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A survey of Hadamard difference sets 

James A. Davis and Jonathan Jedwab 

Dedicated to Richard J. Turyn, whose pioneering work has 
motivated the study of Hadamard difference sets for the past thirty years 

A (v, k, A.) difference set is a k-element subset D of a group G of order v for which 

the multiset {d1d:21 : d1, dz E D, d1 =/:-dz} contains each nonidentity element of G 
exactly A. times. A difference set is called abelian, nonabelian or cyclic according to 
the properties of the underlying group. Difference sets are important in design theory 
because they are equivalent to symmetric (v, k, A.) designs with a regular automorphism 
group [L]. 

The study of difference sets is also deeply connected with coding theory because the 
code, over a field F, of the symmetric design corresponding to a (v, k, A.) difference set 
may be considered as the right ideal generated by D in the group algebra FG (JU], [L]. 

Abelian difference sets arise naturally in the solution of many problems of signal 
design in digital communications, including synchronization [HY], radar [AS], coded 
aperture imaging [FC], [S] and optical image alignment [MBL]. A difference set with 
parameters of the form (v, k, A.) = (4Nz, 2Nz - N, Nz - N) is called an Hadamard 
difference set (HDS) because a group subset D is an HDS if and only if the ( + 1, -1) 
incidence matrix of the design corresponding to D is a regular Hadamard matrix [JU]. 
Although some authors have instead used the names Menon difference set or H -set we 
propose that for historical reasons and for consistency the more popular term Hadamard 
is preferable and should henceforth be used. (Unfortunately some confusion may remain 
because difference sets with parameters of the form ( v, k, A.) = ( 4n - 1, 2n - 1, n - 1) are 
also called Hadamard.) The Hadamard parameters provide the richest source of known 
examples of difference sets. The central question is: for each integer N, which groups 
of order 4Nz support an HDS? This question remains open, for abelian and nonabelian 
groups, despite an extensive literature. 

The techniques so far used include algebraic number theory, character theory, rep
resentation theory, finite geometry and graph theory as well as elementary methods and 
computer search. Considerable progress has been made recently, both in terms of con
structive and nonexistence results. 

Indeed some of the most surprising advances currently exist only in preprint form, so 
one intention of this survey is to clarify the status of the subject and to identify future 
research directions. Another intention is to show the interplay between the study ofHDSs 
and several diverse branches of discrete mathematics. 
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Earlier surveys of HDSs have been given by Chan and Siu [CS], Arasu [A] and 
Jungnickel [JU]. A summary of this survey is scheduled for publication [DJ2]. 

In this survey we assume, by referring to an HDS, that the underlying group has order 
4N2 . Unless otherwise stated, a and b denote integers satisfying a :::: 0 and b > 0. 
The exponent of a group G is written as exp(G). For background material on group 
theory see [DF], for example. 

The abelian case 

A classical paper by Turyn [Tl] used character theory and algebraic number theory to 
establish an exponent bound on certain Sylow subgroups of an abelian group containing 
an HDS. Given positive integers m and w we call m self-conjugate mod w if for each 
prime divisor p of m there exists an integer jp such that pjP = -1 (mod wp), where 
wp is the largest divisor of w coprime to p. A central result of Turyn's paper, as restated 
by Lander [L], is: 

Theorem 1.1. Suppose there exists an HDS in an abelian group G. Let H be a subgroup 
of G of order h and index w. Suppose that m is a divisor of N, not coprime to w, 
and self-conjugate mod exp( G / H), such that for each prime p dividing m and w, 
the Sylow p-subgroup of G/ H is cyclic. Then m :S 2r-lh, where r is the number of 
distinct prime divisors of gcd(m, w). 

In particular, a necessary condition for the existence of an abelian HDS with N = 2° 
is that the group exponent is at most 2a+2 . 

A succession of constructive results, notably those of Davis [DAl] and Dillon [014], 
culminated in Kraemer's proof [KR] that this condition is also sufficient: 

Theorem 1.2. There exists an HDS in an abelian group G of order 220+2 if and only if 
exp( G) :S 2°+2• 

Theorem 1.1 can also be used to derive exponent bounds for an abelian HDS when N 
is not of the form 2a. For example, when N = 3b, the Sylow 3-subgroup has exponent 
at most 3h. When N = 2a3b, the Sylow 2-subgroup again has exponent at most 2°+2 

and the Sylow 3-subgroup has an exponent bound dependent on the Sylow 2-subgroup 
[Jl] (it is sometimes mistakenly stated that the exponent bound so derived is always 3h ). 
Turyn [Tl] also showed that for an abelian HDS with even N, the Sylow 2-subgroup 
cannot be cyclic. 

