV list the 64 cosets
of RM in ZRM in increasing order of their
maximum PEP over the 1024 codewords in the coset, headed
by the 12 Golay cosets of Corollary 9. The maximum PMEPR
for the cosets in the first half of the list is no greater than

(as in the binary case), and the same is true for 8 and 32
carriers. Tables III and IV contain a striking feature not present
in Tables I and II: the maximum PMEPR over each coset is an
exact power of , and the same is true for 4, 8, and 32 carriers.

Table VIII summarizes options for quaternary coding for
16 and 32 carriers, mostly derived from the ordered list of
Tables III and IV. These options are determined in similar
manner to those having the corresponding option number
in Table IX. A similar method to the proof of Theorem
10 shows that if is even and the set of cosets

RM is a Kerdock code of length then the
minimum Hamming distance of RM over

is for . Option 2 exploits this result,
using coset representatives whose values are twice those of the
binary Option 2. Option 5a is a composition coding scheme
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TABLE III
QUATERNARY CODING WITH 16 CARRIERS: THE 64 COSETS OFRM4(1; 4) IN ZRM4(2; 4), ORDERED BY MAXIMUM PEP OVER THE COSET. COSET

REPRESENTATIVESARE2 i<j uijxixj AND THE PEPOF EACH SEQUENCE IS CALCULATED USING 1 TIMES OVERSAMPLING

based on three Golay cosets of RM . Error correction for
this option can be done with respect to Lee distance (though
not always with respect to Hamming distance, which is why
it does not occur in Table VII). Comparison of Tables VII
and VIII demonstrates that choice of modulation scheme is a
further component of design freedom. The quaternary schemes
have up to twice the information rate of the corresponding
binary schemes for the same minimum Hamming distance,
together with enhanced error correction capability based on
Lee distance. Their disadvantage is that quaternary modulation
leads to a smaller minimum Euclidean distance than binary
modulation and so their transmission error rate is larger.

C. The Octary Case

Consider the octary case with 16 carriers ( , ).
Tables V and VI list the 4096 cosets of RM in
ZRM in increasing order of their maximum PEP over
the 32 768 codewords in the coset. The list is headed by the
12 Golay cosets of Corollary 9, followed by 48 cosets whose
maximum PMEPR is exactly. The maximum PMEPR for
the cosets in the first quarter of the list is no greater than
; for eight carriers this is true for the first half of the list.

Table IX summarizes options for octary coding for 16 and 32
carriers, the option numbers corresponding to those in Table

VIII. Option 2 uses coset representatives whose values are
four times those of the binary Option 2. Option 4 has smaller
maximum PMEPR than the quaternary Option 4 because it
uses 12 Golay cosets together with 20 of the 48 cosets having
maximum PMEPR of . The parameters of Option 5 coincide
with those proposed independently in [35].

D. Comments

The coset ordering process illustrated for binary, quaternary,
and octary modulation can clearly be applied to larger values of

. Since these coding schemes are all based on the same formal
generator matrix for RM , interpreted over different
alphabets , it is simple to change adaptively between
coding options according to the propagation channel and
evolving system requirements. In this way we obtain flexible
coding schemes which combine tight control of PMEPR with
powerful error correction capability and structured encoding.
Efficient methods of decoding will be discussed in Section V.

The numerical results presented demonstrate, at least for
small values of and , that partitioning the codewords of
RM (in the case ) or ZRM (in the cases

) into cosets of RM is an effective method
of isolating those codewords with large values of PMEPR.
Indeed, the maximum PMEPR over the entire second-order
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TABLE IV
CONTINUATION OF TABLE III

code space is , and yet for small values of and we
typically need reduce this space by a factor of only two or four
(losing just one or two encoding bits) to reduce the maximum
PMEPR to at most .

Based on numerical evidence for the quaternary case we
speculate that for all the maximum PMEPR over any
coset of RM in ZRM is an exact power of
. Cammarano and Walker [9] have shown that the Golay

cosets of Corollary 9 always attain the upper bound ofon
their maximum PMEPR, which establishes this speculation for

of the quaternary cosets. (Reference [9] also
shows that the binary Golay cosets of Corollary 6 attain the
upper bound of on their maximum PMEPR when is odd,
and [38] contains further results along these lines.)

