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Abstract 

We modify and generalize the construction by McFarland (1973) in two different ways to 
construct new semiregular divisible difference sets (DDSs) with 21 ~ 0. The parameters of the 
DDS fall into a family of parameters found in Jungnickel (1982), where his construction is for 
divisible designs. The final section uses the idea of a K-matrix to find DDSs with a nonelementary 
abelian forbidden subgroup. (~) 1998 Elsevier Science B.V. All rights reserved 

1. Introduction 

Let G be a group of order mn and N a normal subgroup of G of order n. I f  D is a 

k-subset of  G then D is a (m, n, k, 21,22) divisible difference set (DDS) in G relative to 
N provided that the differences dd '-1 for d,d'E D, d ¢d' ,  contain every nonidentity 

element of  N exactly 21 times and every element of G\N exactly 22 times. I f  k > 21 
and k 2 =  mn22, then the DDS is called semi-regular. Families of  semi-regular DDS 

with 21 ¢ 0 are rare, as mentioned in [8]. A family of semi-regular divisible designs 
with parameters 

qd-a  __ 
q2a-d+l _ _  _ 

q - 1  

qd-a-1  qd -a  _ ) 
1 qd -a  _ 1 ,qa 7 - -  - l , qa - I  1 

,qd-a, qa q-- 1 1 q~-T 

is constructed in [8]. We will show that there are DDS associated to designs with these 
same parameters. 

The following well-known lemma describes a method used to show that a subset of  
a group is a DDS (see [11] for a general discussion of this approach). A character of  
an abelian group is a homomorphism from the group to the Complex numbers. 

* Tel.: 1 804 2898094; fax: 1 804 2876444; e-mail: jdavis@richmond.edu. 
1 This work is partially supported by a University of Richmond summer grant. 
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Lemma 1.1. A subset D of  a group G is" a (m,n,k,)q,).2) DDS i f  and only i f  
(i) every character that is nonprincipal (nontrivial) on the subgroup N has character 
sum [z(D)] = x/k - 21, (ii) every character that is principal on N but nonprincipal on 
G has character sum [z(D)] = v/k - 2i + n(21 - 22), (iii) the principal character go 
has sum go(D) = k. 

In McFarland's important paper [10], he shows that the hyperplanes of an elemen- 

tary abelian p-group can be used to build a difference set. This has been generalized 
in many directions, including the building of DDS from hyperplanes (see [1,3,4,6] for 

examples). From the character theoretic point of  view, the reason why the hyperplanes 
work so well in all of  these constructions is the fact that each nonprincipal character 

on the elementary abelian subgroup will be principal on one of the hyperplanes and 
nonprincipal on all of  the others. One easy character theoretic result is that any time 
a character is nonprincipal on a subgroup, the character sum over that subgroup will 

be 0. Thus, the character sum for a nonprincipal character will have modulus the size 
of  the hyperplane. Any principal character will have a sum the size of  the hyperplane 

for all of  the hyperplanes, so the character sum reduces to the sum of the coset rep- 
resentatives in the quotient group. In Section 2, we use this way of looking at the 

hyperplane constructions to 'increase the exponent' of  the hyperplane: we will start 
with the group zb,+,, and our 'hyperplanes' will be subgroups isomorphic to Zpb,~, I. 

The difficulty is making sure that these subgroups are pieced together in such a way 

that the smaller order characters have the correct character sum. In Section 3, we re- 
turn to the idea of real hyperplanes, and we use the fact that the quotient group of the 
p-group with the hyperplane will have a RDS with the parameters (pa, p, pa, pa-1). 
The RDS is multiplied to each hyperplane, and the result is a DDS. Two different 
constructions are given in this section. Finally, Section 4 will give a construction of 
divisible difference sets which are not semiregular, but which have a forbidden sub- 

group which is not elementary abelian. The construction will use the same sorts of 
ideas which are used in the previous two sections, and it has parameters that are 
found in [3]. 

