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JOURNAL OF COMBINATORIAL THEORY, Series A 57, 262-286 (1991) 

Difference Sets in Abelian 2-Groups 

JAMES A. DAVIS 

Department of Mathematics, Lafayette College, 
Easton, Pennsylvania 18042 

Communicated by the Managing Editors 

Received September 7, 1987 

Examples of difference sets are given for large classes of abelian groups of order 
22d+ 2

• This fills in the gap of knowledge between Turyn's exponent condition and 
Dillon's rank condition. Specifically, it is shown that Z/(2d) x Z/(2d+ 2

) and 
Z/(2d+ 1) x Z/(2d+ 1) both admit difference sets, and these have many implica
tions. © 1991 Academic Press, Inc. 

1. INTRODUCTION 

If G is an abelian group of order v, and D is a subset of G with k 
elements such that every nonidentity element can be expressed A times in 
the form a - b, where a and b are elements of D, then D is called a ( v, k, A) 
difference set in G. The order n of the difference set is k - A. In this paper 
we consider the parameter values v = 22d+ 2, k = 22d+ 1 - 2d, A= 22d - 2d, 
and n = 22

d. 

The rank r of G is the minimum number of generators, and the exponent 
(exp(G) = 2e) is the size of the largest cyclic subgroup of G. For a given 
order 22d+ 2 of G, (2d+2)/e~r~2d+3-e. In terms of r and e, the 
current state of knowledge can be summarized as follows: ( 1) If e ~ d + 3, 
then G does not have a difference set (Turyn [8]); (2) if r~d+ 1, then G 
does have a difference set (Dillon [2] ). Graphically, see Fig. 1. 

The following is a result of Turyn [8], and it will be the main tool of 
this paper: 

THEOREM 1.1. A subset D of an abelian group G is a difference set if 

and only if ILdeD x(d)I =Jn for every nonprincipal character x, and 
LdeD x(d)=kfor the principal character. (That is, IDI =k.) 

Using this result, we will prove (2). The construction is due to Dillon 
[2], but the proof uses Theorem 1.1. 

Proof of (2). Suppose G is a group with r ~ d + 1. Then G has an 
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d+3 

FIG. 1. Existence of difference sets Rank vs Exponent. 

elementary abelian subgroup H of rank d + 1. H has 2d + 1 
- 1 subgroups of 

order 2d; call them D;. If we consider the subset, D = U~~\1 - 1 g;D;. where 
the g; are coset representatives of H, then we claim that D is a difference 
set in G. For x, a nonprincipal character on G, the character sum of 
Theorem 1.1 is 

I I I 
2d+1 I I 

L x(d) = L x(gk) L x(d) . 
deD k I dEDk 

There are two cases: 

(1) x E H.L, where H.L = {x a character of GI x(h) 1 for all h in H}. 
Since D;£ H, all have x(d) = 1. Thus 

(2) x¢=H.L. Since the D; are subgroups of H, any nonprincipal 
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character will be principal on exactly one of these subgroups, say Di. The 
sum Lde D, x(d) for i =f. j is 0. Therefore, 

I I x(d) I= lx(dJI ID)= 2d =Jn. 
deD 

Thus, our nonprincipal character has the correct sum. The sum for the 
principal character is correct, since JDI = 2J(2J+ 1 

- 1) = k, so D is a 
difference set. I 

This proof suggests the approach of the rest of the paper. For example, 
the difference sets will be written as uCi' l g;D;, but each D,. will be a 
union of cosets of subgroups of the H that we pick, not just subgroups. 
Moreover, we will see the same two cases, but case 2 will be more difficult. 

We will use the following notation in the paper: If G=Z/(a)x 
Z/( b) x · .. x Z/( m ), this will be abbreviated to G = (a, b, .. ., m ). If G has a 
repeating factor, G =(a, b, b, .. ., b ), then we will write G (a, (b r), where 
there are m copies of b. The elements of the group will be written 
g = (g 1 , g 2 , ••• , gm). With "a" taken to be the exponent of G, characters will 
be written x= [v 1 , (a/b) v2 , •• ., (a/m)vm], where 

for ~ a primitive ath root of unity. 

2. K-MATRIX STRUCTURE 

We need some organized method for presenting our candidate for a 
difference set, and we also need an easy way to check the character sum 
condition from Theorem 1.1. We rick a subgroup Hof order 2d+ 1, and the 
group can be written as G=U~:: gkH. If Dis a difference set in G, it 
can be written D = Uzd:: 1 gkDk for Dk subsets of H. These Dk use the 
subgroup structure of H; they will be unions of cosets of a subgroup of H. 

Construction 

Call two characters x and x' of G equivalent if both have the same kernel 
when they are restricted to H. This is clearly an equivalence relationship; 
let the class that x belongs to be ex. 

LEMMA 2.1. If x is a character on G and x ¢ H.l, then 
e = ua/2 (x)2J- I HJ_ where a is the order x I X J= I • H· 

Proof From elementary character theory, (Ker(x IH))J_ = <x> HJ_, and 
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the even powers of x have a bigger kernel than the odd powers; only the 
odd powers of x have the same kernel. I 

To each equivalence class ex except HJ_, the class of x0 , we associate a 
K-matrix. The entries are cosets of a subgroup K of G. The K-matrix for ex 
is 

{ a;,1 } = { (i- (2i + 1) j)x + Ker(x I H) }. 

If L is the order of x restricted to H, then i and j run from 0 to L/2 - 1. 
Each column is labeled by y + jz; x, y, and z all depend on x, the charac
ter: x is in H and y and z are elements of G. The motivation for this 
construction is that each column will be in the piece of the difference set 
in a particular coset of H, determined by y + jz, a column marker of the 
K-matrix. Picking the column markers y + jz is more difficult than the con
struction in the Introduction; these column markers have to fit together to 
make our character sums correct (we will make this more precise). The 
coset of H that would be associated to the equivalence class HJ_ does not 
meet the difference set. We denote its coset representative g 2d+1. Most 
importantly, we require this choice of a K-matrix structure to have the 
following three properties: 

(i) If x' is a character not in HJ_ or in ex, but x' is principal on 
Ker(x I H) (that is, x' is in an HJ_ co set of an even power of x ), then for the 
matrix associated to ex: 

L/2-1 L/2-1 

L x'((i-(2i+l)J)x)=x'(-Jx) L x'(i(l-2j)x)=O; 
i=O i=O 

that is, 
L/2-1 

L x'(i(l-2j)x)=O 
i=O 

for every j. 