We further speculate that a coset of RM in
ZRM having maximum PMEPR of comprises
sequences belonging to a Golay complementary-tuple
(defined analogously to the case given in Definition
1). A straightforward modification of Theorem 2 would then
give the correct maximum PMEPR. Paterson’s work [38]
contains significant results on this question, showing that
each such coset comprises sequences belonging to a Golay
complementary -tuple for some and that in
certain cases. These results allow tables such as Tables III and
IV to be predicted at least in part.

We note that the octary Tables V and VI contain a striking
feature that is not present in the comparable binary and
quaternary Tables I and II as well as III and IV, namely,
that 48 cosets of RM in ZRM have maximum
PMEPR of exactly . Nieswand and Wagner [36] have partially
explained this by exhibiting, for each , a total of
cosets of RM in ZRM each of which contains a
codeword whose envelope power satisfies ;
in the cases and the cosets so identified
are precisely those whose maximum PMEPR is exactly.

V. DECODING

An important attraction of the binary Reed–Muller code
for applications purposes is that it is easy to decode. In
particular, the first-order code RM can be decoded
very efficiently by means of the fast Hadamard transform
(FHT). In this section we give a fast decoding algorithm
for RM for any , requiring FHT’s and
encoding operations in RM . This algorithm acts as a
decoder for RM with respect to both Hamming and
Lee distance: it always corrects errors of Hamming or Lee
weight less than the limit guaranteed by the
minimum Hamming or Lee distance of the code
(see Theorem 10). In fact, the class of errors which can always
be corrected by the algorithm includes many whose Hamming
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TABLE V
OCTARY CODING WITH 16 CARRIERS: THE 4096 COSETS OFRM8(1; 4) IN ZRM8(2; 4), ORDERED BY MAXIMUM PEP OVER THE COSET.
COSET REPRESENTATIVESARE 2 i<j uijxixj AND THE PEPOF EACH SEQUENCE IS CALCULATED USING 256 TIMES OVERSAMPLING

or Lee weight greatly exceeds this limit. The algorithm can be
used for soft-decision as well as hard-decision decoding. It is
scalable in the sense that the decoder for RM can
be obtained directly from the decoder for RM simply
by including one additional iteration. We also extend the
decoding algorithm, while maintaining its favorable properties,
to deal with an arbitrary union of cosets of RM . This
extension efficiently decodes any of the coding schemes of
Section IV.

We remark that Ashikhmin and Litsyn [4] give an extension
to nonbinary cases of the standard FHT method for decoding
RM but their extension applies to GRM rather
than to RM (see Section III). We also note that
van Nee [35] implicitly gives a hard-decision decoder for
RM with respect to Hamming (and, therefore, by
Theorem 10, Lee) distance but does not analyze which errors
of Hamming weight greater than can be corrected by this
decoder and makes no mention of Lee weight.

We begin by summarizing the standard FHT method for
decoding RM , as described in [31].

Definition 12:The Sylvester–Hadamard matrix
of order is given by

for

where and are the binary
representation of and , respectively. TheHadamard trans-
formof the row vector is .
The Hadamard transform of a sequence of length can
be calculated rapidly by representing as the product of
sparse matrices; we then callthe fast Hadamard transform
(FHT) of . The FHT can be implemented in software with

additions, and in hardware using theGreen machinewith
stages.

If is a sequence of length we shall denote by the
th element of for . We shall write

for the sequence whoseth element is and write
for the sequence whoseth element is

(namely, the integer satisfying
).

