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Exponent bounds for a family of abelian difference sets 

K.T. Arasu1, James A. Davis2, Jonathan Jedwab, 
Siu Lun Ma, and Robert L. McFarland 

Abstract. Which groups G contain difference sets with the parameters (v, k, A.)= (q 3 + 
2q 2 , q2 + q, q), where q is a power of a prime p? Constructions of K. Takeuchi, 
R.L. McFarland, and J.F. Dillon together yield difference sets with these parameters if G 
contains an elementary abelian group of order q2 in its center. A result of R.J. Turyn 
implies that if G is abelian and p is self-conjugate modulo the exponent of G, then a 
necessary condition for existence is that the exponent of the Sylow p-subgroup of G be at 
most 2q when p = 2 and at most q if p is an odd prime. In this paper we lower these 
exponent bounds when q =f. p by showing that a difference set cannot exist for the bounding 
exponent values of 2q and q. Thus if there exists an abelian (96, 20, 4)-difference set, 
then the exponent of the Sylow 2-subgroup is at most 4. We also obtain some nonexistence 
results for a more general family of (v, k, A.)-parameter values. 

1. Introduction 

A k-element subset D of a finite multiplicative group G oforder v is called a (v, k, J..)­
difference set in G provided that the "differences" d1d2- 1 for d1,d2 ED, d1 =f. d1, 
yield every nonidentity element of G exactly J.. times. We call v, k, J.. and n = k - ,\. 
the parameters of the difference set. We call G the group of the difference set. If the 
group G is abelian, then we call D an abelian difference set. 

The exponent of a finite abelian group G, written exp G, is the order of the largest 
cyclic subgroup of G. 

A prime p is said to be semiprimitive modulo w if pi = -1 (mod w) for some 
integer i. An integer m is said to be self-conjugate modulo w if every prime divisor 
p of m is semiprimitive modulo Wp, where Wp is the largest divisor of w that is not 
divisible by p. 

In this paper we obtain improved exponent bounds necessary for the existence of 
abelian difference sets with the parameters 

( 3 2 2 2 2) (v,k,J..,n)= q + q ,q +q,q,q , (1.1) 

This work is partially supported by NSA grant# MDA 904-94-H-2042 and by NSF grant #NCR-
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where q is a prime power that is not a prime and q is self-conjugate modulo the exponent 
of the group of the difference set. 

The parameters ( 1.1) are a special case ( d = 1) of the parameters 

d+1 1 
V = qd+1(q - + 1) = qd+1(qd +qd-I + ... +q + 2), 

q - 1 

d+I 1 
k = qd(q - ) = qd(qd +qd-1 + ... +q + 1), (1.2) 

q - 1 

qd I 
A.= qd(---) = qd(qd-1 + qd-2 + ... + q +I), 

q - I 

Takeuchi [13] gave the first construction for difference sets with parameters (1.1) for 
every prime power q. McFarland [12] constructs difference sets with parameters (1.2) 
with q a prime power in any group G (not necessarily abelian) of the specified order v 
that contains an elementary abelian group of order qd+l as a direct factor. Dillon [7] 
shows that McFarland's construction is valid under the weaker hypothesis that G contain 
an elementary abelian group of order qd+l in its center. Note that if G is abelian, 
Dillon's result extends McFarland's construction when q is a power of 2. 

On the other hand, a fundamental result of Turyn [14] yields (as we show at the 
beginning of the next section) the following exponent bounds: 

Suppose that there exists a difference set with the parameters (1.2) in an abelian group 
G, where q is a power of a prime p that is self-conjugate modulo exp G. Let P be the 
Sylow p-subgroup of G. Then exp P ::=: 2q if p = 2 and exp P ::=: q if p is an odd 
prime. 

The main result of this paper is that these exponent bounds for P cannot be achieved 
for the parameters (1.1) when the prime power q is not a prime. For example, since 
p = 2 is self-conjugate modulo v = 96, there cannot exist a (96, 20, 4)-difference set 
in an abelian group whose Sylow 2-subgroup has exponent 2q = 8 or larger. 

We also obtain some related nonexistence results for (q[(q + 1)2a - 1], q(q + l)a, 
qa)-difference sets, where a is a positive integer. 

Difference sets are usually studied in the context of the group ring Z[ G] of the mul­
tiplicative group G over the ring of integers Z. The definition of a (v, k, A.)-difference 
set D in G yields the equation DD(-I) = n + A.G in Z[G], where we have iden­
tified the sets D, D<-n, G with the respective group ring elements D = LdEDd, 

D(-J) = LdED d- 1, G = LgEG g, and n denotes the group ring element n Ic, where 
1 c is the identity of G. 