(ii) If x' is in ex"# HJ_, then for the matrix associated to ex: 

582a/57 /2·8 

IL~~I x'((i-(2i+ 1)j)x+ y+ jz)I 

= lx'(ix+ y) L~~I x'((l +2i)jx+ jz)J 

= I L~K 
1 

x' ( ( 1 + 2i) jx + jz) I 

{
O for every row but one, called i 0 

= 2d/lker(xlH)I forrowi0 • 
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The idea here is to break the character sum down to a sum over the rows 
of the K-matrix. Every rwo sums to 0 except one, which we call i0 ; i0 may 
depend on x'. 

(iii) The column markers y + jz are representatives of distinct cosets 
of H. 

THEOREM 2.2. Any group G of order 22
d+ 

2 with this K-matrix structure 
has a difference set D. 

Proof of Theorem 2.2. If we write G as Ut~: gkH, where His a sub
group of order zd+ 1, then we want to write D = Ut~~ gkDk also: the Dk 
are subsets of H, and they are the elements of the column marked by gk· 
We picked the column markers to represent distinct cosets, and the Dk are 
subsets of H, so this fits the model so far. Let x' be any nonprincipal 
character, and consider the sum 

Case 1. x' is in H~. Then, LdkEDk x'(dk)= \Dk\, since each Dk is in H. 
Now IDkl = IKer(x' IH)I L/2= IHl/2=2d. Thus the sum becomes 

Case 2. x' is not in H ~. We first check the character sum on every 
K-matrix except the one associated to ex'" If x' is nonprincipal on 
K = Ker(x" I H ), where x" is the character associated to the K-matrix, then 
since LkeK x'(k)=O, we obtain 

IE x'((i-(2i+ l)j)x+ y+ jz) k~K x'(k)I =0. 

If x' is principal on K, then when we sum only over each column in the 
K-matrix, we obtain the size of the kernel times: 

L/2-1 

x(y+Jz) L x'((i-(2i+l)J)x). 
;~o 

By property (i) of the K-matrix structure, this sum is 0, so again the 
character sum is 0 over this whole K-matrix. We need to check what sum 
x' has on its own K-matrix. The sum for a given i is 



DIFFERENCE SETS IN ABELIAN 2-GROUPS 

I 

L/2-1 I 
j~O x'((i-(2i+l)j)x+y+Jz) IKer(x'IH)I 

for every i but i0 

for i0 , 

by property (ii) of the K-matrix structure. These separate sums yield 

I 

2: x'(d)l=2d=Jn. 
dED 

Finally, 

2d+I _ 1 

L Xo(d) = ID;I L X0 (g;) = 2d(2d+ 1 
- 1) 

dED 

= 22d+ I_ 2d = k. 

Thus, by Theorem 1.1, D = ut~~ - I gkDk is a difference set in G. I 

267 

When we consider the abelian groups of order 22d+ 2
, the worst possible 

case would be (2d+ 2
, 2d), since it has the lowest possible rank (2) and the 

highest possible exponent (2d + 2 ) to be in the gap. 
To show that we do have a difference set in this class of groups, we use 

the structure from the preceding section. If we can show that the group has 
a K-matrix structure, then the fact that it has a difference set will merely 
be a corollary. 

EXAMPLE. We start by considering ( 16, 4 ), which is a group in the gap. 
The first thing we need is a subgroup H of order 8, so we will use 
( 4, 2) = H. Next we consider the equivalence relationship on the character 
group: the classes are: (1) Hl.; (2) [2, 4] Hl.; (3) [2, O] Hl.; (4) [O, 4] Hl.; 
(5) [1, 4] HJ_ u [3, 12] HJ_; and (6) [1, O] HJ_ u [3, O] HJ_. The charac
ters use a 16th root of unity. Attached to these equivalence classes are the 
following K-matrices: (1) nothing; (2) Ker([2, 4] IH), y= (1, 0); (3) 
Ker([2,0] IH), y=(l, 1); and (4) Ker([0,4] IH), y=(3,0). Notice that 2, 
3, and 4 are 1 x 1 K-matrices since the characters only have order 2 on H; 
5 and 6 will be 2 x 2 K-matrices since the characters in those categories 
have order 4: 
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(5) y=(O, 0) y+.:-=(0, 1) 

(
(0, O)+Ker([l, 4] IH) (12, O)+Ker([l, 4] IH)) 
(4, O)+Ker([l, 4] IH) (8, O)+Ker([l, 4] IH) 

( 6) y = ( 2, 0) y + .:- = ( 6, 1) 

(
(0, O)+Ker([1, OJ IH) (12, O)+Ker([l, OJ IH)) 
(4, O)+Ker([l, OJ IH) (8, O)+Ker([l, OJ IH) 

We need to confirm that this K-matrix structure will satisfy the three 
properties. 

The only characters that are principal on a kernel not the one for its 
equivalence class make up [2, OJ HJ.. The characters in this class are prin
cipal on the kernels in categories 5 and 6. If we write the general character 
in that category as x = [2, OJ hJ. for hJ. in HJ., then we have 

x(O, O)+x(4, O)= 1-1 =0; x(8, O)+x(12, O)=l-1=0. 

This holds true for both categories 5 and 6, so property (i) is satisfied. 
Suppose x is in category 2. Here, the I Ker(x I H )I = 4, so we want our 

sum 12:7".:o 1 x'((i (2i+ l)j)x+ y+jz)I to have absolute value 1. There 
is only one summand, and it is a root of unity, so it has absolute value 1. 
The exact same reasoning works if x is in 3 or 4. 

If x is in category 5, x( 4, 0) = ±i, and x(O, 1) = ±i, so we have to 
consider two different cases (two others are complex conjugates of these 
two cases). 

Case 1. x(4,0)=x(O, l)=i: 

rowi=l 

rowi=2 

l(x(O,O)+x(12, 1))1=11+11=2 

l(x(4, O)+ x(8, 1))1 =Ii-ii =0; 

x( 4, 0) x(O, 1) -i is the conjugate of this case, and its sums will be the 
same as those. 

Case 2. x(4,0)=i; x(O, l)= -i: 

rowi=l 

rowi=2 

lx(O, O)+x(12, 1)1=11-11 =O 

lx(4, OJ+x(S, 1))1 = li+il =2; 

x(4, 0) = -i; x(O, 1) = i is the conjugate of this case, and its i = 2 sum will 
be - 2i, which has absolute value 2. Thus, the sums are the same. 

Thus, the sum is always 4/ IKer[x I H] I= 4/2 = 2 for one i and 0 for the 
other. This satisfies condition (ii). 
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The same argument works exactly the same for category 6 since, if x is 
in category 6, x( 4, 0) = ±i and x( 4, 1) = ±i; just as for category 5, the four 
cases satisfy condition (ii). 

Finally, the coset representatives are: (2) (1, O); (3) (1, l); (4) (3, O); (5) 
(0, 0) and (0, l); and (6) (2, 0) and (6, 1). The cosets are distinct, which 
is condition (iii). Therefore, d = 2 has the K-matrix structure that we were 
looking for which implies that D is a difference set in ( 16, 4 ). 

