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An Exponent Bound for Relative Difference Sets in p-Groups 

JAMES A. DAVIS 

University of Richmond, VA 23173 

Abstract. An exponent bound ia presented for abelian (pi+j, p0, p•+;, pi) 
relative c:liffere.nce sets: this botllld can be met for i $ j. 

RESULT 

For background in Relative Difference Sets (RDS), see [3]. The basic 
group ring equation for a RDS Din a group G with a forbidden subgroup 
N is 

nn<-1> = k + A(G- N) 

If x is a character on the abelian group G, then we have three pos­
sibilities for I x(D) l=I L:dED x(d) I: if x is the principal character 
(identically 1) on G, then x(D) = k. If xis principal on N but nonprin­
cipal on G, then I x(D) I= Jk - A IN I· Finally, if x is a nonprincipal 
character on N , then I x(D) I= ../f. The last possibility is the case 
considered in this paper. We will consider the following parameters: 
v = p2;+;, I N I= p1, k = p;+;, and A = pi. Many examples of RDS 
with these parameters can be found in [l],[2],and [3). If Dis a RDS with 
these parameters, and x is a character that is nonprincipal on N, then 
I x(D) I= pi¥. 

Consider the i + j even case. This last equation transfers a group 
ring question into a number theoretic question; namely, when can the 
algebraic integer x(D) have modulus p!ti . This question was considered 
in the classical paper by Turyn [4). He based many of the arguments in 
that paper on the result due to Kronecker that if A and B are algebraic 
integers in the number field Q[{) ({ a n1h root of unity), and (A)= (B) 
as ideals, then A= B{i for some j (see p.321 of [4]). This implies that 
x(D) =pi¥ e; fore a '[I' root of unity. If we rewrite x(D) = E~=l Y;{i' 

then all of the Yi will be 0 except one, which will be p.!¥. Since x is 
a homomorphism of G, we can bound the Y; by 0 $ Yi $I Ker(x) I· 
Thus, I Ker(x) I has to be at least p.!¥ in order for the character sum 
to work. If we define the exponent of the group (written ezp(G)) is the 
size of the largest cyclic subgroup, and the order of x is the smallest 
n so that (x(g)r = 1 for every g E G, then there is a character x of 
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order exp(G). Elementary character theory tells us that I Ker(x) I= 
orJ~l(x) = /;,;(/;) 2:: pi¥; thus, exp( G) $ p1¥+i . This is essentially 
Turyn's exponent bound argument, and it is the goal of this paper to 
improve this in the relative difference set case. In order to do this, we 
need to consider K er(x) () N = Ker(x IN), the kernel of x restricted to 
N. 

THEOREM 1. IfG is an abelian group with a (pi+i,pi,pi+i,pi) RDS 
with i + j even, then exp(G) $ pitiexp(N). 

PROOF: It is easy to see that there is a character of order exp(G) that 
has order exp( N) on N. The discussion before this theorem implies 

that the size of the kernel must be at least p.!¥. However, in this 
subset of the kernel, we cannot have two elements d1 and d2 so that 
d1d2 1 E N. Thus, all elements of the subset need to be in different 

cosets of Ker(x) () N = Ker(x IN), so we must have at least p.!¥ 
distinct cosets of Ker(x IN) in Ker(x). 

0 

21+; 

I Ker(x) I= .~p(G) >pi.¥ 
K er(x IN) --2.!.._N -

u:p(N) 

exp(G) $ pi¥exp(N) 

Many abelian examples have an elementary abelian forbidden sub­
group. In this special case, 

COROLLARY 2. With the same hypotheses as above, but N is elemen­
tary abelian, then exp(G) $ p!.¥+1 • This bound can be met for i $ j . 

An example of a group that has an RDS with those parameters is 
!!±i_1 

Zpi.¥+i x Zp ' (see (1)). 
The number theory preliminaries are more difficult if i + j is odd, but 

we indicate here how to modify the arguments. Using the same number 
theory from (4) , we see that if xis nonprincipal on N, I x(D) I= p.!¥, 
so x( D) = p¥ {; (1 + 2 L:;'~f' {i') for p odd and 2.!.:t.p. {; (1 + v'-T) 
for p = 2. (Note: the factors in parentheses have modulus JP). Thus, 

I I< er(x) 12:: 2p~ for p odd and 2:: 2¥ for p = 2. The p odd case 
can be improved to I K er(x) 12:: p¥. Modifying the same argument 
as Theorem 1 produces the following. 

319 



 

THEOREM 3. If G is an abelian group with a c2•+j ' 2i, 2•+;' 2j) RDS 
with i+ j odd, then exp(_ G) $ 2¥ exp(N). If N is elementary abelian, 
exp( G) $ 2¥. If p is odd, then exp( G) $ p~ exp( N) (or $ p!±fU 
if N is elementary abelian). 

The bounds in Corollary 2 and Theorem 3 are neccessary and sufficient 
for a group to have a RDS when i = 1 (see [1]). The sufficiency is an 
open question for i > 1. 
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