The contraction of a difference set D in the group G with respect to a normal 
subgroup U of G is the multiset Du = {Ud : d E D}. We can identify Du with 
group ring element Du = LXEG/U txX in Z[G/U], where tx = IX n DJ is the 
number of elements of D in the coset X of U. The coefficients of Du, that is 
the elements of the multi set {tx : X E G / U}, are called the intersection numbers 
of D relative to U. Alternatively, we can view Du as the image of D under the 
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natural group ring epimorphism Z[G]-+ Z[G/U] induced by the group epimorphism 
G -+ G/U. Applying the epimorphism to the equation DD(-I) = n + )..G yields 
DuDu(-I) = n + )..IUIG/U. Comparing the coefficients on the identity of G/U on 
both sides of this last equation yields 

L tx
2 = n + AIUI. 

XEG/U 

Clearly, 

:z= tx =k. 
XEG/U 

These last two equations are called the intersection number equations for D relative to 
U. 

Let G be a finite abelian group. Then a character x of G is a homomorphism of 
G into the multiplicative group of complex roots of unity. It is well known that under 
pointwise multiplication the set of all characters of G form a group that is isomorphic to 
G. The identity of this group is the principal character, xo, that maps every element of 
G to I. If Du is the contraction of a difference set D in G with respect to a (normal) 

subgroup U of G, then DuDi; 1l = n + A.JUIG/U implies that x(DuD~-I)) = 
0 (mod n) for all non principal characters x of G / U. 

2. Main results 

We begin with a result of Turyn [14, Corollary I, p. 332], although we state it in a slightly 
more general form as given by Lander [ 10, Theorem 4.33, pp. 168-174]. 

Theorem 2.1. Let D be a (v, k, A.)-difference set in an abelian group G. Let H be a 
subgroup of index u in G. Suppose that there is an integer m satisfying: 
1) m 2 divides k - ).., 
2) gcd(m, u) =I- 1, 
3) m is self-conjugate modulo exp G / H, 
4) for every prime p dividing m and u, the Sylow p-subgroup of G / H is cyclic. 
Then m s 2r- I IHI, where r is the number of distinct prime divisors of gcd(m, u ). 

Corollary 2.2. Let D be a difference set with the parameters (1.2) in an abelian group 
G, where q :': 3 is a power of a prime p that is self-conjugate modulo exp G. Let P 
be the Sylow p-subgroup of G. Then exp P s 2q if p = 2 and exp P .:S q if p is an 
odd prime. 

Proof. Let exp P = pe. Then P can be written as the internal direct product P = 
H x K, where K is a cyclic group of order pe. Hence P / H is a cyclic group of 
order pe. Let m = qd = pfd. Then, by the Theorem, pfd s IHI. If p = 2, then 
IHI = 2J(d+l)+l-e, so 2e s 2q. If p is an odd prime, then IHI = pf(d+l)-e, so 

0 
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Note that if q = 2 in Corollary 2.2, then the parameters (1.2) become (v, k, >.., n) 
= (22d+2, 22d+I - 2d, 22d - 2d, 22d). Repeating the argument in the proof of Corollary 
2.2 for these parameters yields exp G :::: 2d+2 - a result obtained by Turyn [14, Corollary 
2, p. 333]. Davis [5] and Kraemer[9] have shown that this necessary condition (known 
as Turyn's exponent bound) is also sufficient- see also the survey articles by Davis and 
Jedwab [6] and Jungnickel [8, pp. 284-285]. 

The following lemma, which we state without proof, appears in Chan, Ma, and Siu 
[4, Theorem 2.2], but the basic idea of the proof goes back to Turyn [14, Lemma 3, p. 
326]. 

Lemma 2.3. Let G be an abelian group whose order is divisible by a prime p that is 
self-conjugate modulo exp G. Let x be a character of G and let a be a positive integer. 
If A E Z[G] satisfies x(AA (-ll) = 0 (mod p2a), then X (A) = 0 (mod pa). 

The next lemma, which we also state without proof, is due to Ma [11, Lemma 3.4]. 

Lemma 2.4. Let G be an abelian group with a nontrivial cyclic Sylow p-subgroup and 
let P1 be the unique subgroup of order p. If A E Z[ G] satisfies X (A) = 0 (mod pa) for 
some positive integer a and all nonprincipal characters x of G, then A =pa E + P1 F 
for some E, FE Z[G]. 

Lemma 2.5. If the group ring element A in Lemma 2.4 has nonnegative integer coeffi­
cients, then the group ring elements E and F can be chosen to have nonnegative integer 
coefficients. 