2. Construction based on Z~.~ 

Let G be an abelian group of order pa(b-2)+(a+l)b(pb_ 1 ) / ( p -  1) with a subgroup 

H ~ Z b, .... p a prime. The generators of  H are xl,x2 . . . . .  Xb (all of  order pa+l ), and we 

will write the coset representatives of H as gi, i2,i3,...,ih_,, where 1 ~<i ~<(pb_ 1 ) / ( p -  1) 

and 0 ~< i2, i3 . . . . .  ib- 1 ~< pa _ 1. The subgroup N is the group (x lp',x 2p" . . . . .  x p') TM Zp b. 
zb-1 The next lemma counts the number of  subgroups that are isomorphic to p,,+," we 

leave the proof to the reader. 

Lemma 2.1. There are pa(b- l ) (pb_  1) / (p- -  1) subgroups isomorphic to Zbp,5,1 in the 

group Z6p,,+,. 
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Every character of  order pa+l has one of these subgroups as its kernel. We need to 
arrange cosets of  these subgroups so that the other lower-order characters sum to 0. 
The following lemma describes how to do that. 

Lemma 2.2. Let (ul,u2 . . . . .  Ub-1) be a subgroup isomorphic to Zpb,7+~ 1 in z~b,+,. I f  

w is an element so that W(Ul,U2 . . . . .  Ub-l) has order pa+l in the quotient group 
zb,+,/(ul,u2 . . . . .  Ub-l), then the cosets wi(wpiul,u2 . . . . .  Ub-1}, i =  O, 1 . . . . .  p a _  1 are 
mutually disjoint. 

j2 . . jh--  I Proof. Suppose that there is a repeated element, s a y  w i ( w p i u l ) J ' u 2  . U b _  1 = w z' 

(w p, ui)J,u~2 Jh-, This implies that w 'O+pJ')-' O+Pg,)u~ J'u~" J2 J~-'-gh-' = 1. • . . U b _  1 • . . . U b _  I 

Since w is not in the subgroup and W i ( l + p j l ) - i ' ( l + p j ~ )  is the inverse of  J,-Jl j z - - j ~  U 1 U 2 • . . 
• . !  . . t  • . t  . ,! 

. J,-J,..J2-J2 J~-,-Jh-, _ l. Thus, j k - f  for every k. Since jh-,-gh_, this forces "1 u2 - -  - -  k U b _  1 , • . . U b _  1 

(1 + Pj l )  is invertible m o d p  s+l, we get that i = F ,  so these were really the same 

element. [] 

We use this to choose a candidate divisible difference set. Take any subgroup 
U =  (Ul,U2 . . . . .  Ub-l) of zb,+, that is isomorphic to zb,7, l, and form the pa cosets 

p " - -  1 • ( w P i  ~ as described in the previous lemma. The union Ui,=0 w" ul,u2 . . . . .  Ub-l) will be 

placed in the coset whose representative is gl,0,0,...0. We repeat this process on sub- 

groups of the form (w pi~ u l, w pi2u2 . . . . .  Wmh-'Ub-l), yielding a union 

p" -- 1 p"  -- 1 p"  -- 1 p"  -- 1 
D l =  U U " ' •  U gl , ,2 , . . . , ib_ l  U w i l ( w p i l u l , w p i 2 u 2  . . . . .  w P i t ' - l U b - , )  • 

ib_, = 0  i/,_ 2 = 0  i2=0 i t = 0  

This subset is associated to the hyperplane P" P" (u 1 . . . . .  Ub_l}. For the ith hyperplane, we 
repeat this process using a different w and using the coset representatives gi.it.....ih to 

form Di. The set D =  UIP~-I)/(P-I)Di is a DDS, as proved in the following theorem. 

Theorem 2.1. The set D defined above is a 

p 2 a ( b - 1 )  P - -  1 ,  p b ,  p ( 2 a + l ) ( b - - 1 )  p b  _ l ,  p ( 2 a + l ) ( b - 1 )  p b - 1  _ 1 

p - - 1  p - 1  p - 1  ' 

p(2a+l)(b-1)-I pbp_ f 1 

divisible difference set in any abelian group that contains Zbp,,+, as a subgroup (relative 

to the elementary abelian subgroup o f  rank b inside Zbp,,+, ). Moreover, the design 
associated to this divisible difference set is semi-regular. 