For ease of notation, we will write subgroups as ( ), where this signifies 
that we are considering the subgroup generated by the elements in between 
that symbol; also, we will write cosets of this subgroup as g( ), even 
though the group is additive. 

To actually see what this difference set is in G, let us write out the D; 
and g: 

D 1 is empty; D 2 = (4, O); D 3 = ((8, 0), (0, 2)); 

D 4 = ((4, 2) ); D 5 = (8, 2) u (4, 0)(8, 2 ); 

D~ = (12, 0)(8, 2) u (8, 0)(8, 2 ); D 6 = (0, 2) u (4, 0)(0, 2); 

D~ = (12, 0)(0, 2) u (8, 0)(0, 2). 

Thus, the difference set in ( 16, 4) is 

D (1, 0)(4, 0) u (1, 1)((8,0), (0, 2)) u (3, 0)(4, 2) u (8, 2) 

u (4, 0)(8, 2) u (12, 1)(8, 2) u (8, 1)(8, 2) u (2, 0)(0, 2) 

u (6, 0)(0, 2) u (2, 1)(0, 2) u (14, 1)(0, 2) 

= { (1, 0), (5, 0), (9, 0), (13, O); (1, 1), (9, 1 ), (1, 3), (9, 3); 

(3, 0), (7, 2), (11, 0), (15, 2); (0, 0), (8, 2); (4, 0), (12, 2); 

(12, 1), (4, 3); (8, 1), (0, 3); (2, 0), (2, 2); (6, 0), (6, 2); 

(2, 1)(2, 3); (14, 1), (14, 3)}. I 

We have to develop techniques to get a difference set in (2d+i+ 1
, 2d+t) 

given that (2d+ 2, 2d) has a difference set. We look at the case where dis 
even. 

The d Even Case 

We start by considering the following groups: G = (2d+ 2
, 2d), 

H=(2fd+2J12, 2(d/Zl); G'=(2d+3, 2d+t), and H'=(2fd+zvz, 2,d+zvz), ford 

even. If x is a character on G, then we will write x = [v, 4w] which maps 
to powers of a 2d+ 2 nd root of unity ~; and if x is a character on G', then 
write x = [v', 4w']' mapping to powers of a 2d+ 3 th root of unity 11, where 
this is set up so that 11 2 = ~-
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The following map of G into G' and char( G) into char( G') will be very 
useful: 

P: G-+G' and 

defined by 

P(g) = P(a, b) = (2a, b)' 

P(x) = P[v, 4w] = [v, Sw]' 

P: char(G)--+ char(G') 

for gin G, O~b~2d-1 

for x in char(G), O~v~2d+ 2 -1. 

Note that P is not a homomorphism, but it is an injection of G into G' 
with several very nice properties. 

LEMMA 3.1. ( 1) P(x ){ P(g)} = x(g) for every x in char( G), g in G. This 
implies that P(xY {sP(g)} =x'(sg)for any r, s. 

(2) P restricted to His an injection of H into H'. 

(3) ord(P(x) IH')=ord(x IH)for every x in char(G). 

(4) Let g and g be in G. If P(g) = P(g) + h' for some h' in H', then 
g = g + h for some h in H. 

(5) If (h')1- is in (H')l_, and (y + jz) is any column marker in G, then 
(h')l_ (P(y + jz)) = (h')J_ (P(y))(h')l_ (jP(z)). 

(6) If (h')l_ is in (H')l_, and (a, b) is any element of G, then there is 
an hl_ in HJ_ satisfying (h')l_ (jP(a, b))=hl_(j(a, b)). 

Proof (1) g=(a,b); x=[v,4w]. Then P(x){P(g)}=[v,8w]'(2a,b)'= 
1'/2av+sbw = ,,21av+4bw) = ~av+4bw = [v, 4w](a, b) = x(g). Also, P(x)' {sP(g)} = 
[ v, Sw ]" { s(2a, b )'} = 1J'{2ai·s+ sbwsl = ~r{avs+4bwsl = [v, 4w ]' { s(a, b)} = x'(sg ). 

(2) Every element of His of the form h = (a2<d+zv2
, b2d12 ), for a and 

b integers, so P(h) = (a2(d+ 1 +3 l12, b2(d+ 1 
l)/

2 )'; this is in H', so since Pis 
an injection, it is an injection of H into H'. 

(3) P(x) has the same values on the generators of H' as x has on the 
generators of H (see ( 1) ), and the order of a character is determined by the 
values it takes on the generators. Thus, the orders must be the same. 

(4) Let g=(a,b) and g 1 =(a1 ,bi}; P(g)=P(gi)+h', so (2a,b)'= 
(2a 1 ,bi)'+(c2d/l+ 2,f2d12 ) for some c, f If this is true, then 2a= 
2a 1 +c2d12 +2(mod2d+ 3 ) and b=b 1 +f2d12(mod2d+i). Then a=a 1 + 
c2d/2+ 1(mod2d+ 2) and b=b 1 +f2dl2(mod2d). Thus, we have (a,b)= 
(a 1 , b 1 ) + (c2d12 +1, f2d12 ), and the second term is in H. 

(5) Let (h')J_ = [v'2(d/Z)+ 1, w'2(d/ll+ 3 ]', v' and w' are arbitrary. If 
y =(a, b) and z = (c, f), then 

(h')J_ (P(y+ jz))= [v'2d/2+I, w'2d/l+ 3 ]' (2a+2cj, b+ JJ+k2d)', 
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where k is chosen so that 0 ~ b + fj + k2d ~ 2d- 1
• This idea of using k to 

ensure that the component is in the proper range is true for the rest of the 
paper, and it never affects the calculations of the characters. Thus, we will 
suppress the use of this from now on. This value is 

IJ2(d/2)+2{ (a+ cj) v' + 2(b + j}) w'}; 

IJ2fd/2)+ 2{ (av'+ 2bw') + (cjv' + 2jjw')} 

= [v'2(d12>+ 1, w'2(d/2l+3]' (2a, b)' 

x [v'2(d/Zl+ 1, w'2(d/2J+ 3 ]' (j(2c, /)) 

= h'J_(P(a, b)) h11-(JP(c, /)). 