Proof. Let {g1,g2, ... } beasetofcosetrepresentativesof P1 in G. Thenwecanwrite 
A = Li A;g; with each A; in Z[Pi]. If x is a generator of P1, then the Lemma 
implies that each A; is of the form 

p p 

A;= LaiJxi =paLbiJxi+c;P1, 
J=l )=I 

where the aiJ 's, biJ 's, and Ci 's are integers. The following argument applies for each 
index i. Let k be an index for which a;k = min{ai!, a;2, ... , a;p}. The hypothesis 
that A has nonnegative coefficients implies that a;k :=: 0 and aiJ - a;k :=: 0 for all j. 
Furthermore, 

for all j. Hence 
p 

A; = L (a;; - a;k)xi + a;k P1 
J=l 

yields a representation for A = L; A; g; 
nonnegative integer coefficients. 

pa E + F P1 for which E and F have 
D 
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Lemma 2.6. Let D be a difference set with the parameters ( 1.2) in an abelian group G, 
where q = pf :'.: 3 for some prime p that is self-conjugate modulo exp G. Let P be 
the Sylow p-subgroup of G and suppose that exp P = 2q if p = 2 and exp P = q if 
p is an odd prime. If U is any subgroup of P such that P / U is a cyclic group of order 
exp P, then IVI = qd where d is as defined in (1.2). Moreover, some coset of U is a 
subset of D. 

Proof The order of any subgroup U for which P / U is a cyclic group of order exp P 
is IPl/expP. If p = 2, then IPI = 2qd+I and expP = 2q, so IVI = qd. If p 
is an odd prime, then IPI = qd+I and expP = q, so again IVI = qd. Let Du be 
the contraction of D with respect to U. The remarks in the Introduction together with 
Lemmas 2.3 and 2.4 imply that Du can be written in the form Du = qd E + P1 F, 
where P1 is the unique subgroup of order p in G / U and E, F E Z[ G / U]. We 
assert that E =I= 0. Assume, to the contrary, that E = 0. Then Du = P1 F, so 
DuDu(-I) = P1 2FF(-I) = pP1FF(-ll. Hence the multiset DuDu(-I) is a sum 
of cosets of P1. Since DuDu<-1) = n + A.IVIG/V, this is impossible for n =I= 0. 
Therefore E =I= 0, as asserted. Hence Du must have at least one coefficient equal to 
qd. Since D has coefficients 0, 1 and Du is the contraction of D by a subgroup U of 
order qd, we conclude that some coset of U must be a subset of D. D 

We now show that the exponent bounds given in Corollary 2.2 can be improved for 
difference sets with parameters ( 1.1) if q is a prime power but not a prime. The argument 
is similar to that used by Arasu, Davis and Jedwab [1] to establish an exponent bound for 
Hadamard difference sets. 

Theorem 2.7. Let G be an abelian group of order q2 (q + 2), where q =pf for some 
integer f > 1 and some prime p that is self-conjugate modulo exp G. Let P be the 
Sylow p-subgroup of G. Then a necessary condition for G to contain a (q 3 + 2q2 , q2 + 
q, q )-difference set is that exp P < 2q if p = 2 and exp P < q if p is an odd prime. 

Proof Suppose that there exists a difference set D with the specified parameters in 
G. Then, by Corollary 2.2, exp P S 2q if p = 2 and exp P S q if p is an odd 
prime. We prove the Theorem by showing that the assumption exp P = 2q or q, 
according as the prime p is even or odd, leads to a contradiction. We can write P as 
the internal direct product P = (x) x (y1) x (y2) x ··· x (y,), where (x) is a maximal 
cyclic subgroup of P, that is i(x)I = expP; say l(x)I = pe. Let z = xPt(e-l)y1, 

where p t (e - 1) = pe-l. Then P = (x) x (z) x (yz) x · · · x (y,). Let U = 
(y1) x (y2) x ·· · x (yr) and let V = (z) x (y2) x ·· · x (y,). Then P/V ~ (x) ~ P/V .. 
Hence by Lemma 2.6, D contains a coset of U and a coset of V, and I U I = IV I = q. 
Let W =Un V. Then W = (zP) x (y2) x · · · x (y,), so )W) = )V)/p =pf-I and 
V = W +zW + ... + zP- 1W. Furthermore, ziW ~ ziV = (xPt(e-l)iV. Since the 
co sets {xiP t (e-1) U : i = O, I, ... , p .- 1} are distinct, the elements of V, and hence the 
elements of any coset of V, are distributed over p of the cosets of U with exactly pf- I 

elements in each of these p cosets. Let Du be the contraction of D with respect to U, 
and let t1, ... , lv/q be the resulting intersection numbers. Since D contains a coset of 
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V, the above argument shows that at least p of the t; 's satisfy t; ~ pf-I. Since D 
contains a coset of U, at least one t; is equal to I U I = q; say lj = q. The intersection 

number equations Lt; = k = q 2 + q and L t; 2 = k - 'A+ 'AJUI = 2q2 then yield 

"Lt;= q
2 ="Lt?. 