A body of evidence had accumulated, involving both constructive and nonexistence 
results, supporting McFarland's conjecture (reported in [A]) that N = 2° 3h (a, b :::: 0) 
is a necessary condition for an HDS. 

In particular Turyn [T3] used elementary methods to prove: 

Theorem 1.3. There exists an HDS in Z~ x z~b and :l.:4 x z~b· 

On the nonexistence side, McFarland [M2] combined techniques from finite geometry, 
algebraic number theory and character theory to establish: 
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Theorem 1.4. There does not exist an abelian HDS for N > 3 prime. 

Turyn [T2] also proved: 

Theorem 1.5. There does not exist a cyclic HDS for N even or 1 < N < 55. 

But recently Xia [X] disproved McFarland's conjecture spectacularly by explicit 
construction: 

Theorem 1.6. There exists an HDS in :2:4 x Z~ 1 x · · · x Z~1 • where each Pj is a prime 
satisfying Pj = 3 (mod 4). 

An approach that has proved fruitful is to combine the group theoretic viewpoint 
with insights gained from the engineering literature, in which abelian difference sets are 
studied as binary arrays (matrices with elements ± 1 ) with constant out-of-phase periodic 
autocorrelation. Jedwab [J3] defined a binary supplementary quadruple (BSQ) to be a 
set of four SJ x · · . x s, binary arrays possessing special correlation properties, and used 
an elementary recursive construction method to prove: 

Theorem 1.7. If there exists an SJ x · · · x s, BSQ then rhere exists an HDS in G x 
Zs1 x · · · x Zs,• where G is any abelian 2-group satisfying Turyn's exponent bound (of 
Theorem 1.2). 

Turyn [T3] gave a produc~ construction essentially for combining BSQs: 

Theorem 1.8. If there exists an SJ x · · · x s, BSQ and an Sr+I x · · · x Sr+r' BSQ then 
there exists an SJ x · · · x sr+r' BSQ. 

In the array framework, Kraemer's Theorem 1.2 arises from a trivial BSQ and Xia's 
Theorem 1.6 can be viewed as constructing a BSQ of size p x p x p x p, where p is 
a prime congruent to 3 mod 4. Arasu et al. [ADJS] constructed a BSQ of size 3b x 3h, 
which in the case b = 1 implies Turyn's Theorem 1.3. Combining these results (for the 
first time) in Theorems 1.7 and 1.8 gives: 

Theorem 1.9. There exists an HDS in G x z;h
1 

x · · · x Z~h, x Z~ 1 x · · · x Z~,. where 
G is any abelian 2-group satisfying Turyn 's exponent bound and each Pi is a prime 
congruent to 3 mod 4. 

To our knowledge Theorem 1.9 describes all abelian groups which have been shown to 
contain an HOS. Turyn's character theoretic technique [Tl] for proving nonexistence has 
been extended in several papers. McFarland [M4] proved that under certain conditions the 
existence of an HOS in an abelian group implies the existence of an HOS in a subgroup: 

Theorem 1.10. Suppose there exists an HDS in an abelian group H x L, where IHI is 
even and gcd(IHl. ILi) = I. If ILi is self-conjugate mod exp(H) then there exists an 
HDS in H. 
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Many authors have obtained additional results under the hypotheses of Theorem 1.1 O 
by restricting L to be a Sylow p-subgroup of order p2b, where p is an odd prime. 

The exponent bound exp(L) ,:::: pb then follows directly from Theorem 1.1. Arasu 
et al. [ADJ] used the binary array viewpoint to show that in the case exp(L) = pb, L 
must have the form Z2 b: 

p 

Theorem 1.11. Suppose there exists an HDS in an abelian group H x K x Zph, where 

IKI = pb and p is an odd prime self-conjugate mod exp(H). Then K is cyclic. 

A corollary in the case p = 3 is that there exists an HDS in an abelian group of order 
22a+Z3Zb and exponent either 2 · 3b or 4 · 3b if and only if the Sylow 3-subgroup is Z~h. 