(6) Let (h')J_ = [v'2(d/2 l+•, w'2(df2>+ 3]' and (a, b) is an element of G. 
Then 

h'J_(JP(a, b)) = [v'2(df2 i+ 1, w'2(d/2i+ 3]' (j(2a, b)') 

= IJ2(d/2)+2{ajv'+2bjw'} = ~2(d/21+I{ajv'+2bjw'} 

= [v'2(dl2>+ 1, w'2(d/2i+ 2 ](j(a, b))=hj_(j(a, b)), 

where [v'2(d+ 2 l12, w'2<dl21 + 2 ] is the hj_ we were looking for. I 

We can use P to map a K-matrix in G to a K-matrix in G' as follows: 
if the arbitrary element of this K-matrix is x + Ker(x I H ), Lemma 3.1 (2) 
ensures that P(x) will be in H'. Thus, P(x) + Ker(P(x) IH') will be the ele
ment of a K-matrix in G'. If the equivalence class of the K-matrix is ex• then 
the equivalence class associated to the K-matrix in G' will be e P<x>: by 
Lemma 3.1(3), since these characters have the same order, the size of the 
matrix will be the same. If the column marker for this K-matrix is y + jz, 
then the new column marker for the K-matrix in G' is P(y + jz). We can 
use the lemma to show that the new K-matrices will satisfy properties (i), 
(ii), and (iii): the one important thing to note here is that this will not be 
a complete K-matrix structure as defined in Section 2. In that section, every 
equivalence class of characters had to have a K-matrix associated to it, and 
here we have only defined K-matrices for characters of G' that have a 
preimage character in G under P. Thus, we only check characters of the 
form P(x), but there are other characters of G'. 

LEMMA 3.2. If there is a K-matrix structure in G satisfying properties ( i ), 
(ii), and (iii), then the K-matrices obtained in G' by using P will also satisfy 
these properties. 
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Proof (i) HI.f:"o I x((i (2i+l)j)x) 0, then by Lemrna3.l(I), 

L/2-1 /,/2-1 

I P(x)((i (2i + 1 )j) P(x)) I x((i (2i + 1 )j)x) 0, 
i=O 

so the K-rnatrix in G' satisfies ( i ). 

(ii) If 

i=O 

1L:tal xhj_((i (2i+l)j)x+y+jz)/ 

{0

2d/1Ker(x IH)I for i= io 

otherwise. 

then by properties ( 1 ), ( 5 ), and ( 6) of Lemma 3.1, with h' J_ EH' J_, 

I 
L/2-1 I 
j~O P(x)htj_((i (2i+l)j)P(x)+P(y+jz)) 

I

LP-1 I = ;~o P(x) h'J_((i- (2i + 1 )j) P(x)) P(x) h'J_(P(y + jz)) 

I 
L/2 1 I 
j~o x((i (2i + 1 )j)x) P(x)(P(y)) P(x)(P(jz)) h'J_(P(y+ jz)) 

= j L~K
1 

x((i- (2i + 1 )J)x) x(y) x(Jz) hj_(y + Jz)j 

for some hj_ in HJ_ 

IL/~I xhj_((i (2i+l)j)x+y+jz)/ 

={2
0

d/1Ker(x IH)I for i=i0 

otherwise 

so this satisfies (ii). 

for i = i 0 

otherwise; 

(iii) By Lemma 3.1(4), if P(y+ jz)=P(y 1 + j'z 1 )+h 1 , then y+ jz 
y 1 + j 'z 1 + h for some h. This implies that those two are in the same coset 
of H, so since all the column markers are in distinct cosets, we have that 
y + jz = y + j' z 1 are marking the same column. Thus, P(y + jz) 
P(y + j' z i), so we still have distinct coset representatives. I 
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We need to realize what needs to be completed. The classes of characters 
that have preimages in G cover twice as many characters in G' as they did 
in G, since H'J_ is twice as big. Thus, they cover half of the characters of 
G', since there are four times as many of the characters of G'. Consider 
characters of the form [ v, 4 ]', for 0 :::;; v :::;; 2 (d + 2 >12 

- 1. The classes of these 
characters fill out the missing characters, and we need to find K-matrices 
associated to these classes to fill out our structure. The K-matrix associated 
to the class for [v, 4 ]' is 

{(i- (2i + l)j)x + Ker([v, 4]' IH') }; y; z; 

where x (0, 2dl2 )'; z = (4, 2d12 - v )'; y = ( 1, v/2)' if v is even, (3, (v + 1 )/2)' 
if v is odd; ord [v, 4 ]' = 2<dl2 > + 1, so O:::;; i, j:::;; 2d12 t. 

LEMMA 3.3. If d is even, then the K-matrix structure we have setup using 
the map P and the [v, 4 ]' matrices satisfies properties (i ), (ii), and (iii) of 
the K-matrix section. 

Proof We need to check the three properties separately, but we need to 
notice that a lot of work has already been done in Lemma 3.2. 

(i) Suppose we have a character x that is not in H'J_ or in ex' for 
some character x', but x is principal on Ker(x' I H' ). As noted before, this 
implies that x is an even power of x' (or an H' J_ translate of that). If x' is 
in the class of a character that is an image under P, then Lemma 3,2 
implies that (i) is satisfied. Thus, we only need to consider the case 
x'=[v,4]' for some v. In that case we have x=[v,4]' 2

m for m;tO 
(mod 2dl2 ), so 

L/2-1 

L [v, 4]'2m h'J_((i-(2i+ l)j)(O, 2d12 )') 

i=O 

L/2-1 

= L [v,4]' 2m((i-(2i+l)j)(0,2d/l)') 
i=O 

2d/2 

= L: 
11 

{2d12 + 2u- (2i + l)j) i 2m 

i=O 

zd/2 _ 1 2d/2 _ 1 

= L 1J{2d/2+\;-(2i+l)J))m= L Y(i-(2i+l)j)m, 

i=O i=O 

where y is a 2d12 root of unity. This last sum is 0, since (1 - 2j)m :t 0 
(mod 2dl2 ). Thus, (i) is satisfied. 

(ii) If we have any nonprincipal character x not in H'J_, we want to 
check the sum over its associated block. Again, if x is an image by P of a 
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character on G (or an H' 1 -translate of one), then Lemma 3.2 shows us that 
this is satisfied. We only need to check the case of x= [v, 4]', and (h')l_ = 
[a2 (d/2J + 1, bl(d/2!+ 3 ]', 

I L:~
1 

[v, 4]'2m+
1 h'.L((i- (2i + 1 )j)(O, 2d12 )' + y + }(4, 2d/l - v)) I 

= 12:~1 [v, 4]'2m+l ((i (2i+ l)j)(O, 2di2)' 

+ y+ }(4, 2di2 -v))h'.L(y+ }(4, 2d12 -v))I 

I 

2d12_ 1 I 
= L l'/((i- (2i + 1 )}) 2d/2+2 + j {4v + 2d/2+2 _ 4v) )(2m +I)+ j {2a2di2+2 + b2d+3 - 2bv2d/2+2) 

}=0 

= [ l'/i2d/l+2(2m + !)[ I 2d/I I l'/j2d/2+2((2m +I )(-1- 2i +I)+ 2a- 2bv) I 
1=0 

I 

2d/2 1 I 
= _L 1'/j2dl2+3((2m +I )(-i)+ a-bv) 

1=0 

I 

2d12 I I _L yf((2rn+l)(-i)+a-bv), 

1=0 

where y is a 2d12 root of unity. 
This sum is zero unless ( 2m + 1 )( - i) + (a - bv) = 0 (mod 2d/l ), in which 

case the sum is 2d12 = 2d/ f Ker(x' I w)f, which is what we want. This happens 
when 

or 

(2m + 1 )( -i) = (bv- a) (mod 2di2 ), 

(-i)=(bv-a)/(2m+l) (mod2dl2
), 

i =(a bv )/(2m + 1) (mod 2di2
); 

this is the i 0 we were looking for. Thus, (ii) is satisfied. 