i=lj i=h 

Since the t; 's are nonnegative integers, we conclude that all t; 's, except tj, are 0 or 
1. Since f > 1, this contradicts the statement above that at least p of the t; 's satisfy 
t; ~pf-I. D 

Suppose q = 25 in Theorem 2.7. Then the group G has order v = q 2(q + 2) = 
54 . 33 = 16875. Since 59 = -1 (mod 27), 5 is self-conjugate modulo 3, 9, and 27. 
Thus the Theorem and McFarland's construction [12] imply that there exists an abelian 
(16875, 650, 25)-difference set if and only if the Sylow 5-subgroup of the group of the 
difference set is elementary abelian. 

Suppose q = 2f in Theorem 2.7 for some integer f > 1. Then the group G has 
order v = q 2 (q + 2) = 22f+I(2f-t + 1). Since 2 is self-conjugate modulo 2f-I + 1, 
we have: 

Corollary 2.8. A necessary condition for the existence of an abelian (22 f (2f + 2), 
2f (2f + I), 2f )-difference set for any integer f > I is that the exponent of the Sylow 
2-subgroup of the group of the difference set be at most 2f. 

A recent listing by Jungnickel [8, pp. 311-317] of the (v, k, 'A, n)-parameters with 
n _::: 30 for which abelian difference sets might exist leaves undecided only the parameters 
(96, 20, 4, 16) in the following three groups: 

Z4 x Zs x Z3, z~ x Zs x Z3, Z2 x zi x Z3. 

Corollary 2.8 rules out the first two of these groups. However, Arasu and Sehgal [2] 
have also shown, using different techniques, that there cannot exist a difference set in the 
first group. Arasu and Sehgal [3] have recently found a difference set in the third group. 
Combined with the constructions of McFarland [12] and Dillon [7], this shows that an 
abelian (96, 20, 4 )-difference set exists if and only if the Sylow 2-subgroup of the group 
of the difference set has exponent at most 4. Thus for f = 2, the necessary condition of 
Corollary 2.8 is also sufficient. It would be of interest to know if this were true for larger 
values of f. 

3. Generalization 

The techniques used in the previous section can be extended to difference sets with other 
parameter values. Suppose the v, k, 'A, n parameters are related by n = pf 'A, where p 
is a prime and f is a positive integer. Since n = k - 'A, k = (pf + l)'A. The basic 
parameter relationship k(k - 1) = 'A(v - 1) then yields v = (pf+ lf 'A- pf. Suppose, 
moreover, that pf divides v. Then pf divides 'A, so A. = pf a for some integer a. 
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Hence 

(v, k, A., n) = (pf[(pf + 1)2a - 1], pf (pf+ l)a, pf a, p2 f a). (3.1) 

Setting a = 1 and q = pf yields the parameters (1.1) that were considered in the 
previous section. 

We begin by generalizing a lemma of Ma [11] which we have stated as Lemma 2.4. 

Lemma 3.1. Let p be a prime and let G be a finite abelian group with a cyclic Sylow 
p-subgroup of order pe with e = 0 permitted. Let Pi be the cyclic subgroup of order 
pi for i = 0, 1, ... , e. Suppose A is an element of the group ring Z[G] that satisfies 
x (A) = 0 (mod pf) for some positive integer f and all nonprincipal characters x of 
G. Moreover, if e < f assume that xo(A) = 0 (mod pf) for the principal character 
XO· Then A can be expressed in the form 

m 

A= LPf-i PiEi, 
i=O 

where m = min{e, f} andthe Ei are elements of Z[G]. Furthermore, if the coefficients 
of A are nonnegative, then the E; can be chosen to have nonnegative integer coefficients. 