Proofi To show that this is a divisible difference set, we must show that the character 
sums work out the way they should• We break the characters into cases depending on 
their order when restricted to the subgroup Zpb,,+~. The first case is when the character 
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has order p~+l on this subgroup. In that case, the kernel of the character is one of the 

subgroups, and the character is nonprincipal on all of  the other subgroups. Thus, the 
character sum is 0 on all of  the subgroups except one, and the sum on that subgroup 

has modulus p(a+l)(b-l) = w/p(2a+l)(b-1) p~'-lp_l -- p(2a+l)(b-l) P t'-'-lp_l = V/~_ )q. 
Suppose the character X has order less than p~+~ on zb,,+, but is nonprincipal. In this 

case, X will be principal on more than just one of the subgroups. If U = (ul . . . . .  ub-l) 

is one of the subgroups that Z is principal on, then Z will also be principal on 
(w(P"+I-")i'Ul . . . . .  Ub-1), il = O, 1 . . . . .  p r _  1, where p" is the order of Z. The coset rep- 

resentative in front of  this other subgroup is W p''-'i. When we sum Z over all of  these 
subgroups, we get pa+l ~-]iP~o ' g(wp"-"i)= pa+i ~Pfo  I ;((wp"-')i. Since Z(w p"-') is a 

primitive pth root of  unity, this sum is 0. This will be true for all of the subgroups 
where Z is principal, so the sum over the whole set is 0. 

Finally, if  Z is principal on the subgroup Zpb,,+, but nonprincipal on the whole group, 

then the character sum will be 

p(a+l)(b_l)+a(Ph--l)/(p--1)~ p"--I p"--I  p"--I 
. . .  ...... , ) = o  

i=1 ih t=O i,,, 2=0 il=O 

(since Z is nonprincipal on G/H). Thus, the character sums are correct in all cases, so 

this is a DDS. 
To show that it is semi-regular, we need to show that k 2 =  mn22. This is left to the 

reader. [] 

The case when b = 2 can be found in [4]. We note that the parameters of the DDS 

are found in [8], but there the construction is only for a design and not a DDS. 
This construction can be modified so that k -  21 is not a square. To do this, take the 

direct product of the group G above with Zp = (u). For each subgroup U--(Ul . . . . .  ub-l),  
there is a w E G that has order p~+l in the quotient group as well as in the original 
group (like in the construction above): take the subgroup (u, w p') ~ Zp x Zp, and choose 

any (p, p, p, 1) RDS in this group relative to (wP"). Multiply the RDS by the subgroup 
U, and do this in each case (the w depends on the subgroup). There will be 

k =  p(p(2a+l)(b_l)p b -  p - -  ll ) 

elements in this new set. Every character of  order pa+~ will still pick out exactly 
one of these subgroups, and the sum will be 0 on all the other subgroups. Since this 
subgroup is multiplied by an RDS, and since the character will be nonprincipal on the 
subgroup (wP"), the character sum will be x/~p (~+l)(b-I). That implies that 

( : - '  - ' )  
2 1 = p  p(2a+l)(b-1) P---1 . 

When the character is of  order less than pa+~, then the character will either be non- 
principal on (u), in which case all of the RDS will sum to 0, or the character will 
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be principal on (u), in which ease the sum will be p times the previous construction. 
In either case, all of  these character sums will be 0, which implies that 

22 = p (p(Za+l)(b-1)-I pb __ 1 
7 - - i )  

Finally, the size of the group has increased by a factor of p, but we are working with 
the same forbidden subgroup for the DDS. Thus, 

p(p2a(b-1) pb _ 1 
p - l ) "  

m 

This is a DDS, and it is semiregular with the property that k -  21 is not a square. This 
is summarized in the following theorem. 

Theorem 2.2. The set defined above is a 

p2a(b-l)+l pb _ 1 p(2a+l)(b-l)+l pb _ 1, p(2a+l)(b-l)+l pb-I  _ 1 
p - - l ' p b '  p - - 1  p - - 1  ' 

p(2a+l)(b-1) pbp_ 1 ) 

divisible difference set in any abelian group that contains Zpb,,+, as a subgroup and a 
Zp split off. Moreover, the design associated to this divisible difference set is semi- 
regular. 

