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Davis, J.A., New constructions of divisible designs, Discrete Mathematics 120 (1993) 261-268. 

A construction is given for a (p2"(p+l),p2,p2"+ 1(p+l),p2"+ 1,p2"(p+l)) (pa prime) divisible 
difference set in the group H x z~.+, where His any abelian group of order p+ 1. This can be used to 
generate a symmetric semi-regular divisible design; this is a new set of parameters for .l. 1 ;<'0, and 
those are fairly rare. We also give a construction for a (p"- 1 +p•- 2 + .. ·+p+2,p"+ 2

, 

p"(p" + p•- 1 + ... +p+1), p"(p"- 1 + ... + p+ l),p"- 1(p" + ... + p2 + 2)) divisible difference set in the 
group H x z., x z;. This is another new set of parameters, and it corresponds to a symmetric regular 
divisible design. For p = 2, these parameters have ). 1 = .l. 2 , and this corresponds to the parameters for 
the ordinary Menon difference sets. 

1. Introduction 

Divisible Designs are combinatorial structures involving points, blocks, and 
incidence relations that were first studied by Bose and Connor in [3]. The formal 
difinition can be stated as follows. 

Definition 1.1. An incidence structure LI = ( r!J>, f!JJ, .~) is called a divisible design with 
parameters m, n, k, A. 1 , .A. 2 if the following conditions are satisfied: 

(a) The point set r!J> is split into m classes of n points. If p and q are points in the 
same class, then we write p~q. 
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262 I.A. Davis 

(b) For distinct points p and q, [p, q] =A1 if p~q, and [p, q] =A2 if p-q. ([p, q] is 
the number of blocks through p and q). 

(c) Each block contains exactly k points. 

Uthe number of blocks equals the number of points, then the design is called square. 

If furthermore the dual structure is a divisible design with the same parameters, then 
the design is called symmetric (we are following the terminology of Jungnickel [5]). 
This paper will only consider square symmetric divisible designs. If we define r to be 
the number of blocks each point is incident with, then r = k in the square symmetric 
case, and k2 - nm),2 = k-A1 + (),1 -),z)n. 

Definition 1.2. Ifr>A 1 and rk=nm), 2 , then call the design semi-regular. Ifr>) 1 and 
rk >nm A- 2 , then call the design regular. 

The remarks prior to the definition imply that the design is semi-regular if k > ), 1 

and k 2 =nmA2 , and it is regular if k>). 1 and k 2 >nmA2 • 

In this note, we will construct divisible designs with new sets of parameters. One of 
these designs will be semi-regular, while the other is regular. The constructions make 
use of a standard technique in design theory (and are similar to the constructions 
found in [5] ), namely to look for a transitive automorphism group of the design; this 
is called a (divisible) difference set. 

Definition 1.3. Let G be a group of order mn and N a subgroup of G of order n. If D is 
a k-subset of G, then Dis called a (m, n, k, A1 , ),2 ) divisible difference set (DDS) provided 
that the differences dd'- 1 for d,d'ED,d#d' contain every nonidentity element of 
N exactly ), 1 times and every element of G- N exactly ) 2 times. 

If we can find a group G with a DDS, that is equivalent to a divisible design with 
a regular automorphism group (see [2] ). Thus, we want techniques that will help us 
find DDS. One helpful way to view DDS is to consider the group ring Z[G]. The 
definition of a DDS immediately yields the group ring equation 

where 

We now restrict our attention to abelian groups; in this case, characters of the group 
are simply homomorphisms from the group to the complex numbers. Extending this 
homomorphism to the entire group ring yields a map from the group ring to a number 
field. The character sum for the character x on the element D of the group ring yields 
3 possible results: x(D) = k if x is the principal (all l) character, 

lx(D)I=~ 
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if x is nonprincipal on N, and 

lx(D)I =Jk-A.1 +(A.1 -A2)n 

if x is principal on N but nonprincipal on G. If we have a subset of the group that 
satisfies these character sums for every character x, then that subset will be a DDS 
(this is because of the orthogonality relations for characters: see [6] for similar 
arguments). Thus, our strategy will be to come up with a 'candidate' subset of the 
group, then use character theory to check that all the sums are correct. 

2. Semi-regular design 

Let G be the group of the form H x Z~a +,where His an abelian group of order p + 1, 
pa prime. The generators of the pa+ 1 parts are y and z, and we will write the elements 
of Has h0, hi. ... , hv. The subgroup N is the group (yPa, zPa);;;; z;. We also want to 
label the cyclic subgroups of order pa+ 1 in a careful way. We will use Dl,i = < yz; ), 
i=O, 1, ... ,pa+i_l and Dpj.i=(yp·jz),j=O, 1, ... ,pa-l. Consider the set 

This is the 'candidate' subset; we claim that this is a DDS with the proper parameters. 
The proof is broken down into the following sequence of lemmas. 