Proof. We first assume that e :::: 1 (hence m :::: 1 ), and prove by induction on m that A 
can be expressed in the from 

m-1 
A= L pf-i PiEi +Pm Fm, 

i=O 

(3.2) 

where Eo, ... , Em_ 1, Fm are elements of Z[ G]. We then note that if A has nonnegative 
coefficients, then Eo, ... , Em-1, Fm can be chosen to have nonnegative integer coeffi­
cients. If e = 0, we set A = Fo. To complete the proof we show that if 0 :::: e < f 
(hence f -- m :::: l ), then Fm can be chosen so that its coefficients are divisible by pf -m 

while retaining, if hypothesized, nonnegative coefficients. 
Let e :::: 1. Then the hypothesis of the Lemma and Lemma 2.4 imply that A = 

pf PoEo + P1 F1 for some Eo, F1 in Z[G] - which proves (3.2) when m = 1. If A has 
nonnegative integer coefficients, then Lemma 2.5 implies that Eo and F1 can be chosen 
to have nonnegative coefficients. Now suppose that m > l and inductively assume that 
A can be expressed in the form 

t-1 

A= LPf-i PiEi + P1Fr 
i=O 

(3.3) 

for some integer t with I :::: t < m, where Ea, ... , E1-1, Fi belong to Z[G]. Further­
more, assume that if A has nonnegative integer coefficients, then so do Eo, ... , E1-1, F1. 

Let H be a group isomorphic to G /Pi and let p: G -+ H be a group epimorphism 
with kernel P1 • Let p*: Z[G]-+ Z[H] be the natural group ring epimorphism induced 
by p. For any character if! of H there corresponds a character i/!c of G such that if!c 
has the same value on all elements in any coset of P1 in G (i.e., Pi is in the kernel of 
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1/f G ) and 1/f G (g) = 1fr (p (g)) for all g in G. Hence 

1/fa(B) = 1/f(p* B) 

for all B in Z[G]. By hypothesis Pe is cyclic, so Po C P1 C · · · C Pe. Hence 
1/fc(Pi) =pi for i = 0, ... , t. Applying 1/JG to (3.3) thus yields 

r-1 
1/fc(A) =pf L 1/fc(E;) + prl/fc(Fr) 

i=O 

(3.4) 
r-1 

=pf L 1/fc(E;) + prl/f(p* Fr). 
i=O 

By hypothesis x (A) = 0 (mod pf) for all nonprincipal characters x of G, so (3.4) 
implies that x(p*Fr) = O(modpf-r) forallnonprincipalcharacters x of H. Therefore, 
by Lemma 2.4, there exists e;, F!+i in Z[H] such that 

p* Fr =pf-re;+ P' F!+t • (3.5) 

where P' is the subgroup of order p in H. Suppose H = {h 1, ... , hs} with P' = 
{h 1, ... , hp}. Since H ~ G /Pr, there is a set {g1, ... , gs} of coset representatives of 
Pr in G indexed so that p(g;k) = h; for i = 1, ... , s and all k E Pr. 

We assert that if B is any element of Z[G], then the coefficients of PrB are uniquely 
determined by the coefficients of p* B. For if 

then 

and 

s 

B =LL b;kg;k, 
i=I kEP1 

s 

p*B =LL b;kp(gik) 
i=I kEPt 

= t(L:b;k)h; 
i=I kEP1 

s 

PrB =LL b;kg;kPr 
i=I kEP1 

= t (L b;k) g;Pr. 
t=I kEP1 

Thus if Er, P, Fr+ 1 are any elements of Z[ G] that are mapped by p* to e;, P', 
F!+i • respectively, then Pr Er and PiP Fr+I are uniquely determined. In particular, 
p* P = P' = h 1 +···+hp implies that 

PrP = g1P1 + · · · + gpPr = {g E G: p(g) E P'}. 
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Hence P1P contains PIPrl = pr+I elements and is a subgroup of G. Since the 
Sylow p-subgroup of G is cyclic, G contains a unique subgroup of order p 1+1 . Thus 
P1 P = Pt+I· Then (3.5) implies that 

P1F1 = pf-t P1E1 + P1+1F1+l· 

Substitution of this expression for P1 F1 in (3.3) completes the induction proof of (3.2). 
Note that, if Fr has nonnegative integer coefficients, then so does p* Fr. Then 

Lemma 2.5 implies that E; and F;+l in (3.5) can be chosen to have nonnegative in­
teger coefficients. And then E1 and F1+1 can be chosen to have nonnegative integer 
coeffi ci en ts. 

If f ::: e, then m = f, so (3.2) expresses A in the form stated in the Lemma; hence 
the proof is complete in this case. Thus assume 0 ::: e < f. Then m = e, so f - m :::::_ 1. 
Let Fm be defined by (3.2) if m::: 1, and if m = 0 let Fo =A. To complete the proof 
we show that Fm can be chosen so that all its coefficients are divisible by pf-m. 