In particular, there exists an HDS in H x Z~ but not in H x Z~ x Zg, where H = Z~ 
or Z4. This demonstrates that for general N, the existence of an abelian HDS cannot 
be determined solely in terms of an exponent bound on the Sylow subgroups, in marked 
contrast to Kraemer's Theorem 1.2 for the case N = 2a. 

Recently Davis and Jedwab [DJl] strengthened Theorem 1.11 by showing the exis
tence of an HDS in the stated group implies the existence of an HDS in each of a nested 
sequence of subgroups; this theorem contains earlier results of McFarland [M3] and Chan 
et al. [CMS]: 

Theorem 1.12. Suppose there exists an HDS in an abelian group H x Z2 
b of order 

p 

hp2b, where p > 3 is a prime self-conjugate mod exp(H). Then (p + 1) I h and 
h > (p + 1)2, and there exists an HDS in H x Z~c for each nonnegative integer c,:::: b. 

Theorem 1.12 suggests that abelian groups of the form H x Z~ are good candidates 
for future study. Chan [ C] obtained a further nonexistence result for groups of this form 
without assuming a self-conjugate condition: 

Theorem 1.13. Suppose there exists an HDS in an abelian group Z~ x Z~ x Q of 

order 4p2q2b, where p and q aredistinctoddprimesforwhich ordp(q) is odd. Then 
p ,:::: 2qb(p - 1)/ ordp(q). 

The result is obtained by showing the implied existence of an HDS in the subgroup 
Z~ x Z~ and then invoking McFarland's Theorem 1.4. Nevertheless, despite all these 
results, the central existence question remains open for abelian groups, even for N = 
2a3b. 

The nonabelian case 

Many of the techniques used to analyse the existence of abelian HDSs can be carried over 
directly to the nonabelian case. But the surprising results of several recent papers have 
been reached by developing new techniques, which have shown that existence criteria 
in nonabelian groups differ markedly from those in abelian groups. Indeed a number 
of recent results have overturned much of the conventional thinking about HDSs. We 
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will start by outlining nonexistence results and then examine existence results. Turyn's 
character theoretic technique [Tl], leading to an exponent bound for abelian groups 
containing an HOS, can be adapted to the nonabelian case by considering abelian quotient 
groups: 

Theorem 2.1. Suppose there exists an HDS in a group G. Let H be a normal subgroup 
of G of order h and index w for which G / H is abelian. Suppose that m is a divisor 
of N, not coprime to w, and self-conjugate mod exp(G / H), such that for each prime 
p dividing m and w, the Sylow p-subgroup of G / H is cyclic. Then m :::: 2r-I h, where 
r is the number of distinct prime divisors of gcd(m, w ). In particular, if N = 2a then 
IHI::::: 2a. 

The proof of Theorem 2.1 relies on the presence of an abelian factor group in which 
to carry out the same combination of character theoretic and number theoretic arguments 
as for the abelian case. 

Dillon [DI3] and Fan et al. [FSM] independently proved: 

Theorem 2.2. If the dihedral group of order 4N2 contains an HDS then so does C4N2. 

Therefore from Theorem 1.5 the group (x, y I x8 = y2 = 1, yxy = x- 1} does 
not contain an HOS, which demonstrates that an exponent bound is not a necessary and 
sufficient existence condition for an HOS in a general 2-group (unlike Theorem 1.2 for 
the abelian case). Leung et al. [LMW] proved under the hypothesis of Theorem 2.2 that 
N must have several distinct prime divisors: 

Theorem 2.3. Suppose the dihedral group of order 4N2 contains an HDS. Then N is 
odd and nplN: I' prime ( 1 - 1 Ip) :::: ( 1 - 1 I P 2) /2, where p is the smallest prime divisor 
of N. In particular, N has at least four distinct prime divisors. 

