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ELECTRONICS LETTERS 7th January 1993 Vol. 29 No. 1 

NONEXISTENCE OF CERTAIN PERFECT 
BINARY ARRAYS 

J. Jedwab and J. A. Davis 

Indexing terms: Binary sequences, Information theory, Signal 
processing 

A perfect binary array (PBA) is an r-dimensional matrix with 
elements ±I such that all out-of-phase periodic autocorrela­
tion coefficients are zero. The two smallest sizes for which the 
existence of a PBA is undecided, 2 x 2 x 3 x 3 x 9 and 
4 x 3 x 3 x 9, are ruled out using computer search and a 
combinatorial argument. 

Introduction: An s 1 x ... x s, perfect array is a matrix 
(a[j 1, ... , j,]), 0 s j, < s., with integer elements such that the 
periodic autocorrelation coefficients 

R(u 1, ••• , u,) = "i:' ... ''{a[j 1, ••• ,j,] 
it=O j,=O 

x a[U 1 + u1 ) mod s1, ••• , U, + u,) mods,] 

are zero for all (u 1, ••• , u,) # (0, ... , 0), 0 s u, s s,. The array is 
binary if each matrix element is ± 1, and then fl. s, = 4N 2 for 
some integer N. The energy and sum of A are, respectively, 
E = .D::J IJ::J (a[j,, . .. ,j,])2 and S = I;::J ... IJ::J 
a[j 1, ... ,j,]. See Reference 1 for a general background on 
perfect arrays and Reference 2 for details of their many uses in 
signal processing applications. 

Perfect binary arrays (PBAs) have recently been constructed 
[3] with size 2"' x ... x 2"• x 3•• x 3•• x ... x 3•. x 3•·, where 
L• a, = 2a + 2 and the a, satisfy the Turyn exponent bound 
a, s a + 2 for all i [ 4, 5]. No other sizes of PBA are known, 
and there are many nonexistence results [1] when N does not 
take the form 2•3•. The smallest sizes for which the existence 
of a PBA is currently undecided [3], [6, property 3.5.1] are 
2 x 2 x 3 x 3 x 9 and 4 x 3 x 3 x 9 (equivalently [2], sizes 
6 x 6 x 9 and 3 x 9 x 12). 

Given a perfect array we can form another perfect array by 
summing every rth array element along any dimension whose 
size is a multiple oft [7, lemma 2.4]: 

(i) Lemma I: Let (a[j,j 1, .. ,j,]) be an st x s 1 x ... x s, array. 
Define the t x s1 x ... x s, array B = (b[j, j 1 , ... ,j,]) by b[j, 
j,, ... ,j,] = If:J a[j + lt,j,, ... ,j,] for all O sj < t, O sj, < 
s,. If A is perfect with energy E and sum S then so is B. 

A perfect array is invariant under the shearing transform­
ation [7, lemma 8.1]: 

(ii) Lemma 2: Let A= (a[l,j,j 1, ••• ,j,]) be ans x t x s1 x. 
x s, array and let c be an integer such that ct = O(mod s). 

Define the s x t x s1 x ... x s, array B = (b[l,j,j 1 , ••• ,j,]) by 
b[/,j,j 1, ... ,j,] =a[(/- cj) mod s,j,j 1, ... ,j,] for all 0 s I< s, 
0 s j < t, 0 s j, < s,. A is perfect (with energy E and sum S) if 
and only if B is. 

For example, the 3 x 3 array 

A=r-~ _! -!] 
2 -4 -4 

is perfect and therefore so is 

In this Letter we use computer search to determine all pos­
sible 9 x 2 x 2 perfect arrays that could arise by summing the 
nine elements in each 3 x 3 'slice' of a 9 x 2 x 2 x 3 x 3 
PBA. We then apply various shearing transformations to the 
9 x 2 x 2 perfect arrays to show that the underlying PBA 
cannot exist. A similar procedure rules out the existence of a 
9 x 4 x 3 x 3 PBA. Although search methods of this sort 
have been used previously for arrays [8] and for difference 
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sets [9], to our knowledge the additional argument involving 
shearing transformations is new. 