Now suppose the codeword of RM is received
in error as , where is a sequence over

. The decoding procedure for RM calculates the
FHT of and determines a value of for
which is an element of of largest magnitude. It then
sets or according as is positive or negative,
takes to be the binary representation of,
and decodes as . (By truncating
intermediate results of the FHT this procedure can actually



2410 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999

TABLE VI
CONTINUATION OF TABLE V

TABLE VII
BINARY CODING OPTIONS WITH 16 AND 32 CARRIERS. d; d DESCRIBESMINIMUM DISTANCE IN A

COMPOSITION CODING SCHEME

be implemented in software with fewer than additions
[3].) The decoding procedure relies on the fact that the
columns of together with the columns of comprise

sequences of the form , where ranges over the
codewords of RM . So, in the absence of errors,

is for a unique value and is for each .
The effect of the error , having Hamming weight , is
to reduce the magnitude of from by exactly
and to increase the magnitude of for each from
by at most the same amount . Therefore, provided
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TABLE VIII
QUATERNARY CODING OPTIONS WITH 16 AND 32 CARRIERS

TABLE IX
OCTARY CODING OPTIONS WITH 16 AND 32 CARRIERS

the decoding procedure correctly decodes
to . (See Section II for a discussion of the relationship
between Boolean functions and binary representations.)

The following definition will be useful in describing the
decoding algorithm for RM .

Definition 13: Let be an inte-
ger sequence and let be an integer. We define
to be and to be

. is equal to theLee weight over
of the sequence (see Section III).

We now introduce the decoding algorithm by outlining the
octary case . Suppose the codeword RM
is received in error as , where is a
sequence over . Write , where

. Let be the binary representation of
and let be the binary representation of, so

that and . Then

(13)

where

(14)

(15)

(16)

Write the error uniquely as , where each
is a sequence over , so that

(17)

Using the FHT, the decoding algorithm recovers the value
by reducing modulo , then (assuming has been determined
correctly) the value by reducing modulo , and finally
(assuming and have been determined correctly) the value

; is then recovered from (13).
Now , and we know

from (16) that is a codeword in RM . There-
fore, provided we can use the standard binary
decoder for RM to recover the binary coefficients

for , and then calculate from (16).
We next set . From (17),

. From (15),
is a codeword in RM . We define the sequenceby

for and take to
be the FHT of . Now if then
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and so this stage of the algorithm simply decodes in
the presence of the error using the standard binary method;

is for a unique value and is for each .
However, if then for all positions such
that . This effectively removes from consideration
those elements of identified as error positions by the FHT
from the previous stage. We shall show that the effect of the
error is to reduce the magnitude of from by exactly

, and to increase the magnitude of for each
from by at most the same amount .

Therefore, provided we can recover the
binary coefficients for from the position and
sign of the transform sequence element of largest magnitude,
and then calculate from (15).

The last stage of the decoding algorithm is to set
. From (17)

and from (14), is a codeword in RM .
We define the sequence by for

and take to be the FHT of . If
then so that this stage

reduces to the standard decoding of in the presence
of the error . Otherwise, takes the value , or
for all positions such that ; this modifies the
result of the FHT according to the error positions identified
by both of the previous FHT’s. We shall show that provided

we can recover
and hence .

Finally, we recover from (13). The conditions for correctly
decoding to are: , , and

.
We now give a formal description of the decoding algorithm

for any value of .

Algorithm 14—Decoding Algorithm for RM :

1) Input the received codewordas a sequence over
of length . Set and .

2) Define the sequenceby
for .

3) Let be the FHT of and determine a value of
for which is an element of of largest magnitude.
Let be or according as is positive or negative,
and let be the binary representation
of . Set

4) If then output the decoded codeword

Else set , then increment
and go to Step 2).

Theorem 15:Let be a codeword of RM and let
be a sequence over . Given the input ,

Algorithm 14 outputs provided for
.