Leung and Ma [LM] gave the following nonexistence result for a 2-group with a 
large dihedral quotient: 

Theorem 2.4. Suppose there exists an HDS in a group G of order 22a+2. If H is a 
normal subgroup of G for which G / H is dihedral, then I HI ::'.: 211

• 

For nonabelian 2-groups, Theorems 2.1 and 2.4 provide the only known nonexistence 
results. These results are sufficient to identify all groups of order 16 [K] and 64 [DU], 
[LS] which do not contain an HOS. However the determination of complete nonexistence 
criteria for larger 2-groups remains an important open question. Recently, Liebler [LI] 
began a systematic use of representation theory to study the existence of HDSs. This 
is a natural generalization of the character theoretic technique initiated by Turyn for the 
abelian case. Iiams [I] used this approach to generalize McFarland's Theorem 1.4 for 
N > 3 prime to some nonabelian cases. The method is to list all groups of order 4p2 

( p > 3 a prime) and to calculate their representations. The representation sums then 
place restrictions on the possible difference sets and so eliminate many groups from the 
list: 
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Theorem 2.5. Suppose there exists an HDS in a group G of order 4p2 , where p > 3 
is prime. Then all Sylow 2-subgroups of G are cyclic. Moreover if G does not have 
an irreducible complex representation of degree 4 then G ~ (x, y, z \ xP = yP = 
z4 = 1, xy = yx, xz = zx, zyz- 1 = y- 1) and p = 1 (mod 4). 

The authors are not aware of any further nonexistence results for nonabelian groups. 
Turning now to the existence question, the earliest result is due to Kesava Menon [M] 

who proved by elementary construction that the set of groups containing an HDS is closed 
under direct products: 

Theorem 2.6. If G1 and G2 each contain an HDS then so does G1 x G2. 

Much of the early attention was focussed on nonabelian 2-groups. Indeed the first 
known family of nonabelian HDSs was constructed by McFarland [Ml] in 2-groups. 
Dillon [DI3] extended this result to: 

Theorem 2.7. There exists an HDS in any group of order 22a+Z whose center contains 
'77a+I 
/LJ2 • 

Dillon's method is one which occurs frequently in the construction of HDSs, namely 
to use the subgroup structure of the group to construct the difference set. In this example, 
the building blocks are the 2a+I - I subgroups of order 2a (the hyperplanes). Dillon 
[DI2] conjectured that a sufficient condition for a group of order 22a+2 to support an 

HDS is that it has a normal subgroup z~+l. The conjecture remains undecided although 
there are partial results due to Davis [DA2] and Meisner [ME3]. 

Davis [DA3] showed that Kraemer's techniques, which settled the existence question 
for abelian 2-groups, could be modified to construct HDSs in nonabelian groups of order 
22a+2 when the center contains a subgroup of order 2a+I (not necessarily elementary 
abelian as in Theorem 2.7). Dillon [DU] proposed a research programme to settle the 
existence question for an HDS in all 267 groups of order 64. Constructions were found 
for 258 of these groups and nonexistence was proved for 8, leaving just the "modular 
group" of exponent 32. Contrary to most expectations, Liebler and Smith [LS] succeeded 
in constructing an HDS in this group by introducing a representation theoretic algorithm 
for the efficient sieving of possible solutions to certain equations in finite group rings: 

Theorem 2.8. There exists an HDS in the group (x, y \ x 32 = y2 = 1, yxy = x 17). 

In groups of order 64, for the abelian case an HDS exists if and only if the group 
exponent is at most 16 (by Theorem 1.2), whereas for the nonabelian case there is a group 
of exponent 16 which does not contain an HDS (by Theorem 2.4) and yet a group of 
exponent 32 which does (by Theorem 2.8)! Turyn's exponent bound for abelian 2-groups 
is therefore neither necessary nor sufficient in the nonabelian case. Smith [SM2] observed 
that the automorphism group for the design associated with the difference set of Theorem 
2.8 is the modular group itself, and that this is a new design. 

Subsequently Davis and Smith [DS] found a new way to interpret the difference set 
of Theorem 2.8 and so were able to generalize the construction to an infinite family of 
HDSs in 2-groups each exceeding the abelian exponent bound: 
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Theorem 2.9. There exists an HDS in the group 

2a+3 2<1-l I 2a+2 I 
(x,y Ix =y = 1, yxy- =x +) 

for every a 2: 2. 

It is not known whether 2a+3 is an upper bound for the exponent of a group of 
order 22a+2 containing an HDS. The smallest 2-groups in which the existence question 
is currently unresolved have order 256. Nonabelian HDSs have also been found in 
groups other than 2-groups. Meisner [ME4] modified Jedwab's recursive construction of 
Theorem 1.7 for application to the nonabelian case, proving: 

Theorem 2.10. Suppose that a group G of order 4N2 contains an HDS, and a group H 
of order 8N2 contains a relative difference set B with parameters (4N2 , 2, 4N2 , 2N2 ). 