(iii) We need to show that the coset representatives that we get from 
this construction (what is being called the column markers) are distinct. If 
we have two that are the same, they must both be images of column 
markers in G, or both not images. The reason for this involves the first 
component of the column marker: every image from G has an even first 
component since P doubles the first component, and every nonimage has 
an odd first component by construction. Thus, these could never differ by 
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an element of H; so we have only these two cases to check. The first case, 
that of both column markers being images from G, is taken care of in 
Lemma 3.2. Thus, we only need check the nonimage case. They are of the 
form y + jz and y + j'z. In this case, bothy and y 1 must of the form (1, v/2) 
or (3, (v + 1)/2), since z has first component 4 and these must agree in the 
first component modulo 4. Also, using the first components, we see that j 
must equal j': if not, then the restriction of the values for j implies that 
they cannot be congruent. Finally, the second component yields 

v/2 + j(2d12 - v) = v i/2 + j(2d12 - v1 ) (mod 2d12 ), 

(v-vi)/2 + (j)(v1-v)=0 (mod 2dl2 ), 

(v-vi) + (2j)(v 1 -v)=0 (mod 2d12 + 1 
), 

(v-v1)(2j-1)=0 (mod 2J12 + 1 
), 

v1 -v=O (mod2d/2 +1 ). 

v1 = v (mod 2d/l+ 1 ); 

by the restrictions on v. 

Thus, these mark the same column, so the column markers are repre
sentatives of distinct cosets. I 

The d Odd Case 

Before we do that, we need to realize that the map P used above is only 
good in the d even case. We need a similar map to handle the d odd case. 
In the same way, use the groups: G=(2d+ 2,2d); G'=(2d+ 3,2d+ 1

); 

H = (2<d+ 1V2, 2<d+ 1 >12 ); H' = (2<d+ 3112, 2<d+ 1112 ). Characters on G will be 
written [v, 4w], and characters on G' will be written [v', 4w']'. We define 
P' as follows: P': G--!> G' and P': char(G)-!> char(G') by P'(a, b) (a, 2b)', 
O:::;;a:::;;2J+ 2 1, and P'([v,4w])=[2v,4w]' for~ a 2d+ 2 root of unity 
and 1J a 2d+ 3 root of unity (again with 17 2 = ~), and 0:::;; w::::; 2d - 1. We also 
need to define a "twist" in G' to ensure ourselves of a completely analogous 
lemma to 3.1 : 

/: G'--!> G' defined by f(2a, b)' = (2a, b)'; 

f(2a + 1, b)' = (2a, b + 1)'. 

We notice that every column marker z has an even first component since 
it is either 4 or an image by P. Thus, f does not affect z. The following 
discussion is completely the same as Lemmas 3.1 through 3.3, so we have 
not included the proofs. The only slight change is the introduction of the 
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map f, but it is easy to check that the character calculations still work out 
with f involved. We obtain the following lemma. 

LEMMA 3.4. (1) P'(x)[P'(g)] = x(g)for every gin G and x in char(G). 
Also, P'(xY (sP'(g)) = Xr(sg) for any r, s. 

(2) P' injects H into H'. 

(3) ord(P'(x) IH')=ord(x l 11 )for all x in char(G). 

(4) Let g, g" be in G. lf f(P'(g))=f(P'(g"))+h'for some h' in H', 
then g = g" + h for some h in H. 

( 5) If x' is in char( G' ), and y + jz is a column marker in a K-matrix 
in G, then x'(f(P'(y + jz))) = x'(f(P'(y))) x'(f P'(jz))). 

(6) lf (h')J. is in HIJ., and z=(2a,b) is any element ofG with even 
first component, then there is an hJ. in HJ. such that (h')J. (f(P'(jz))) = 

hJ.(jz). 

Using P' and f, we can get a map from a K-matrix structure in G to a 
K-matrix structure in G' as follows: If x + Ker(x I 11) is the arbitrary entry 
in the K-matrix, then P'(x)+Ker(P'(x) Ill') is the element in the K-matrix 
in G', the associated equivalence class of characters is e P'(xl' and the 
column markers in the new K-matrix are f( P' (y + jz) ), 

LEMMA 3.5. If there is a K-matrix structure in G satisfying properties (i ), 
(ii), and (iii), then the K-matrix structure obtained in G' by using P' and f 
will also satisfy those properties. 

Thus, we always have a method of embedding our K-matrix structure 
into a higher group. This is not the complete structure: there are many 
characters in the higher character group that do not have a preimage 
character. 

Just as in the even case, there are equivalence classes with representatives 
[1, 4v]', where 0 ~ v ~ 2<d+ 3 l/2

- l. The corresponding K-matrix is 
{ (i (2i + 1) j)x+ Ker( [ 1, 4v]' I H') }, where x = (2<d+ 3 ll

2
, O)'; y (2v+ 1, O)'; 

z = (2<d+ 3 ll2 
- 4v, 1 )'. Notice here that the order of [ 1, 4v ]' is 2<d+ 3 )12, so 

i and j are between 0 and 2<d+ 1 l/2 - 1, and I Ker( [ 1, 4v ]' I 11 . )I 2<d+ 1 l12• 

This takes care of all the equivalence classes that were not taken care of 
under the P' and f maps. 

LEMMA 3.6. If d is odd, then the K-matrix structure that we have set up 
using P' and f will satisfy properties (i), (ii), and (iii) of the K-matrix 
section. 

Finally, we are set to state the main result. The whole reason for these 
lemmas was to show how to build a K-matrix structure in a larger group 
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given one in a smaller group. We have now shown how to do this from odd 
to even and even to odd, which covers all the cases. 

THEOREM 3.7. Every group of the form (2d+ 2, 2d) has a K-matrix 
structure that satisfies properties (i), (ii), and (iii) using H = (2(d+Zll2, d/2 ) 

when d is even and H = ( ( 2 (d + 1 ll2 )2) when d is odd. 

