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A Note on Intersection Numbers of DitJerence Sets 

K. T. ARASU, JAMES DAVIS, DIETER JUNGNICKEL AND ALEXANDER POTT 

We present a condition on the intersection numbers of difference sets which follows from a 
result of Jungnickel and Pott [3]. We apply this condition to. rule out several putative 
(non-abelian) difference sets and to correct erroneous proofs of Lander [4] for the non­
existence of (352, 27, 2)- and (122, 37, 12)-difference sets. 

1. INTRODUCfION 

We refer the reader to [2] and [6] for background information on difference sets. In 
[3] the following generalization of a classical existence test due to Mann [5] was 
proved. 

THEOREM 1 (Jungnickel and Pott). Let D be a (v, k, A)-difference set with v> kin 
G. Furthermore, let u #; 1 be a divisor of v, let U be a normal subgroup of index u of G, 
put H = G / U and assume that H is abelian and has exponent u *. Finally, let p be a 
prime not dividing u * and assume that tpl == -1 mod u * for some numerical 
G/U-multiplier t of D and a suitable non-negative integer f. Then the following hold: 
(i) p does not divide the square-free part of n = k - A, say p2j II n (where j ~ 0); 
(ii) pj:o:;,v/u; 
(iii) if u > k, then pj I k. 

In this note we point out further consequences of Theorem 1, which is implicit in the 
proof given in [3]. We shall then apply this result to rule our a few hypothetical 
difference sets, in particular correcting erroneous non-existence proofs presented by 
Lander for some abelian (352,27, 2)- and all the abelian (112, 37, 12)-difference sets. 

2. INTERSECfION NUMBERS 

Let D be a (v, k, A)-difference set in G, let U be a normal subgroup of index u of G, 
and write H = G / U. For x E H, denote by Sx the number of d E D satisfying d + U = x. 
The u numbers Sx (x E H) are called the intersection numbers of D relative to U. It is 
well known and easy to see that they satisfy the following two equations (see, e.g., 
[1]): 

(1,2) 
xEH 

We shall now state the following supplement to Theorem 1. 

THEOREM 2. With the same assumptions as in Theorem 1, one has the following 
results: 
(i) If p2j II n, then all intersection numbers of D relative to U are congruent modulo pj, 
say Sx= Y modpj for all x E H. 
(ii) One has yu == k mod pj; if we choose yo. as the smallest non-negative solution of this 
congruence, we also have Yo.u:o:;, k. 

PROOF. Identify D with the element 

D= L d 
dED 
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of the group ring 7LG, and write D' for the image of D under the canonical 
epimorphism 

8: 7LG-7L(G/U) = 7LH. 

In the proof of Theorem 1 given in [3], it is shown that D' has the form 

(3) 

for a suitable A E TLH and a suitable integer y. This proves the validity of (i). Observing 
that IHI = u and 

D' = ~ s x LJ x , 
xeH 

we see that (1) and (3) imply yu == k mod pi. Now let Yo be the smallest non-negative 
solution of this congruence. Then clearly Sx ;;:;. Yo for all x E H, since the intersection 
numbers are non-negative. This implies 

k=2: sx;;:;.uyo.D 
x 

We remark that the abelian case of Theorem 2 is similar to Theorem 4.19 of Lander 
[4]. Alternative proofs for both Theorems 1 and 2 (using a result of Lander [4] on 
self-orthogonal reversible codes, see also [7]) are given in [6]. We now present a few 
applications. 

EXAMPLE 1. Let G be any group of order 56 with a normal subgroup U of order 8, 
i.e. of index u = 7. Then G cannot contain a (56,11, 2)-difference set. To see this, 
assume otherwise and take p = 3 and note 33 == -1 mod 7. The conditions of Theorem 1 
are all satisfied, in particular p211 n, i.e. j = 1. But then Theorem 2 implies tyo ~ 11, 
where Yo is the smallest non-negative solution of the congruence 7y == 11 mod 3. Thus 
Yo = 2, and we obtain the contradiction 14 ~ 11. This rules out all abelian (56,11,2)­
difference sets, a well known result (cf. [4]); but it also excludes non-abelian groups 
(e.g., we may take G = 7L7 X H, where H is one of the two non-abelian groups of order 
8, or we may take any semi-direct product 7L7 . H). 