If m = e, then Pm = Pe is the Sylow p-subgroup of G, so G has a subgroup H 
such that G = H x Pm. As before, let p: G ~ H ~ G/ Pm be the group epimorphism 
defined by p(hk) = h for h E H and k E Pm. Thus p* Fm is an element of 
Z[H] s; Z[G]. We can write Fm in the form 

Fm= LL fhkhk 
hEH kEPm 

for integers fhk. Then 

{p* F,n) Pm= (L L fhkp(hk)) Pm 
hEH kEPm 

=LL fhkhPm 
hEH kEPm 

= L L fhkh (kPm) 
hEH kEPm 

=(LL fhkhk) Pm 
hEH kEPm 

= FmPm. 

By hypothesis, x (A) = O (mod pf) for all characters X of G since e < f. Repeating 
the argument that led to (3.4) with t = m thus yields o/(p* Fm) = 0 (mod pf-m) for 
all characters o/ of H. The well-known inversion formula for the group ring applied to 

p* F,n yields 

filHI = L o/(p* Fm)o/(f(j
1
), 

i/J 

where fi is the coefficient of p* F,11 on hi E H and the summation is over all characters 
o/ of H. Since p does not divide the order of H, all coefficients of p* Fm are divisible 
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by pf-m. Clearly p* Fm has nonnegative integer coefficients if Fm does. Substitution 
of p* Fm for Fm completes the proof of Lemma 3.1. D 

Theorem 3.2. Let G be a finite group with a normal subgroup U of order pf, where 
p is a prime and f is any positive integer, such that G / U is abelian with a cyclic 
Sylow p-subgroup. Suppose furthermore that p is self-conjugate modulo exp G / U. Let 
¢*: Z[G] ---+ Z[G/U] be the natural group ring epimorphism induced by the group 
epimorphism ¢: G ---+ G / U with kernel U. Let D be a difference set with parameters 
(3.1) in G. Then pf divides the order of G/U and¢* D = pfS + PfT, where Pf 

is the subgroup of order pf in G / U and S, T are subsets of G / U with cardinalities 
JSJ =a, JTJ = pfa. Moreover, each coset of Pf in G/ U contains at most one element 
of SU T. Hence PfT is a subset of G / U that is disjoint from S. 

Proof. For all non principal characters x of G / U, 

x(c/>*D)x- 1(¢*D) = X (ct>*(DD(-I))) = n = 0 (modp 2f). 

Since p is self-conjugate modulo exp G / U, Lemma 2.3 implies x (¢* D) 
= 0 (mod pf) for all nonprincipal characters x. Also, xo(c/>* D) = k = 0 (mod pf) for 
the principal character XO· Hence Lemma 3.1 implies that ¢* D can be expressed in the 
form 

m 

c/>*D = LPf-i P;Ei, 
i=O 

(3.6) 

where the P; 's are the unique subgroups of respective orders pi in G / U, the E; 's 
are elements of Z[ G / U] with nonnegative coefficients, and m = min { e, f}, where pe 
is the order of the Sylow p-subgroup of G/U. Let p*: Z[G/U] ---+ Z[(G/U)/ Pm] 
be the natural group ring epimorphism induced by the group epimorphism p: G / U ---+ 

(G/ U)/ Pm with kernel Pm. Since Po C · · · C Pm, p* P; = pi for i = 0, ... , m. 
Hence (3.6) yields 

p*cp*D=pfB, 

where 

B=p*Eo+···+p*Em. 

Then 

(p*c/>* D) (p*cp* D(-I)) = n + A.IUllPml(G/U)/ Pm 

= p2fa+p2f+ma(G/U)/Pm, 

so 

BB(-1) =a+ pma(G/U)/Pm. 

Let (G/U)/ Pm= {g1, ... , g5 }, and let 
s 

B = L_b;g;. 
i=I 

(3.7) 

(3.8) 

(3.9) 
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Then (3.1) and (3.7) imply that 

and (3.9) implies that 

s 

'Lb;= k/p1=(pf+1)a, 
i=l 

s 

Lbf = (1 + pm)a. 
i=i 

Since the bi's are integers, ,L{ bi ,::: _L·; bf, so f ,::: m. But m = min{e, /}, so 
m = f ,::: e. Since pe is the order of the Sylow p-subgroup of G / U, pf divides 

IG/UI =(pf+ 1)
2
a - I. Therefore 

a - 1=0 (mod pf). (3.10) 