Proof We will do a proof by induction, where we induct on the 
parameter d. The example that we gave, in (16, 4), is the d 2 case, and it 
starts the induction. Then if the group with parameter d', (2d'+ 2

, 2d'), has 
a K-matrix structure satisfying (i), (ii), and (iii), we can use either 
Lemma 3.3 or Lemma 3.6 to see that the group for d' + 1 will also have a 
K-matrix structure satisfying those three properties. The only difference 
between the two is that Lemma 3.3 handles the d' even case, and 
Lemma 3.6 handles the d' odd case. Thus, (2d' + 3, 2d' + 1) also has a 
K-matrix structure, so the induction is done. I 

COROLLARY 3.8. Every group (2d+z, 2d) has a difference set. 

FIG. 2. Existence of rank 2 difference sets. 
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Proof Combining Theorems 2.2 and 3.7, since this group has a 
K-matrix structure, it must have a difference set. I 

Thus, we have accomplished what appears to be the most difficult case. 
Looking at the graph in Fig. 2, we see that we have filled in part of the 

unknown area. 

4. OTHER GROUPS 

We have now constructed a difference set in the difficult rank two case: 
we wish to obtain difference sets in other groups as a result of this finding. 
There are many techniques for finding these difference sets, and we will try 
to demonstrate several of these. The goal is to develop enough techniques 
to be able to answer all 2-groups. 

(2d+ 1, 2d+ 1 ) Case 

This is the other rank two case that meets the exponent bound. We can 
immediately observe that any group of this form will have the same sub
groups Has the (2d+ 2

, 2d) for comparable d (depending on d even or d 
odd). Using the same idea that we used in the last section, we have 
G = (2d+ 2, 2d), H = (2<d + 2112, 2d+ 2 ) for d even, (2<d+ 1112, 2<d+ 1112 ) for d odd; 
G' = (2d+ 1

, 2d+ 1 
); and H' is isomorphic to H. We need to find a map from 

G to G' and char(G) to char(G') will allow a transfer of the K-matrix struc
ture. The following will work: T: G ~ G' defined by T(2a, b) (a, 2b) and 
T(2a+l,b)=(a,2b+l). T:char(G)~char(G') is defined as follows: let 
[v, 4w] be any character in char(G), where 0 ~ v < 2d+ 2 and 0 ~ w < 2d. If 
O~v<2d+i, then T[v,4w] [v,w]', and if 2d+ 1 ~v<2d+ 2 , then 
T[v,4w]=[v,w+2d]'. The characters ofG map to~. a 2d+ 2 th root of 
unity, while characters of G' map to b a 2d+ 1th root of unity. These roots 
of unity satisfy ~ 2 =15. We need to catalogue the properties of this map. 

LEMMA 4.1. (1) Tis a bijection of G into G' and char(G) into char(G'). 

(2) T restricted to H is a bijection into H; moreover, if T(p) - T( q) is 
in Hin G', then p-q is in Hin G. 

(3) For every x a character on G and every g in G with even first 
component, T(x) T(g) = x(g). 

( 4) If y + jz is a column marker of the K-matrix structure in G, then 
T(y + jz) = T(y) + jT(z). 

( 5) ord( T(x) I H) = ord(x I H) for every x in char( G); therefore, 
JKer(T(x) IH)I = JKer(x IH)J. 

Proof (1) To show that T is 1-1 on G, look at arbitrary elements 
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g=(a,b) and k=(a".b") in G. Suppose T(g)=T(k). In this case, both a 
and a" must be both odd or even: if not, T(g) and T(k) will have opposite 
odd/even components in the second component, which cannot happen if 
they are equal. We have that either a/2 = a"/2 (mod 2d+ 1

) or (a - 1 )/2 = 
(a" - 1 )/2 (mod 2d+ 1 

); both imply that a= a" (mod 2d+ 2 ). Similarly, either 
2b = 2b" (mod 2d+ 1 ) or 2b + 1=2b" + 1 (mod 2d+ 1 

); both of these imply 
that b b" (mod 2d). Thus, g = k, so Tis 1-1. Since these are finite, this 
implies that T is a bijection. 

Suppose T[v, 4w] = T[v', 4w']. By the restriction of v, v', w, and w', we 
immediately obtain that v = v' and w = w'. Thus, Tis 1-1 on char( G), and 
is therefore a bijection. 

(2) The general element of Hin G can be written h = (a2<d+ 2v2
, b2dl2) 

in the d even case (the d odd case is the same). T(h) = (a2dl2, b2<d+ 2 ll2 ), 

and this is the general element of Hin G'. Thus, T maps H into H, and 
it inherits the bijection property. 

Also, suppose p =(a, b) and q =(a", b"); p and q must have both even 
or both first components (if not, then second components would differ in 
their odd components when we apply T, and would not be in H). Consider 
the odd case (the even is the same): T(p)- T(q) =((a - 1 )/2, 2b + 1) 
((a" 1 )/2, 2b" + 1) =((a a")/2, 2(b b")) is in H, so its preimage is also 
in H by the first part of (2). Therefore, (a a", b-b")= (a, b) (a", b") is 
in H. 

(3) Let x = [v, 4w] for ~ a 2d+ 2 root of unity, and let g = (2a, b) be 
an aribitrary element of G with an even first component. We have two 
cases: first, if O~v<2d+i, then T(x) T(g)= [v, w]' (a, 2b)=Jav+ 2bw= 
eav+ 4hw=[v,4w](2a,b)=x(g). If 2d+ 1 ~v<2d+ 2, then T(x)T(g)= 
[v, W + 2d]' (a, 2b) = 15av+2bw+b2d+t = 15av+2bw = ~2av+4bw = [v, 4w](2a, b) = 
x(g). 

( 4) Every z = (2a, b ), for some a and b. The other part of the column 
markers, y, could have any values in the first component, so we break this 
down into two cases: 

Case 1. y has even first component; y = (2c, e ): 

T(y + jz) = T( (2c, e) + j(2a, b)) = T(2( c + ja ), e + jb) 

= (c+ ja, 2e+2jb)= (c, 2e)+ j(a, 2b)= T(y)+ jT(z). 

Case 2. y has odd first component; y = (2c + 1, e ): 

T(y + jz) = T(2c + 1 + 2ja, e + jb) = ( c + ja, 2e + 2jb + 1) 

= (c, 2e + 1) + j(a, 2b) = T(y) + jT(z). 
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Thus, the column markers in the new group can be written the same way 
as the old ones, as T(y) + jT(z). 

(5) By (2), T maps the generators of H to the generators of H. By 
(3), since every element of H has an even first component, T(x) will have 
the exact same character values on the generators that x had; thus, the 
order of T(x) is the same as the order of X· The last statement comes from 
the equation IKer(x IH)I IHl/lord(x IH)I. I 

Using this map, we can get a map from the K-matrix structure in G to 
a K-matrix structure in G'. If x + Ker(x I H) is an arbitrary entry in a 
K-matrix in G, then T(x) + Ker(T(x) IH) is the element in G'. The 
equivalence class associated to the matrix is generated by T(x) if x is the 
character in G. Finally, we use T(y + jz) for the column markers for this 
K-matrix in G'. 