Suppose further that there is a central element x in H of order 2 such that G ~ H / (x) 
and xB = H \ B. Then any group K of order I6N 2 with H as a subgroup and x as 
a central element will contain an HDS. 

Thus a larger HDS is constructed from a smaller HDS plus a relative difference set. A 
similar theorem is used to construct a larger relative difference set from a smaller relative 
difference set and so establish the recursive construction. This leads to new nonabelian 
HDSs, for example in all groups of the form D3 x C2a+1 x C3.2a, where D3 is the 
dihedral group of order 6. By further application of this recursive construction, Meisner 
found many new families of nonabelian HDSs and unified several previous construction 
methods, including that of Turyn [T3] in [MElJ, those of Davis [DA31 and Jedwab [J3J 
in [ME2], and those of Davis [DA2] and Dillon [DI4] in [ME3]. 

Perhaps the most unexpected recent result of all is the discovery by Smith [SMl], 
using computer search and representation theory, of an HDS in a nonabelian group of 
order 100: 

Theorem 2.11. There exists an HDS in the group (x, y, z I x 5 = y 5 = z4 = [x, y] = 1, 
zx = x 2z, zy = y2z). 

This result is especially remarkable because of McFarland's Theorem 1.4 showing 
that no abelian group of order 100 supports an HDS. This is the first demonstration that a 
nonabelian (v, k, A.) difference set can exist even when an abelian (v, k, A.) difference set 
cannot. Smith's theorem is also interesting because it shows that McFarland's conjecture, 
proved false for abelian groups by Xia's Theorem 1.6, also fails for nonabelian groups. 
Furthermore the difference set of Theorem 2.11 is reversible (see the following section). 



152 J.A. Davis and J. Jedwab 

Reversibility 

Besides the central existence question, an active research area is the determination of 
those groups G supporting an HDS D which is reversible, meaning that {d- 1 : d E 

DJ = D. A difference set with this structure is alternatively called symmetric because 
the corresponding incidence matrix (whose rows and columns are indexed by G and 
whose (g1, g1) entry is I if g1 E g1D and 0 otherwise) is symmetric. The property of 
reversibility is motivated by the correspondence, in the abelian case, to the existence of 
a numerical multiplier -1 fixing the difference set [L]. Indeed, one of the oldest tools 
used to construct or rule out abelian difference sets is to infer the existence of numerical 
multipliers from the parameter set (v, k, A.) alone and so constrain the difference set. 
This section borrows heavily from the survey of reversible difference sets (not necessarily 
with Hadamard parameters) given by Ma [MAl]. 

Reversibility of HDSs is preserved under Kesava Menon's direct product construction 
of Theorem 2.6. Several constructions for abelian reversible HDSs are known. A 
reversible HDS exists in /E4 trivially, and in Z~a+i by an explicit construction of Dillon 
[Dl4]: 

Theorem 3.1. Let r : Z2a+l i--+ {O, 1} map the residue x to Lx /2a J and let n : Z2a+1 i--+ 

Z2a+1 map the residue 2r t ( t odd) to the residue 2r t', where tt' = 1 (mod 2a+ 1 ). Then 
{ (x, y) : r (n (x) y) = 1} is a reversible HDS in Z~aw 

Now if the four incidence matrices corresponding to a s1 x · · · x Sr BSQ are each 
symmetric then there exists a reversible HDS in Z~ x Zs1 x · · · x Zs,, and furthermore 
Turyn's BSQ product construction of Theorem 1.8 preserves this symmetry property. 
Since the four incidence matrices corresponding to Turyn's 3 x 3 BSQ and Xia's p x 
p x p x p BSQ are each symmetric, we can combine these results to obtain [MAl]: 

Theorem 3.2. There exists a reversible HDS in G and in G x Z~ x z~b x Z~1 x · · · x Z~,, 
where G = 24 x z;,q+I x ... x z~ar+l and each Pj is a prime congruent to 3 mod 4. 

To our knowledge Theorem 3.2 describes all abelian groups which have been shown to 
support a reversible HDS. In contrast there is only one known example, due to McFarland 
[Ml], of a non-Hadamard parameter set (v, k, A.) for which there exists an abelian 
reversible difference set. On the nonexistence side, McFarland [M4] proved: 

Theorem 3.3. Suppose there exists a reversible HDS in an abelian group. Then the 
square-free part of N divides 6. 