EXAMPLE 2. Let G be any group of order 204 with a normal subgroup of order 12, 
i.e. of index u = 17. Then G cannot contain a (204,29, 4)-difference set. Here we take 
p = 5 and note 58 == -1 mod 17. We have 52 11 n, i.e. j = 1. So Theorem 2 gives 
17yo ~ 29, where Yo is the smallest non-negative solution of the congruence 
17y == 29 mod 5. But Yo = 2 and thus we obtain the contradiction 34 ~ 29. Again, this 
excludes all abelian groups of order 206 (which is known, see [4]) but also non-abelian 
examples. 

EXAMPLE 3. Let G be a group of order 352 with a normal subgroup U of index 
u = 8 and assume that H = G/U is EA(8) (and thus u* = 2). Then G cannot contain a 
(352,27,2)-difference set. Here we choose p = 5 and note 5 == -1 mod 2. We have 
p211 n, so j = 1. By Theorem 2, we obtain 8yo ~ 27, where Yo is the smallest 
non-negative solution of 8y == 27 mod 5. Thus Yo = 4, a contradiction. Again, this rules 
out both abelian and non-abelian examples. 

EXAMPLE 4. No abelian group of order 112 contains a (112, 37, 12)-difference set. 
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We first consider the groups 7L7 x 7Ls X 7Lz, 7L7 X (7L4)Z, 7L7 X 7L4 X (7Lz)Z and 7L7 x (7LZ)4. 
To prove the non-existence in these cases we select a subgroup U of order 4 such that 
the exponent of G / U is 14 (this is possible in the groups that are under consideration). 
Note that 53 = -1 mod 14 and 5z II 25 = n; thus Theorem 1 shows that 5 ~ lUI = 4, a 
contradiction. We cannot use this argument to rule out the existence of difference sets 
in the cyclic case. But then we can take a subgroup U or order 8 and index 14, thus the 
exponent of G / U is again 14. Then the assumptions of Theorem 2 are fulfilled, with 
j = 1. The smallest positive solution of 14y = 37 mod 5 is Yo = 3. Then Theorem 2(ii) 
gives the contradiction 42 ~ 37. 

REMARK. The argument in part (3) in Lander [4, pp. 212-213] for the non­
existence of abelian (352,27, 2)-difference sets in 7Lll x U (where U is one of 
7Ls x (7L2f, (7L4)Z x 7L2, 7Ls X 7L4 or 7L16 x 7L2) contains several mistakes. The first two of 
these cases are, however, ruled out by Example 3 above. We do not see how to repair 
the proofs of the last two cases. Thus the entries 'NO' for difference sets #98 and 99 in 
Table 6-1 of Lander [4] are at present not justified; these cases are still to be 
considered as open. Note that Example 3 also gives simpler non-existence proofs for 
cases #102 and 103 in Lander's table. 

Lander made another obvious mistake concerning abelian (112, 37, 12)-difference 
sets (#169 in Table 6-1): Instead of investigating all the abelian (112,37,12)­
difference sets in the five abelian groups of order 112 he erroneously considered 
abelian groups of order 122 (in which case just the cyclic group exists). Example 4 rules 
out the existence of these difference sets. We summarize our non-existence results as 
far as they affect Lander's table in the following Proposition. 

PROPOSITION. There exists no (352,27, 2)-difference set in 7Lll X 7Ls X (7L2)2 and 
7Lll x (7L4f X 7L2. None of the groups 7L7 X 7L 16 , 7L7 X 7Ls X 7Lz, 7L7 X (7L4)Z, 7L7 X 7L4 X 
(7L2)Z and 7L7 x (7L2)4 contains a (112, 37, 12)-difference set. 
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