Also m = f implies .L~ bi = _L·; bf, so each bi is 0 or 1. Hence B = p* Eo + 
· · · + p* E f has coefficients 0 or 1. Since the E; 's have nonnegative coefficients, each 
Ei must have coefficients 0 or 1. Hence each Ei can be considered a subset of G / U. 
Moreover, since Pt = Pm is the kernel of p, no coset of Pt can contain more than 

one element of Eo U · · · U Ef. Hence if i f. j, then the multiset Ei EJ-1) contains no 
elements of Pf, and hence no element of Pi s; Pf. Therefore, using the expression for 
¢* D in (3.6), we conclude that the elements of Pi that occur in 

(¢* D)(</>* vC-Il) = (t pf-i PiEi) (t pf-i PiEi(-1)) 
t=O t=O 

all occur in the terms 

f f L p2(f-i) P? E;E:-1) = L p2f-i PiEiEj(-1) 

i=O i=O 

Furthermore, E;Ei(-I) contains the identity of P1 a total of IEil times, but no other 
elements of Pi. Since 

(¢* D)(¢* D(-IJ) = n + ).JUIG/U = p2fa + p2f aG/U, 

a count of the occurrences of the identity element of G / U in (¢* D)(¢* vc-ii) yields 

f L p2f-i I Ei I = 2p2f a, 
i=O 

while a count of the occurrences of a nonidentity element of Pi yields 

f 
LP2f-ilEil = p2fa. 
i=I 

The last two equations yield 

IEol =a. 

(3 .11) 
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Applying the principal character to (3.6) yields 

f 
pf L IEi/ = k = pf (pf+ l)a. 

i=O 

These last two equations yield 

f 
pf L IEil = p2f a. 

i=I 

Subtracting this equation from (3.11) yields 

f-1 
L (p2f-i - pf) IEil = 0. 
i=l 

(3.12) 

Obviously IEil '.'.: 0, so IEil = 0 for i = l, ... ,f-1. Hence E1, ... ,Ef-I are 
empty sets. Then (3.12) yields IE f I = pf a. Let S = Eo and T = E f. Then 
Eo U · · · U Ef = SU T. If PfT is not a subset, then xt1 = yt2 for some x, y E Pf 
and t1, t1 E T. Hence Pf t1 = Pf t1, so t1, t1 E Pf ti. This contradicts the result proved 
above that no coset of Pf contains more than one element of Eo U · · · U Ef = SU T. A 
similar argument shows that PfT and S are disjoint. D 

We note that in view of Theorem 3.2, the parameters (3.1) yield equality in the 
inequality occurring in a theorem of Lander [10, Theorem 4.32, p. 166, m = h =pf]. 

Corollary 3.3. Suppose that there exists a difference set in the group G as described in 
Theorem 3.2. Then p-f(p*¢*D) = p*S + p*T is a ([(pf+ 1)2a - I]/pf, (pf+ 
l)a, pf a)-difference set in (G / U)/ Pf" where p* is the natural group ring epimorphism 
induced by the group epimorphism p: G/U--+ (G/U)/ Pf. 

Proof The proof follows from equations (3.7)-(3.9) and the fact that all Ei 's are empty 
sets except for Eo = S and E f = T. D 

Lemma 3.4. Let G be a finite group with subgroups H and K with H a normal 
subgroup. Let S be a subset of G that can be expressed as a union of some of the cosets 
of H in G and also as a union of some of the left cosets of K in G. Then the cardinality 
of S is a multiple of IHI· IKl/IH n Kl. 

Proof Let x E S. Since S is a union of cosets of H, the unique coset of H that contains 
x, namely xH, must be a subset of S. Leth EH. Then xh ES. Since Sis a union of 
left cosets of K, the unique left coset of K that contains xh, namely xhK, must be a 
subset of S. Therefore xH K s; S. If xH K =j:. S, choose y E S - xH K. Since H is a 
normal subgroup, x HK = x K H is a union of cosets of H. Clearly x HK is a union of 
leftcosetsof K. Thus S-xHK isaunionofcosetsof H andaunionofleftcosetsof K. 
Now repeat the previous argument to show that yH Ks; S-xH K. If S =j:. xH KUyH K, 
choose z ES - (xH KU yH K). Repeat until S is expressed as a disjoint union of left 
cosets of HK. For each h E H there exists h' E H such that hK = h' K if and only if 
h- 1h' EH n K. Hence lxH Kl= lyH Kl=···= IH Kl= IHI· IKl/IH n Kl. D 
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Theorem 3.5. Suppose that there exists a difference set in the group G as described in 
Theorem 3.2. If G has two different subgroups that satisfy the stated conditions for the 
subgroup V, then their intersection must be the trivial group. 