Lemma 2.1. D has no repeated elements. 

Proof. Suppose there is a repeated element. By the way we have displayed the set, the 
repeated element must occur within the same coset of (y, z), or unless the k's are the 
same. We will consider the i case; the j case is similar. If there is a repeated element, 
there must be an i, i', m, m' so that z;(yzip+kr=zi'(yzi'p+kr·. In order for this to occur, 
m = m' (since the same power of y must be present). Considering the powers of z, we get 

zi + mip + mk == zi' +mi' p + m\ 

or 
i(l +mp)= i'(l +mp) (mod pa+ 1 

). 

Since 1 +mp is invertible mod pa+ 1
, we can conclude that i = i', but this says that the 

elements are the same. 0 

Lemma 2.2. If xis a character of order pa+ 1 on G/H, then xis nonprincipal on all of the 
D;,i except one, where it is principal. 

Proof. The kernel of x has order p0 + 1, and ( G/ H)/Ker is cyclic. Thus, the kernel must 
also be cyclic in this case. All of the cyclic groups of that order are D;,/s, so x is 
principal on that D;,i and nonprincipal on all of the others. 0 
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Lemma 2.3. If x is a character of G / H that is nonprincipal but of order less than pa+ 1
, 

then 
pa-1 pa-1 

I x(ziD1,ip+k)= I x(yjDj,1)=0 
i=O j=O 

for every k. 

Proof. Let ~ be a primitive pa+ 1 root of unity, and suppose that x is a character of 
order less than pa+ 1 . Then 

x(y) = CP", x(z) = ~rp', (r, p) = (s, p) = 1, 

1 ~ t, v ~a+ 1, but not both t and v are a+ 1. We are only considering the D 1 , ip + k case 
above (the other argument is similar). There are two cases to consider; the first is the 
t =a+ 1 case. In this case, x is non principal on each D 1 , ip +k• so the character sums 
over these pieces is 0. Thus, the sum over all the D 1 , ip + k will be 0. If t ~a, then suppose 
that yzkEKer(x); we claim that 

for every i. This is a straightforward calculation. Using that, we get 

p'-1 p'-1 

" ( ipa - t D } a+ 1 " (f:rp')ipa - '= 0. L., XZ 1,ipa+l-t+k=p L., >,, 

i=O i=O 

A similar argument shows that if 

yzk' ifKer(x), 
then 

yz;Pa + i - '+ k' if Ker(x) 

for any i, so x(D 1 ,;pa+i-'+k·)=0. Combining these sums, we see that 

pa-1 

I x(ziDi,ip+k)=O, 
i=O 

which proves the lemma. D 

Lemma 2.4. If x is a nonprincipal character on G that is principal on (y, z), then 
x(D)=O. 

Proof. Since x(Di, i) = p0 + 1 for every (i, j) pair, and 

pa-1 

I x(ziDl,ip+d=papa+l =p2a+l, 
i=O 

then this sum reduces to x(D)=I:=ox(hk)=O. D 

Putting all this together, we get the following. 
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Theorem 2.1. D is a (p 2a( p + 1), p2, p2a + 1 ( p + 1), p2a + 1, p2a(p + 1)) DDS in G. 

Proof. Consider the different character sums. If x is principal, then the character sum 
is simply the number of elements in D, and this is obviously pa+ 1 (pa+ 1 +pa)= 

p2
a + 1 

( p + 1) = k since there are no repeated elements (Lemma 2.1 ). If x is non principal 
on N, then the character sum will be 0 on all the Dij except one, where the sum has 
modulus 

pa+ 1 =Jp2a+ l(p+ 1)-p2a+ 1 =Jk=Ti 

(by Lemma 2.2). Finally, if xis principal on N but nonprincipal on G, then the sum is 

0 = J p2a+ 1(p+1)- p2a+ 1-(p2a+1_p2a+1 _ p2a)p2 

=Jk-A1 +(A.1 -A2)n 

by Lemmas 2.3 and 2.4. Thus, D is a DDS in G. D 

This DDS generates a divisible design with the same parameters. The design is 
semi-regular since 

k = p2a + 1 (p + 1) > ). 1 = p2a + 1, 

and 
k2 = p4a+ 2(p + 1)2 = nmA2. 

The author has not found this set of parameters in the literature, so this seems to be 
a new set of parameters for a semi-regular design. 