Proof: Write

where . Let be the
binary representation of and let be
the binary representation of, so that

and

Then

where

(18)

for . Write the error uniquely as

(19)

where each is a sequence over , so that the received
codeword is given by

(20)

The algorithm has passes , and on pass
we determine the value of . Assume that the values

have been determined correctly. Then Step
4) shows that

and by (19) and (20) we obtain

Now it is straightforward to verify the identity

for all

for any integer . Therefore, by Step 2), we have

Since , where is the
Sylvester–Hadamard matrix of order , we then have

(21)
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where each takes the value
or . Since is a codeword in RM ,

is for a unique value and
is for each . Therefore, either for all or

for all . We then see from (21) that the effect of the
error is to reduce the magnitude of from by
exactly for a unique value , and to increase
the magnitude of for each from by at most the
same amount. By assumption , so we
can recover the binary coefficients for from
the position and sign of the transform sequence element of
largest magnitude, and then calculatefrom (18).

Note that when , Step 2) of Algorithm 14 sets
, so pass of the algorithm is the standard

binary decoder for RM except that the values
are used instead of . For implementation convenience we
can choose to work with instead of on pass . Note also
that we can choose in Step 3) to calculatemodulo rather
than modulo without affecting the result.

Corollary 16: Algorithm 14 acts as a decoder for
RM with respect to Hamming distance and with
respect to Lee distance.

Proof: Let be a codeword of RM and let
be a transmission error having Hamming weight . By
Theorem 10 it is sufficient to show that Algorithm 14 correctly
decodes to provided that . This
follows from Theorem 15 by noting that
for .

The full power of Algorithm 14 is demonstrated not by
Corollary 16 but by Theorem 15. For example, consider the
octary case with . Theorem 10 and Corollary
16 guarantee only that an error of Hamming (or Lee) weight
at most can be corrected and yet by Theorem 15 the error

, having Hamming weight and
Lee weight , can be corrected using Algorithm 14 because
it satisfies , , and . We now
illustrate the use of the decoding algorithm for these values of

, , and , taking the codeword to be

The received codeword is

On pass we find

and

We, therefore, set

and

On pass we find

and

We, therefore, set

and

On pass we find

and

We, therefore, set

The output of the decoding algorithm is

which is the original codeword.
Under the encoding schemes of Section IV information sym-

bols are used to form the codeword
of RM . These information symbols can be

recovered directly using the above decoding algorithm: in the
above example the output is determined as

. Furthermore, the binary
representation of the information symbols gives the
original information bits, so these can also be recovered
directly from the algorithm as the coefficients for

. Now pass of the algorithm can
determine incorrectly the value if the error does not satisfy

. If this happens then subsequent passes
can determine incorrectly the values
so that the decoded codeword can have large Lee distance
from the original codeword. However, provided the values

are all determined correctly, at least
information bits (namely, the coefficients for

and ) out of the original
will be determined correctly.
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The principal computational requirement for Algorithm 14
is integer-valued FHT’s and summations of the form

. Each summation can be calcu-
lated using whatever software or hardware procedure is used
to encode the information symbols as the element

of RM .
We have presented Algorithm 14 as a hard-decision decoder

(acting on a sequence whose elements are integers in),
but it can also be used as a soft-decision decoder (acting
on a sequence whose elements are real numbers in the range

). We simply need to extend Definition 13 for
to deal with real-valued by taking to be the real
number in the range satisfying .

Algorithm 14 can be modified as follows. Replace the
definition of in Step 2) by and

, calculate at the end of
Step 3), and replace the equation for in Step 4) by

. Then, on pass, assuming
have been determined correctly, Step 2) sets

and Step 3) uses the standard binary
decoder for RM to find (and hence ) and

. The modified conditions for correcting the errordefined
by (19) are for . Both
the original Algorithm 14 and this modification act as decoders
for RM with respect to Hamming and Lee distance;
beyond the limit guaranteed by the minimum distance of the
code both perform well but neither is uniformly better than
the other.

We now extend Algorithm 14 to decode efficiently an
arbitrary union of cosets of RM . The supercode
decoding method for decoding the union of cosets of a code

, as described in [11] for binary codes, involves subtracting
each possible coset representative in turn from the received
codeword and decoding the result as an element of; the
best decoding result in determines the coset representative.
We shall modify this method by interleaving the subtraction
of the coset representatives with thepasses of Algorithm
14 to give a substantially faster algorithm (for ) than
would be obtained by applying Algorithm 14 in full to each
coset of RM .