McFarland [M4] also showed that certain subgroups of an abelian group containing a 
reversible HDS must also contain a reversible HDS: 

Theorem 3.4. Suppose there exists a reversible HDS in an abelian group H x L, where 
IHI is even and gcd(IHI, ILi) = 1. Then there exists a reversible HDS in H. 

Ma [MA3] constrained the structure of certain Sylow subgroups of an abelian group 
containing a reversible HDS, using Cayley polynomial digraphs: 
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Theorem 3.5. Suppose there exists a reversible HDS in an abelian group G whose 
Sylow p-subgroup has exponent ph, where p is prime and p" f. 4. Then G contains 
a subgroup Zph x Zph· 

To our knowledge only one nonabelian group has been shown to contain a reversible 
HDS, as given by Smith's Theorem 2.11. This provides another example of a theorem 
derived for abelian groups, namely McFarland's Theorem 3.3, failing in the nonabelian 
case. On the other hand there are known to be infinite families of nonabelian reversible 
difference sets with non-Hadamard parameters [MA2]. 

Open Problems 

The authors hope this survey explains the context for some of the new directions being 
pursued by researchers in HDSs. We now give a personal selection of ten open problems 
which we hope may serve as a starting point for further exciting discoveries. 

1. Which abelian groups of order 22a+232b contain an HDS? In particular does Z~ x Z~ 
or Z4 x Z~ contain an HDS? 

2. Is there an abelian group of the form H x Z~ containing an HDS, where p > 3 is 
a prime not dividing \HI? 

3. Is there an explicit construction for an HDS in all abelian 2-groups satisfying Turyn's 
exponent bound, as given by Dillon's Theorem 3.1 in the rank 2 case? 

4. Is there a p x p x p x p BSQ for some prime p congruent to 1 mod 4? Can 
Xia's construction of Theorem 1.6 be modified to settle this, or other nonabelian or 
non-elementary abelian cases? 

5. Which groups of order 256 support an HOS? 

6. Can the Turyn exponent bound for abelian 2-groups be exceeded in the nonabelian 
case to the extent that a group of order 22a+2 and exponent 2a+4 contains an 
HDS (see Theorem 2.9)? A good candidate group to study is (x, y \ x 256 = 
y4 = 1, yxy-1 =x65). 

7. Are there any further nonexistence results for nonabelian 2-groups, apart from those 
relying on the presence of a large cyclic or dihedral factor group (Theorems 2.1 and 
2.4)? 

8. Is Dillon's conjecture on the existence of HDSs in certain 2-groups true? 

9. Is there a nonabelian group of order 4p2 containing an HDS, where p > 5 is prime 
(see Iiams's Theorem 2.5 and Smith's Theorem 2.11)? 

10. Which abelian 2-groups support reversible HDSs? 

We conclude by listing the smallest open cases in several categories, beginning with 
the smallest order abelian groups in which the existence of an HDS is currently undecided. 
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For N < 20, there are eight such groups [ADJ], [ADJS], [J2][Prop. 3.5.1]: 

xZ4 x Z~, 
xZ16 x Z9, 

xZ16 x Z9, 
xZs x Z~ x Z9 

It is also interesting, from the binary array viewpoint, to consider the values (s, t) with 
s ::".: t for which the existence of an HDS in Zs x Z1 is currently undecided. For t ::".: 100 
there are nineteen such values [ADJS], [CS]; the previously unresolved values (56, 56) 
and (44, 99) are removed by Theorem 1.12 (since 71 = -1 (mod 8) and 11 3 = -1 
(mod 36) ): 

(10, 40), 
(16, 100), 
(25, 100), 
(78, 78), 

(20, 20), 
(20, 80), 
(52, 52), 
(80, 80), 

(8, 72), 
(40, 40), 
(40, 90), 
(88, 88), 

(16, 36), 
(22, 88), 
(60, 60), 

(100, 100). 

(15, 60), 
(32, 72), 
(68, 68), 

There are two abelian groups in which the existence of a reversible HDS with N < 10 
is undecided [MA3], namely zi x Z~ and Z~ x Z~. There are four values of N ::".: 100 
for which the existence of a reversible HDS in one or more abelian groups of order 4N2 

is undecided [M4], [X], namely 25, 50, 75, and 100. 
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