The strategy used in this previous theorem should work in any difference set- 
ting where the difference set is being constructed by using cosets of subgroups of a 
p-group. The idea is to use a RDS in a quotient group to get a new DDS. That is the 
strategy that is employed in the next section. 

3. Using RDS to construct new DDS 

In this section, we will use a combination of RDSs in p-groups together with the 
hyperplanes of an elementary abelian p-group to construct a semiregular DDS in higher 
groups. These results are generalizations of ideas found in [5,3]. 

Let P be any abelian p-group (p  a prime) of order pS with an elementary abelian 
subgroup of rank r. Further, suppose that P satisfies exp(P)~< p(s-r)/2+l if  s -  r is even 
and exp(P)~< p~S-r--l)/2+l if  S -  r is odd. There will be ( p r _  1 ) / ( p -  1) hyperplanes 

of the elementary abelian group Zp C P; label them//1, H2 . . . . .  H~p,_ l)/~p-1). For all of  
these hyperplanes, the order of the quotient group P/Hi is pS-r+l. There is an element 
of  the quotient of  order p whose preimage in P also has order p, call that element pi. 
We will use a RDS from this quotient group to build the RDS. The next theorem 
explains why we need the exponent restrictions on P (see [9,6]). 
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Theorem 3.1 (Ma and Schmidt [9] and Davis and Jedwab [6]). 1. Let G be an ar- 
bitrary group of  order p2C+1 with exp(G)<~ p c+l. Then G contains a (p2C, p, p2C, 

p2C-1) RDS relative to any subgroup N o f  order p. 
2. Let G be an arbitrary group o f  order 22c+2 with exp(G)~<2 C+2. Then G contains 

a (22c+1,2,22c+1,22c) RDS relative to any nonsplitting subgroup N of  order 2. 
3. Let G be an arbitrary group o f  order p2C+2 (p  an odd prime) and N any 

subgroup of  order p so that GIN is not isomorphic to Zp,+, × Zpc. Then G contains 
a (p2c+l, p, p2c+l, p2C) RDS relative to N. 

Thus, we have a RDS in any of  the quotient groups P/Hi. Take any preimages of  

those elements in the RDS in P and label them ail,ai2 . . . . .  aip,-,. Finally, let G be 

any abelian group of  order ( p r  1 ) / ( p -  1) with elements g l, 92 . . . .  g(p,-l)/(p-l), and 

consider the following subset of  G × P. 

(p'--1 )/(p-- 1 ) 
D = U (all + ai2 + "'" + aip~-; )Higi. 

i=1 

Theorem 3.2. The set D defined above is a 

( p s - r p r - 1  ps - - lpr - -  l ,ps--lpr--I  --1 ps--2P r - l )  
p _ _ f , p r ,  p - -1  p - -1  ' p - - f  ' 

DDS in G x P relative to the elementary abelian subgroup of  P o f  rank r (the 
exponent o f  P has to meet the bound in the previous theorem, where c = (s - r)/2 
when s -  r is even, similar i f  it is odd). This DDS generates a semiregular divisible 
design. 

Proof. We need to check the character equations, and there are three different cases 

to consider. First, if Z is a character that is nonprincipal on the elementary abelian 

subgroup, then the kernel o f  g is a hyperplane Hi. The sum over all o f  the other Hj 
will be 0 since Z is nonprincipal on those subgroups. Since g is principal on Hi, g will 

induce a nonprincipal character on the quotient group P/Hi, and the character sum over 
(all + ai2 -+-"'"-}-aip~-,) will b e  C p s - r - l .  Thus, ]z(D)[ = p r - l  C p s - r - 1  = x / k -  )ol. 