Algorithm 17—Decoding Algorithm for an Arbitrary Union
of Cosets of RM :

1) Input the received codewordas a sequence over
of length and input the predetermined set
of coset representatives of RM . Set and

.
2) Let be the distinct values of

as takes all values in . Set and .
3) Define the sequence by

for .
4) Let be the FHT of and determine a value of

for which is an element of of largest magnitude.
5) If then set , , and .
6) If then go to Step 7). Else, incrementand go

to Step 3).

7) Let be or according as is positive or negative,
and let be the binary representation
of . Set

Remove from each coset representativefor which
.

8) If then output the decoded codeword

for the single remaining . Else, set
, then increment and go to Step 2).

In the case , Algorithm 17 reduces to the standard
supercode decoding method and can be used to decode the
binary coding schemes of Section IV (involving one or more
cosets of RM in RM ). In the cases
we can use Algorithm 17 to decode efficiently the nonbinary
coding schemes of Section IV (involving one or more cosets
of RM in ).

Theorem 18:Let be a set of coset representatives
of RM in , let be a codeword of the
code RM and let be a sequence over

. Given the input , Algorithm 17 outputs
provided that for

if contains which are
equal modulo but distinct
modulo
otherwise.

Proof: The proof is similar to that of Theorem 15. Write

where and . Write uniquely as

where each is a sequence over . Then

and the received codeword is given by

where and are as previously.
The algorithm has passes and on pass

we determine the value of and and discard any
for which . On pass Steps 3)–6) perform an FHT for
each remaining group of coset representatives inhaving the
same value modulo , and select one such group by finding
a transform sequence element of largest magnitude among
all the FHT’s. Assume that the values and

have been determined correctly. Note that
all the remaining coset representatives inmust be equal
modulo . If they are also all equal modulo then is
determined and can be recovered as in the proof of Theo-
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rem 15 because by assumption . There-
fore, assume that contains a coset representative for
which

where .
Suppose that Step 3) selects the value .

Then Step 8 shows that

By a similar argument to that used previously it follows that

(22)

where each takes the value
or and is the Sylvester–Hadamard matrix of

order . Now is a codeword in RM and
we see (by expressing and in similar manner to (18)) that

is a codeword in RM RM .
Since the minimum Hamming distance of RM is
we conclude that has magnitude at
most for each . Equation (22) then
implies that has magnitude at most
for each .

In contrast, if Step 3) selects the value we
know from the proof of Theorem 15 that has magnitude
exactly for a unique value of and has
magnitude at most for each other . By assumption

and, therefore, we can recover
and .

Corollary 19: Algorithm 17 acts as a decoder for an arbi-
trary union of cosets of RM in ZRM with
respect to Hamming distance and with respect to Lee distance.

Proof: The proof for Hamming distance follows from
Theorem 10 in similar manner to the proof of Corollary 16.
For Lee distance, note that the condition for in Theorem
18 is because all coset representatives of
RM in ZRM are equal modulo. The result
follows from Theorems 10 and 18 since
for and the Lee weight over of is

.

The number of encoding operations in RM required
by Algorithm 17 is . The number of FHT’s required is at
least and at most : if are equal
modulo but distinct modulo then the algorithm can
choose between them using two FHT’s. In fact, the expected
number of FHT’s can be less than because the
algorithm can choose between groups of coset representatives.
For example, consider the code to be the union of the first
32 cosets of RM in ZRM listed in Tables V and
VI (given as Option 4 in Table IX) and suppose the actual
coset representative is not one of the first twelve of the list.
Since these twelve cosets are all equal modulothey can
be eliminated from consideration with a single FHT on pass
. Algorithm 17 can be further speeded up by calculating in

parallel those FHT’s which choose between groups of coset
representatives.

The decoded coset representativecan be output separately
by Algorithm 17. The information bits used in any of the
encoding schemes of Section IV to select a coset representative
(or an ordered pair of coset representatives, in the case of a
composition coding scheme) can be found by inverting the
encoding look-up table.