Search for 9 x 2 x 2 perfect arrays: Suppose there exists a 
9 x 2 x 2 x 3 x 3 PBA, say A = (a[i, j, k, I, m]); then A has 
energy 324 and (changing the sign of all array elements if 
necessary) sum 18. Define the arrays B = (b[i, j, k]), C = lc[i, 
Jl), C' = (c'[i, k]) and D = (d[i]) of sizes 9 x 2 x 2, 9 x 2, 
9 x 2 and 9, respectively by 

2 

b[i,j, kJ = I a[i,j, k, I, m] (l) 
1=0 

c[i,j] = b[i,j, O] + b[i,j, I] (2) 

c'[i, k] b[i, 0, k] + b[i, 1, k] (3) 

d[i] c[i, O] + c[i, !] c'[i, O] + c'[i, 1] (4) 

By Lemma 1, each of B, C, C' and D is a perfect array with 
energy 324. This energy constraint and eqns. 1-4 imply that 

b[i,j, k] E {-9, - 7, ... , 7, 9) 

c[i,J], c'[i, k], d[i] E { -18, -16, ... , 16, 18) (5) 

for all i,j, k. We may assume, by translation if necessary, that 

I d[OJ I = max I d[i] I (6) 

The first stage of the search is to find all possible arrays D 
satisfying the above conditions (it is computationally infeasi­
ble to determine the arrays B directly). The algorithm recursi­
vely fixes the value of d[i] for successive values of i, taking all 
possibilities for d[1] satisfying eqns. 5 and 6 and backtracking 
if the cumulative sum of squares exceeds 324. Because the 
array sum is 18, when i = 8 we have the additional constraint 
d[8] 18 - Li=o d[i]. Of those arrays surviving this process, 
only those that are perfect are retained. After exclusion of 
translations and reflections, there remain eight arrays D. 

The second stage is to search in a similar way for all pos­
- ·· e arrays C which satisfy eqn. 4 for some array D from the 

st stage. Taking each array D in turn, we recursively fix the 
alue of c[i, OJ and c[i, 1] subject to eqns. 4 and 5. It is easy to 

see that a perfect array of size 2 with sum 18 must consist of 
elements 18 and 0, and so by lemma I we also have (after 
translation if necessary) c[8, OJ 18 Il=o c[i, OJ and c[8, 
I] - Li=o c[i, l]. Each of the arrays D from the first stage 
gives rise to a group of four 9 x 2 perfect arrays C. 

The third and final stage is to find all possible arrays B 
which satisfy eqns. 2 and 3 simultaneously for a pair of arrays 
C, C' belonging to the same group from the second stage. Now 
a perfect array of size 2 x 2 with energy 324 and sum 18, none 
of whose elements is zero, must consist of elements 9, 9, 9 and 
-9. Therefore we may also impose b[8, 0, OJ 9 Ll=o b[i, 
0, OJ, b[8, 0, 1] 9 - Ll=o b[i, o!.. l], b[8, I, OJ = 9 - Ii=o 
b[i, I, OJ, and b[8, 1, lJ = -9 - L/=o b[i, 1, !]. The results of 
this search are : 

(iii) Proposition I: Let A be a 9 x 2 x 2 x 3 x 3 PBA and let 
B = (b[i, j, kJ) be the 9 x 2 x 2 array given by b[i, j, k] = 
lJ=o L!=o a[i,j, k, I, mJ; then, up to translation, the array B 
is in magnitude 

933933933 111111111 

I I I I l I I I 1 l I I I 1 I 1 I I 

and th_e three elements of magnitude 9 do not all have the 
same sign. 

Nonexistence of9 x 2 x 2 x 3 x 3 PBA: Suppose that A is a 
9 x 2 x 2 x 3 x 3 PBA. We now use proposition I and 
lemma 2 to obtain a contradiction by progressively con­
straining the elements of A. Define the arrays A; (a;[i, j, k, I, 
m]) and A; = (a;[i, j, k, i, m]) by a;[i, j, k, I, mJ a[(i - cl) 
mod 9,j, k, I, m] and a;(i,j, k, l, m] a[(i- cm) mod 9,j, k, I, 
m]; then bylemma2, A; andA; are each a9 x 2 x 2 x 3 x 3 
PBA, provided c "" ~mod 3). Define the 9 x 2 x 2 array 
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B (b[i, j, k]) by b[i, j, k] If,, 0 I!=o a[i, j, k, /, m], and 
define B; and B; similarly from A; and A;. 