The second case is when g is principal on the elementary abelian subgroup of  P 

but nonprincipal on P. In this case, X sums to p r - I  on all o f  the hyperplanes, and it 

induces a nonprincipal character on P/Hi that is principal on the forbidden subgroup 

generated by pi. The character sum over the RDS associated to every hyperplane will 

be 0, so • ( D ) = 0 =  v/k - 21 +n(21 - 22). 
Finally, suppose that X is a character that is principal on P but nonprincipal on G. 

In this case, 
(p"--l)/(p--l) 

z(D) = pS-rpr-I  ~ z(gi) = 0 = v/k - 21 + n(21 - 2 2 ) .  
i=1 

Since the character sums are all what we want them to be, the inversion formula 
implies that this is a DDS with the parameters listed. In order to show the semiregular 

condition, we leave it to the reader to verify that k 2 =  mn22. [] 
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We note again that these parameters are found in [8] as the parameter of  a divis- 
ible design, and our new construction shows that there are DDSs with those same 
parameters. 

We can modify this construction to allow higher exponent groups P by a factor 
of  p2 if we shrink the forbidden subgroup by a factor of  p, and this yields another 
semiregular DDS. Let P be any abelian p-group (p  a prime) of  order ps+l with an 
elementary abelian subgroup of rank r. Also suppose that P satisfies exp(P) ~< p(s-r)/2+3 
if s - r  is even and exp(P)~< p(S--r-t)/2+3 if S - - r  is odd, and we require that there can 
be at most one factor of  exponent p(S-r)/2+3 o r  p(S-r-1)/2+3. Let Z be any character 

of  the highest possible order, and consider the kernel when X is restricted to the 

elementary abelian subgroup of rank r. This will be a hyperplane H0, and we will use 
H0 as the forbidden subgroup of the construction (in the previous example, we used 

the whole elementary abelian group as the forbidden subgroup). The other hyperplanes 
will be labeled Hi, i---- 1,2 . . . . .  (pr  _ 1)/(p - 1) - 1. I f  Z is the character of  highest 
possible order, say pe, then let PP be the kernel of  Z p~-' : the size of  PP is pS. We will 
attach a RDS to each of these hyperplanes, where the RDS comes from the quotient 

group P'/Hi. By the restrictions on the exponent, this quotient group will have a 
(ps-r ,  p, pS-r, pS--r--1) RDS (as long as we avoid the one case of Theorem 3.2), where 

the forbidden subgroup of this RDS is Ho/Hi (note that this quotient subgroup has order 
p because the hyperplanes intersect in pr-2 elements). Take any preimage of this RDS 
ail . . . . .  aip~-,. Finally, let G be any abelian group of order [(pr-1 _ 1 ) / ( p -  1)]p s+l 

with coset representatives for pt labeled 91,92 . . . . .  g((p,-1)/(p-t))-I (note that IG/P'I is 
divisible by p, so some of these coset representatives will be in P), and consider the 

following subset of  G. 

[(p"--l)/(p--1)]--I 
D = (_J (all --k... q- aip,-, )Higi. 

i=l  

Theorem 3.3. The set D above is a 

- I p r - I  _ 1 13 

( p r - I  __ 1 pS-1 

RDS in the group G x P relative to the subgroup Ho. Moreover, this DDS generates 
a semiregular divisible design. 

Proof. The proof of this theorem is identical to the last theorem with the first case 
split depending on whether the character is principal on H0 or not. [] 

An example of  this construction is the (108, 9, 324, 81, 108) semiregular DDS in 

the group Z4 × Z27 × Z3 × Z3 relative to Z3 × Z3, and that would not work in the first 
construction in this section because the exponent of P is too big (we can get a DDS 
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with these parameters from Theorem 3.2, but the only in groups whose exponent is 

less than 9). 
This construction very naturally generalizes to using prime powers q instead of just 

primes p when we are talking about hyperplanes. The reason why it is stated in 

terms of primes is because the RDSs with the parameters (pa, p, pa, pO-1) are almost 

completely determined as far as existence is concerned, but not nearly as much is 
known about (qC,,q,q~,qa-t) and so it is more difficult to state the results. 