When all the cosets of RM in Algorithm 17 belong
to a code with known error correction properties we can op-
tionally truncate the selection procedure for coset representa-
tives modulo , specified by Steps 3)–6), when a transform
sequence element of sufficiently large magnitude is encoun-
tered. For example, the nonbinary coding schemes of Section
IV involve cosets all belonging to the code ZRM . We
know that in this case the original codewordcan be recovered
subject to the conditions given in Theorem 18. If we assume
that these conditions hold then the proof of the theorem shows
that in the case (when there is more than one coset
representative modulo to choose from on pass) the
correct value of is indicated uniquely when the magnitude
of calculated in Step 4) exceeds

. Therefore, upon encountering such a value of
we can choose to ignore further coset representatives

on this pass by replacing the condition
in Step 6) by the condition or .

As a further example of this truncation technique, consider
the nonbinary coding schemes of Section IV for which

is even and each coset representative inis of the
form , where the binary coset RM
belongs to a Kerdock code of length . Then for distinct

in we know from Section III that
is a bent function and, therefore,

that has magnitude for
all . Then, following the proof of Theorem 18, the conditions
for correcting the error improve from those given in Theorem
18 to

for
for .

The coset representatives in are all equal modulo
except on pass ; to speed up this pass we can optionally
use a truncation criterion of . In
particular, Option 2 of Table IX, described in Section IV,
is derived from such a code with and .
The conditions for correcting the error are ,

, and , and we can use a truncation
criterion of on pass of the decoding algorithm.
As before, provided the conditions on the errorhold we
can obtain the benefit of (potentially) reduced computation,
by using the truncation technique, without affecting the ability
of the algorithm to recover correctly the original codeword.

Algorithm 17 can be used for soft-decision as well as
hard-decision decoding. It can also be modified, in similar
manner to the modification of Algorithm 14 described earlier,
to act as an alternative decoder for a union of cosets of
RM in ZRM with respect to Hamming and
Lee distance. Replace the definition of in Step 3) by

and , calculate
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at the end of Step 7, and replace the
equation for in Step 8) by

The conditions, comparable to those in Theorem 18, for
correcting the error are then

if contains
which are equal modulo but
distinct modulo
otherwise

for .

VI. CONCLUSION

The connection between Golay complementary sequences
and second-order Reed–Muller codes, together with the coset
ordering process, are the keys to obtaining the range of
OFDM coding schemes with favorable properties described
here. These schemes can be decoded efficiently using multiple
fast Hadamard transforms and are highly suitable for certain
practical applications.

We have shown that linear codes over rings, as introduced in
[6] and popularized in [25], arise naturally as solutions to the
OFDM power envelope problem. We have also shown that
certain Golay sequences possess a high degree of intrinsic
structure, whereas many other sequences defined by aperiodic
autocorrelation constraints appear not to do so.

We conclude by noting some developments which occurred
after submission of the original manuscript.

1) Performance:Jones and Wilkinson [27] demonstrated
the potential improvement offered by certain of the OFDM
coding schemes presented here by simulating their end-to-end
system performance in a typical indoor radio environment.
They also showed experimentally that a representative one of
these coding schemes offers superior adjacent channel inter-
ference performance as compared with conventional OFDM
coding schemes.

2) Decoding Algorithms:Independently of our work, Grant
and van Nee [22], [23] derived decoding algorithms that
provide alternative methods to Algorithm 14. Also indepen-
dently of our work, Greferath and Vellbinger [24] presented
a decoding algorithm for a class of linear codes over rings,
a special case of which is equivalent to the modification of
Algorithm 14 described earlier. Paterson and Jones [39] found
further decoding algorithms applicable to the generalized
Reed–Muller codes introduced in this paper and compared
their algorithms with each of the known alternatives in terms
of both complexity and performance.

3) Theoretical Advances:Some of our numerical results
have been explained in theoretical terms, as previously de-
scribed in Section IV-D. In addition, Paterson [38] has de-
veloped and extended many of the ideas of this paper into a
more general framework and in doing so has identified further
OFDM coding schemes.
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