It is worth making two comments about this construction. First, we could have 
proved this using a group ring argument. The group ring argument is more difficult, 
but it has the advantage of allowing the groups to be nonabelian. In the nonabelian 
case, the hk must be carefully chosen to match a condition much like the condition 
found in Dillon's paper [ 4]. The second comment involves a construction found in 
a paper by Arasu and Pott [1]. They have a recursive construction involving the same 
parameters as the above for the p = 2 case, but their construction is in a different 
group. The p = 2 case can be thought of as a divisible difference set analog of the 
Menon difference sets, and that is the basis of their construction. 

3. Regular design 

We will use the same pattern that we used in Section 2 to establish another new 
divisible design. We will consider the group G = H x Z P2 x z;, where H is an abelian 
group of order pa - 1 + · · · + p + 2. The subgroup N is the group Z P2 x z;. The elemen
tary abelian subgroup of rank a+ 1 has 
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hyperplanes; label these hyperplanes H 0 , H 1 , ... , HP"+ P"- 1 + .. + p· Label the elements 
of H by h0 ,h1, ... ,hpa-1+p"-1+ +p+l· If y is an element of order p2, then the 
'candidate' DDS is 

This DDS will have the parameters (pa- 1+pa- 2 + ··· +p+2,pa+ 2 , 

pa(pa+pa-1+ ... +p+l), pa(pa-1+ ... +p+l), pa-l(pa+ ... +p2+2)). We do the 
same four lemmas as in Section 2. 

Lemma 3.1. D has no repeated elements. 

Proof. If there were a repeated element, it would occur in one of the 'hk' cosets, but the 
different powers of y prevent any repetition. D 

Lemma 3.2. If x is any character that is nonprincipal on the elementary abelian 

subgroup of rank a+ 1, then lx(D)/=~. 

Proof. Every nonprincipal character is nonprincipal on all the hyperplanes except 1, 
so the character sum is 

/x(D)l=IH;·I 

=Jpa(pa+pa-1+ ... +p+!)-pa(pa-1+ ... +p+l) 

=~. D 

Lemma 3.3. If xis any character that is principal on the elementary abelian subgroup of 

rank a+ 1 but nonprincipal on y, then I x(D) I=~. 

Proof. Because x is principal on the elementary abelian subgroup, it is principal on 
every hyperplane. Thus, the sum becomes 

pa-l+···+p p-1 

x(D)= I x(hk) I x(yiHi+pd+x(hpa-1+···+1Hp"+···+p) 
k=O i=O 

Thus, x(D) has modulus pa=~. D 
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Lemma 3.4. If x is principal on N but nonprincipal on G, then 

Proof. As in the above proof, xis principal on all the hyperplanes, so the sum reduces 
quickly. Also, x is principal on y. Thus, the sum is 

x(D)=p(pa){ r:to +p x(hk) }+pa(x(hpa-1+ ... +d) 

= -(p- l)pa(x(hr 1+ ... +1 )). 

Thus, x(D) has character sum of modulus (p-l)pa=Jk-A 1 +(}, 1 -A2)n as 
claimed. D 

Putting all of this together, we get the following. 

Theorem3.1. ThesetDisa(p0
-

1 +p0
-

2 + ··· +p+2,pa+ 2 ,pa(p0 +p0
-

1 + ... +p+l), 
pa(p0

-
1 + ... +p+l),p"+ ... +p2 +2))DDS in G. 

Proof. Once again, we simply need to organize the lemmas to show that the character 
sum match what they should. Lemma 3.1 shows that the character sum for the 
principal character is equal to k. Lemmas 3.2 and 3.3 show that if the character is 

nonprincipal on N, then the sum will have modulus ~- Finally, Lemma 3.4 
shows that if the character is principal on N but non principal on G, then the character 

sum will have modulus Jk-), 1 +(A 1 -A2)n, and this shows that Dis a DDS with the 
correct parameters. D 

We can use the fact that k > )q and A- 1 > A. 2 to show that the design associated to this 
divisible difference set is a regular design (see [5] for similar arguments). Two other 
comments seem appropriate at this point. First, we should examine what happens 
with the prime p = 2. In this case 

2"-1 
m=2-1+1; k=2° · (

2a+ 1_1) 
2-1 ' 

(

2a+l _ 1 
), =2a-1 

2 2-1 2+ 1). 
Thus, A. 1 =A. 2 =22

a - 2a, and this means that the DDS is actually an ordinary difference 
set. As a matter of fact, the parameters of the ordinary difference set. As a matter of 
fact, the parameters of the ordinary difference set are Menon (v = 22"+ 2, k = 22"+ 1 -2", 
),=22"-2"), so these parameters can be thought of as a prime generalization of the 
ordinary Menon difference sets (see [2] for further details on Menon difference sets). 
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Second, as with the construction in Section 2, this proof could have been done using 
group rings, and that would have included some nonabelian examples. 
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