Proof Let V1 -/:- V2 be two subgroups of G that have the properties of the subgroup 
V in the statement of Theorem 3.2. We show that the assumption that there exists a 
difference set D in G and IV 1 n V2 I > 1 leads to a contradiction. In the remainder of 
the proof all statements/equations that co11tain an index i are to be read twice, once for 
i = I and once for i = 2. Let </Jt be the natural group ring epimorphism induced by the 
group epimorphism </>;: G ~ G / V;. Theorem 3.2 states that 

<f>7D = pfS; + R;, (3.13) 

where S; and R; are disjoint subsets of G / V; with I S;I = a. Hence we can write 
D as the disjoint union D = s;' U R;', where S;' = {d E D : </>; (d) E S;} and 
R;' = {d E D : </>; (d) E Rd. The kernel of </>; is V; which has cardinality pf and 
D has coefficients 0, I, so (3.13) implies that S[' is the union of a cosets of Vi and 
each coset of V; intersects R;' in at most one element. Since V1 and V2 are normal 
subgroups of G, Vin V2 is a normal subgroup of G and V;/(V1 n V2) is a normal 
subgroup of G/(V1 n V2). Hence the group epimorphism ¢;: G ~ G/Vi can be 
factored as the following composition of two group epimorphisms: 

G ~ G/(V1 n V2) ~ G/V1. 

There is a corresponding factorization of <Pt: 
Z[G] ~ Z[G/(V1 n V2)] ~ Z[G/V;]. 

Applying this factorization of <Pt to the components s;' and R;' of D yields 

S;' ~ IV1 n V21s; ~pf Si, 

R;' ~ R; ~ R;, 

where s;, R; are disjoint subsets of G / (V 1 n V2). Thus the contraction of D = 
s;' +RI= s~ + R~ by Vin V2 yields 

IV1 n V21s; + R; = IV1 n V21S2 + R2. 
Since I V1 n V2 I > I and the sets s;, R; are disjoint, s; = s;. Thus SI and s~ have 
the same contraction by U1 n V2 . Since s;' is a union of distinct cosets of V;, it is also a 
union of distinct cosets of V 1 n V2• Hence s;' = S~. Therefore s;' is a union of cosets 

of V1 and a union of cosets of U2. Hence by Lemma 3.4, ISi'I = pfa is a multiple of 

IV1l · IU2l/IV1 n V2I = p21/IV1 n U2I. Thus p divides a. However, p divides a - 1 
by (3.10) or Corollary 3.3. This contradiction completes the proof of Theorem 3.5. 0 

Theorem 3.6. Suppose that there exists a d(fference set in the group G as described in 
Theorem 3.2. If G is abelian, then f = I. 

Proof Assume that G is abelian and f > l. We prove the Theorem by showing that 
then there cannot exist a difference set in G. Let P be the Sylow p-subgroup of G 
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and let exp P = pe. Suppose that P is isomorphic to Zp• or Zpe x Zp. In both cases 
there is a subgroup H of order p such that P / H is cyclic. Theorem 3.2 implies that 
IP I :=:: p2f, so p divides the index of H in P. Thus an application of Theorem 2.1 with 
H as above and m =pf yields pf = m ::::: IHI = p. Hence f = 1, contrary to the 
above assumption. Therefore, we can write 

P = (x) x (y) x K, (3.14) 

where l(x)I = pe and l(y)I :'.:: p2 or l(y)I = p and IKI > 1. Thus we also have 

P = (x) X (xPt(e-l)y) X K. (3.15) 

For any subgroup U satisfying the hypotheses of Theorem 3.2, the order of the Sylow 
p-subgroup of G / U is at most exp P = pe; say the order is pe-a. Let 

U1 = (xpt(e-a)) X (y) X K, 

U2 = (xpt(e-I)) X (xPt(e-a)y) x K. 

Then (3.14) and (3.15) imply that P/U1 and P/U2 are both cyclic groups of order 
p<e-a); hence U1 and U2 satisfy the conditions of Theorem 3.2 for the normal subgroup 
U. Theorem 3.2 then implies that e - a :=:: f. Hence e :=:: f > 1, so U1 and U2 are 
different subgroups. If I (y) I :'.:: p2 , then 

(xPt(e-l)y )P = xPteyp = yP 

is a nonidentity element in Ur n U2. If l(y)I = p, then IKI > 1, so again U1 and 
U2 have a nontrivial intersection. Thus Theorem 3.5 implies that there does not exist a 
difference set with the specified parameters in G. D 
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