4. K-matrix construction 

In this section, we combine the ideas used in the constructions of the previous 2 
sections with the idea of a K-matrix found in [2,9]. The idea of a K-matrix construc- 

tion is to start with a p-group P, and take the equivalence classes of  characters of P 

where two characters are the same if they have the same kernel. To each kernel, a 

matrix is attached that has the property that the columns will sum to 0 for any charac- 
ter that is not in the appropriate equivalence class, and the rows will sum to a power 

of  p (in modulus) for exactly one of the rows and 0 for the others for any character 

that is in the equivalence class associated to that matrix. When viewed in the correct 
way, the K-matrix is simply a (pa, p, pa, pa-l) RDS in the quotient group relative 

to the unique subgroup of order p contained inside P/Ker(z) (the subgroup is unique 
because P/Ker(z) is cyclic). Thus, the K-matrix constructions start with subgroups 

(in the references above, the subgroups can be different sizes) and attaches a RDS 
to each subgroup of the correct size (which depends on the size of the subgroup). 
We modify that in this section to get a new construction of a divisible 

difference set. 
Let P = Z~2 × Zp b, where p is a prime and a ~ 0 and b are integers. There are 

p2a+b _ pa+b _ pa+b-1 pa __ 1 

p 2 p  p - 1  

kernels associated to the equivalence classes of  the characters of  order p2. The quotient 
group P/Ker(z)  is isomorphic to Zp2, and we will attach a Zp = (z) to P so that the 
quotient (P x Zp)/Ker(z ) TM Zp2 x Zp. The group Zp2 x Zp has a (p2, p, p2, p )  RDS 

relative to the subgroup generated by a pth power of  an element of  order p2. Attach 

this RDS to the Kernel as in the previous sections, and do this for every equivalence 
class. This takes care of the characters of  order p2. 

There are (pa+b_ 1 ) / ( p -  1) kemels associated to characters of order p. If  the 

kernels are K1,K2 . . . . .  Kp,+b-,+...+p,Kp~,+h-,+...+p+l , then we will use the grouping of 
cosets 

{r l  ,zK2 . . . . .  z P - I K p } ,  {rp+l ,zKp+2 . . . . .  z p - I K 2 p } , . . . ,  {Kp,,+h-,+...+p2+l, 

zKp,,+~-,+...+p2+2 ... . .  zp-l Kp,,+h-, +...+p2+p}, {Kp,,+~-,+...+p+l }. 
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The z being used above is the same z as in the last paragraph, where z ~ P. Notice 
that the last grouping only contains one of the kernels, and all of  the other groupings 

contain p. 
There are pa+b-l(pa _ 1)/(p - 1) kernels from the characters of order p2, and 

there are (([(pa+b _ 1 ) / ( p -  1 ) ] -  1 ) / p ) +  1 groupings from the characters of order p. 

We will use an abelian group H of order 

- - (  ) / P )  p2a+b-I -- 1 p " + b - ' p ~ - I  (P~--+b-----l l + 1 - -  + 1  
p - 1  + \ p - 1  p - 1  

to separate the group elements, where 

h = { h l , h 2  . . . . .  hr2,,+~-, } . p _ ,  +, 

If we denote the the kernels associated to the characters of order p2 by 

gp,,+b-t +...+p+2,. . . ,g,,+b-i+...+p+l+p,,+b-i /'~'--t I 

and the RDS associated to those kernels by 

Rp,,+h- %...+p+2, • - . ,  Rp,,+h_ %...+p+l +p,+h- i  ~'-I I , 

then the following is the set we will show is a DDS. 

D = i = 1  hiKp"+b-'+'"+P+t+iep"+h-'+'"+P+l+i 

(( I )/p) p 
k--1 u I%_,>k 

j = l  k=l 

tO hr2,,+h-,_, +IKp"+h-' +'"+P+I" 
p--I 

Theorem 4.1. The set D defined above is a 

p2a+b-1 _ 1 p2a+b _ 1 p2a+b+l, p2a+b- 
p - 1  + l ,  

1 
p - 1  

, p2a+b--I p2a+b--1 _ 1 

p - - 1  

~2a+b-2  ) 
p2a+b *-" -- 1 + 2p2a+b_ 2 

p - - 1  

DDS in the 9roup H x P x (z) relative to the subgroup P x (z). 