THEOREM 4.2. Every group (2d+ 1, 2d+ 1
) has a K-matrix structure 

satisfying (i), (ii), and (iii), and therefore has a different set. 

Proof Take the K-matrix structure found by using T on the K-matrix 
structure of Theorem 3. 7: 

(i) If x' is not in H~ or in ex for some x, but x' is principal on 
Ker(xlH), then I.f~20 1 x'((i (2i+l)J)x)=0, x'=T(x") for some x" in 
char(G). Thus, by (3) of Lemma 4.1, since xis in Hand therefore has even 
first component, 

L/2 I L/2 I 

2: T(x")((i- (2i + l)J) T(x)) = L x"((i-(2i + l)j)x) = o, 
i=O i=O 

since we have this property in G. 

(ii) If x' is not in H-1, then on the K-matrix associated to x', 

I
LP-1 I 
j~O X'(( 2i) }X + jz) 

= gd/IKer(x' IH)I io 
otherwise. 

By (1) and (2) of Lemma 4.1, there is ax" in char(G) so that T(x") = x'. 
Thus, since x is in Hand has even first component, and z is defined to have 
an even first component, we can use Lemma 4.1(3) to show 
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IL~~
1 

T(x")((-l-2i)jT(x)+jT(z))I 

= IL~~
1 

x"((-1-2i)jx+ jz)I 

{0

2d/1Ker(x' IH)I io 
otherwise, 

since this is true in G. 

281 

(ii) By property (2) of Lemma 4.1, if T(y + jz)- T(y 1 + j'zi) is in H, 
then y + jz - (y 1 + j' z 1 ) is in H, so these are equal, and thus the column 
markers are in distinct cosets in H. I 

So that we have a concrete example of this theorem, we look at the (8, 8) 
case. Using the maps Ton the (16, 4) case, we get the following setup: 

D2 = (2, O); D 3 = ((4, 0), (0, 4)); 

D4 =(2,4); 

D5 = ( 4, 4) u (2, 0)( 4, 4 ); 

D; (6,0)(4,4)u(4,0)(4,4); 

D 6 = (0, 4) u (2, 0)(0, 4 ); 

D6 = (6, 0)(0, 4) u (4, 0)(0, 4 ). 

Also, g 2 =(0, 1); g 3 =(0,3); g 4 =(1, l); g 5 =(0,0); g;=(0,2); g6 =(1,0); 
g6 = (3, 2). By Theorem 4.2, 

D = ( 0, 1 ) ( 2, 0 ) u ( 0, 3 ) ( ( 4, 0 ), ( 0, 4) ) u ( 1, 1 ) ( 2, 4 ) 

u < 4, 4 > u (2, 0)( 4, 4 > u (6, 2)( 4, 4 > u (4, 2)( 4, 4 > 
u (1, 0)(0, 4 > u (3, 0)(0, 4 > u (1, 2)(0, 4 > u (7, 2)(0, 4 > 

is a difference set in (8, 8), or 

D= {(O, 1), (2, 1), (4, 1), (6, 1); (0, 3), (4, 3), (0, 7), (4, 7); 

(1, 1), (3, 5), (5, 1), (7, 5); (0, 0), (4, 4); (2, 0), (6, 4); 

(6, 2), (2, 6); (4, 2), (0, 6); (1, 0), (1, 4); (3, 0), (3, 4); 

(1, 2), (1, 6); (7, 2), (7, 6) }. 

Again, looking at our graph in Fig. 3, we have filled in another hole. 
We can use this same methodology on the groups (2d+ 1, 2d, 2); 

((2d) 2
, 4); and ((2d) 2

, (2) 2
), but that is as far as it goes using that same 

582a/57/2·9 
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d+3 

d+l 

FIG. 3. Existence of rank 2 difference sets. 

exact K-matrix structure. There is a far superior method for establishing 
the existence of difference sets in these groups, and it is due to Dillon [ 4]. 
We tackle this approach now, without giving proofs. 

THEOREM 4.3. If G and G' have order a power of 2, with the property 
thnat they admit difference sets, then G" = G x G' also admits a difference 
set. 

THEOREM 4.4. If G has a Hadamard difference set, then so does every 
group of the form ( (2 )', K), where K is any group containing G as a subgroup 
of index 2s. 

These two results are not limited to the abelian case, so they yield some 
nice results in the nonabelian groups of this order. In this paper, we are 
solely interested in abelian groups. 
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LEMMA 4.5. For every d and everyh 0 :!S; e :!S; d- 1, the following groups 
have difference sets: 

(i) (2d+2, 2d-e-1, (2y+i), 
(ii) (2d+I, 2d-e, (2y+1), 

(iii) (2d, 2d-e- I, 4, (2y+ I). 

Proof We do induction on d. If d= 1, then e 0 and these three cases 
are merely: (i) (8, 2); (ii) (4, 2, 2); and (iii) (2, 4, 2). All of these have 
difference sets, so this is true for d = 1. 

Suppose that the lemma is true ford- 1. From her we only consider (i), 
since (ii) and (iii) are very similar. 

(i) The group G= (2d+ 1, 2d- 1
) has a difference set by Corollary 3.8; 

choosing K = (2d+ 2
, 2d- J) and applying Theorem 4.4, we see that 

(2d+ 2, 2d- 1
, 2) has a difference set, and this is thee= 0 case 

d+3 

®implies that ther~ is a JtfQ.Up with these 
parameters that has a ihtterence set 

d+l 

FIG. 4. Existence of difference sets. 
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Finally, for 1 ~ e ~ d (or 0 ~ e - 1 ~ d- 1 ), use Theorem 4.4 on the 
following groups G and K, where G is written to satisfy the inductive 
hypothesis, so that it has a difference set: 

= (2(d- l) + 2, 2(d- l I - (e- l) - 1, (2 )(e- I)+ l ); 

K = (2d+2, 2d-e-1, (2)"). 

These imply that (2d+ 2,2d-e- 1, (2)'+ 1
) has a difference set. I 

This lemma shows that for the exponent 2d+ 2
, 2d+ 1

, and 2d cases, there 
is a group of order 22d+ 2 of every rank that has a difference set. This does 
not answer every group with those exponents, but it does fill in a large part 
of the unknown gap. 