Translate A if necessary so that B has the form given in 
proposition I; then for (i, j, k) = (0, 0, 0), (3, 0, OJ and (6, 0, 0) 
the nine ± 1 elements of A summing to b[i, j, k] must be 
equal, so 

a[3i, 0, 0, I, m J = a[3i, 0, 0, O. OJ for all 0 ~ i, I, m < 3 (7) 

Because the three elements a[3i, 0, 0, 0, O] (0 ~ i < 3) do not 
all have the same sign, we also have 

2 

L a[3i, 0, 0, 0, OJ ±I (8) 
i""O 

Then b~[O, 0, O] = I;'=o l::.=o a[3/, 0, 0, /, mJ l::.=o 
( ± 1) = ± 3. By proposition l, the elements of magnitude 9 in 
B~ must therefore occur when (j, k) = (0, 0), say at i = I, 4 and 
7; then a~[3i + I. 0, 0, I, m] a~[3i + 1, 0, 0, 0, OJ for all 
0 ~ i, /, m < 3, and If=o a;;[3i + I, 0, 0, 0, OJ ± 1, or equiv­
alently 

af3i +I, 0, 0.1, m] a{[3(i - I)+ l] mod 9, 0, 0, 0, OJ 

for all 0 :<> i, /, m < 3 (9) 
2 

IaC3i + 1,0,0,0,oJ ±1 110i 
1=0 

It follows from eqns. 7 and 8 and 9 and 10, respectively, that 
b)[O, 0, OJ = ± 3 and b)[l, 0, O] ± 3, which by proposition 
I forces a)[3i + 2, 0, 0, I, m] = aj[31 + 2, 0, 0, 0, OJ for all 
0 ~ i, I, m < 3, and L:? = 0 a)[3i + 2, 0, 0, 0, OJ = ± I, and so 

a[3i + 2, 0, 0, I, m] = a([J(i + 1) + 2] mod 9, 0, 0, 0, O} 

for all 0 ~ i, I, m < 3 (II) 

2 

I a[3i + 2, 0, 0, 0, OJ (12) 
i-'-'O 

from eqns. 7-12 we have b6[0, 0, O] = ± 3, b0[1, 0, 
and b6[2, 0, O] = ± 3, which contradicts proposition 

Nonexistence of 9 x 4 x 3 x 3 PBA: The nonexistence of a 
9 x 4 x 3 x 3 PBA follows similar lines, with the rows of the 
possible 9 x 4 perfect arrays being the same as those in pro­
position 1. The difference in that lemma I only provides one 
way to sum to a 9 x 2 perfect array (using 1 = 2 on the dimen­
sion of size 4), rather than two. This means there are fewer 
constraints on the possible 9 x 4 arrays and so the search 
takes considerably longer. 

Summary: By computer search and combinatorial argument 
we have established that there is no 2 x 2 x 3 x 3 x 9 or 
4 x 3 x 3 x 9 perfect binary array. To our knowledge this is 
the first nonexistence result for a PBA with N = 2•3• which 
improves on the Turyn exponent bound for N of this forrn [ 4, 
10]. There remain eleven non-equivalent values {s., .. ., s,) for 
which the existence of an s1 x ... x s, PBA with N < 20 is 
undecided [3, 6], namely: {2, 2, 4, 5, 5), {2, 8, 5, 5}, {4, 4, 5, 5}, 
{2, 2. 16, 9), {4, 16, 9}, {8, 8, 9}, {4, 3, 3, 5, 5), {2, 2, 2, 2, 3, 3, 
9}, {2, 2, 4, 3. 3, 9}, {2, 8, 3, 3, 9} and {4, 4, 3, 3, 9). 

Acknowledgments: The authors thank C. Mitchell for indepen­
dently verifying the results of the computer searches. 

13th September 1992 

J. Jedwab (Hewle1t-Packard Laboratorjes, filton Road, Stoke Gilford, 
Bristol BS/2 6QZ, United Kingdom) 

J. A. Davis (University of Richmond, Richmond, VA 13173, USA) 
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