Proof. We need to show that the character theory works out according to Lemma t. 1. 
We break this into cases. First, suppose that X is a character that has order p2 when 
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it is restricted to P. In this case, Z will be nonprincipal on all the Ki except one, 

so the sum over all of the other kernels will be 0. On the one kernel associated to Z, 
the sum will be p2a+b-2. There is a RDS Ri, associated to Ki,, and Z is nonprincipal 

on the forbidden subgroup of this RDS, so the character sum on the RDS has modu- 

lus p. Thus, when we multiply the character values together, we get a sum of modulus 
p2~+b-1 = v / k _  )~. Now suppose that Z has order p on P. In this case, Z will be 

principal on several of  the kernels associated to characters of  order p2; however, Z 
will be a nonprincipal character on the quotient group associated to the RDS that is 

principal on the forbidden subgroup (the forbidden subgroup is the power of elements 
of  order p2). Therefore, the sum over the RDS will be 0, so this will cause the sum 
to be 0 over all of the kernels associated to characters of order p2. The character 

Z will be principal on one of the other kernels, and nonprincipal on all the others, 
so the character sum is again p2a+b- l= ~ / k -  )q.  NOW suppose that the character Z 

is principal on P but nonprincipal on (z). The part of the DDS that is associated 
to the characters of  order p2 will again have a sum of 0 because the subgroup (z) 
is part of  all of the RDS, so the RDS will again sum to 0. The other kernels are 

grouped together by z, so they will all sum to 0 with the exception of the one 
subgroup that is at the end. This subgroup will have a sum of p2~+b-1 = X/~_ ,;q. 

Finally, if Z is a character that is principal on P × (z) but nonprincipal on H, 
then 

Iz(D)I = ( p  - l ) p  2a+b-l = v/k - 21 + n(21 - 22) 

(this is true since all of  the cosets of  P × (z) have p2a+b elements in them except one 
which has p2a+b-1). This completes the proof. [] 

The parameters of  the DDS in the previous theorem are found in [3], but there 

the forbidden subgroup had to be elementary abelian whereas here the forbidden sub- 
group has exponent p2. Many of the construction that are based on using hyperplanes 

can be generalized by using this combination of kernels of  subgroups and relative 
difference sets (K-matrices) to give examples with the same parameters but in groups 
with lower rank. 

References 

[I] K.T. Arasu. D. Jungnickel, A. Port, Divisible difference sets with multiplier - l ,  J. Algebra 133 (1990) 
35-62. 

[2] J.A. Davis, Difference sets in abelian 2-groups, J. Combin. Theory (A) 57 (2) (1991) 262-286. 
[3] J.A. Davis, Almost difference sets and reversible divisible difference sets, Archiv der Mathematik 

59 (1992) 595-602. 
[4] J.A. Davis, New constructions of divisible designs, Discrete Math. 120 (1993) 261-268. 
[5] J.A. Davis, J. Jedwab, A note on new semi-regular divisible difference sets, Designs, Codes, and 

Cryptography 3 (1993) 379-381. 
[6] J.A. Davis, J. Jedwab, A unifying construction for difference sets, preprint. 



J. A. Davis/Discrete Mathematics 188 (1998) 99-109 109 

[7] J.F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory (A) 
40 (1985) 9-21. 

[8] D. Jungnickel, On automorphism groups of divisible designs, Canad. J. Math. 34 (1982) 257-297. 
[9] S.L. Ma, B. Schmidt, On (pa, p, pa, pa- l )  relative difference sets, Designs, Codes, and Cryptography 

6 (1995) 57-71. 
[10] R.L. McFarland, A family of difference sets in non-cyclic groups, J. Combin. Theory (A) 15 (1973) 

1-10. 
[11] R.J. Turyn, Character sums and difference sets, Pac. J. Math. 15 (1965) 319-346. 


	University of Richmond
	UR Scholarship Repository
	6-28-1998

	New Semiregular Divisible Difference Sets
	James A. Davis
	Recommended Citation


	PII: S0012-365X(98)00002-8