TABLE I 

Group 
d in Gap Exist? Reason 

(16,4) yes Cor. 3.8 
( 8' 8) yes Thm. 4.2 

3 ( 32' 8) yes Cor. 3.8 
(16,16) yes Thm. 4.2 
(32,4,2) yes Thm. 4.4 K ( 32 ,4); 

G ( 16' 4) 
( 16' 8' 2) yes Thm. 4.4 K ( 16' 8); 

G ( 16' 4) 
(16,4,4) yes Thm. 4.3 K (l6,4)x(4) 
( 8' 8' 4) yes Thm. 4.3 K ( 8, 8)x (4) 

4 ( 64' 16) yes Cor. 3.8 
(32,32) yes Thm. 4.2 
( 64 '8' 2) yes Thm. 4.4 K ( 64 ,8); 

G "' ( 32 '8) 
(64,4,2,2) yes Thm. 4.4 K ( 64 '4' 2); 

G (64,4) 
(32,16,2) yes Thm. 4.4 K ( 32' 16); 

G ( 16' 16) 
(32,8,2,2) yes Thm. 4.4 K (32,8,2); 

G (32,8) 
( 32' 8' 4) yes Thm. 4.3 (32,8)x(4) 
(32,4,4,2) yes Thm. 4.3 (32,4,2)x(4) 
(16,16,4) yes Thm. 4.3 ( 16, 16)x (4) 
(16,16,2,2) yes Thm. 4.3 (l6,16)x(2,2) 
(16,8,4,2) yes Thm. 4.3 (16,4)x(8,2) 
(16,4,4,4) yes Thm. 4.3 (8,8)x(8,2) 
( 8' 8' 8' 2) yes Thm. 4.3 (8,B)x(B,2) 
( B, 8, 4, 4) yes Thm. 4.3 (B ,8)x (4 ,4) 
( 16, B, B) ? 
( 64 '4 '4) ? 

Table continued 
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TARLE I-Continued 

Group 
d in Gap Exist? Reason 

5 (128,32) yes Cor. 3.8 
(64,64) yes Thm. 4.2 
(128,16,2) yes Thm. 4.4 K (128,16); 

G (64,16) 
(128,B,4) ? 
(128,8,2,2) yes Thm. 4.4 K = (128,8,2); 

G ( 64, B, 2 l 
(128,4,4,2) ? (if (64,4,4) has one, so does this) 
(128,4,2,2,2) yes Thm. 4.4 K (128,B,2); 

G ( 64. 4. 2' 2) 
(64,32,2) yes Thm. 4.4 K (64,32); 

G (32,32) 
(64,16,4) yes Thm. 4.3 K (64,16)x(4) 
(64,16,2,2) yes Thm. 4.3 K (64, 16); 

G ( 2. 2) 
(64,8,8) ? (similar to the two d = 4 unknowns) 
( 64, B, 4, 2) yes Thm. 4.4 K (64,8,4); 

G = ( 32' 8 ,4) 
( 64' 8' 2' 2. 2) yes Thm. 4.4 K = (64,8,2,2); 

G = (32,B,2,2) 
(64,4,4,4) ? (if (64' 4' 4) has one, so does this) 
(64,4,4,2,2) yes Thm. 4.4 K = (64,4,4,2); 

G (32,4,4,2) 
(32,32,4) yes Thm. 4.3 (32,32)x(4) 
(32,32,2,2) yes Thm. 4.3 (32,32)x(2,2) 
(32,16,B) ? 
(32,16,4,2) yes Thm. 4.4 K (32,16,4); 

G = (16,16,4) 
(32,16,2,2,2) yes Thm. 4.4 K = (32,16,2,2); 

G = (16,16,2,2) 
(32,8,8,2) yes Thm. 4.3 (32,8)x(8,2) 
(32,8,4,2,2) yes Thm. 4.3 (32,8)x(4,2,2) 
(32,8,4,4) yes Thm. 4.3 (32,8)x(4,4) 
(32,4,4,4,2) yes Thm. 4.4 K = (32,4,4,4); 

G = (16,4,4,4) 
(16,16,16) ? 
(16,16,8,2) yes Thm. 4.3 (16,16)x(8,2) 
(16,16,4,4) yes Thm. 4.3 (16,16)x(4,4) 
(16,16,4,2,2) yes Thm. 4.3 (16,16)x(4,2,2) 
( 16,8,8,4) yes Thm. 4.3 (16,4)x(8,8) 
(16,8,8,2,2) yes Thm. 4.3 ( 16, 2, 2)x (8,8) 
(16,8,4,4,2) yes Thm. 4.3 ( 16,4,4)x (8, 2) 
(16,4.4,4,4) yes Thm. 4.3 (16,4,4)x(4,4) 
( 8, 8,8,8) yes Thm. 4.3 (8,8)x(8,8) 
(8,8,8,4,2) yes Thm. 4.3 (8,8,4)x(8,2) 
(B,8,4,4,4) yes Thm. 4.3 (8,8)x(4,4,4) 

THEOREM 4.6. For a given d, every element of the unknown area of the 
graph (except possibly those of the form (3, e) for e < d) has a preimage 
group that has a difference set. Graphically, see Fig. 4. 

Proof Lemma 4.5 takes care of all the cases (r, e ), where e is d, d + 1, 
or d + 2. Thus, the only case to check is (r, e ), where r ~ 4 and e < d. 
In the r=4 case, G=(2e,2e) and G'=(2d-e+ 1,2d-e+ 1

) have difference 
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sets by Theorem 4.2, so (2", 2'', 2d- n 1, 2d e +I) has a difference set by 
Theorem 4.3. Again, using Lemma 4.5 on G and G', we can get groups of 
exponent 2e and any rank that we want having a difference set. This fills 
in the remaining cases. I 

This still leaves a gap, and there are still a lot of unknown groups. The 
main thing that is missing is the rank three cases for e < d. Table I explains 
what is known in groups that are in the small cases. Table I could be con
tinued but the pattern of unknown cases has been established. These cases 
do not have a Z/(2) component, or Theorem 4.4 would be used to get the 
result; they are not a direct product of groups with difference sets, or 
Theorem 4.3 would yield an answer. It is not clear how to attack these 
groups in a general way; the results of this paper seem to indicate that a 
character theoretic approach would answer these groups individually, but 
they do not seem to organize themselves in any generalizable pattern. 

It does appear that all groups of order 22
d+ 

2 which have exponent less 
than 2d+ 

3 will have a difference set. The worst of the problem seems to be 
done, but a general construction is still out of reach. This certainly is one 
direction that this research should lead. Other questions of interest include 
the following: 

(1) How can these results answer questions in the nonabelian case? 

(2) How can this construction be used in abelian groups other than 
2-groups? 

(3) Are there other ways to view this construction besides the 
cumbersome block notation? 

( 4) Since there are difference sets in these 2-groups, how many are 
there (up to isomorphism)? 

(5) What kinds of codes to these difference sets contain? 
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