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INTRODUCTION

It has been said thet the labor-saving devices of
this modern age have been made possible by the untiring
efforts of lazy men., While working with cubio equatione,
solvlng them according to the standard methods appearing
in modern text-books on the theory of equations, it be=
came apparent, that in man$™ oases, the finding of eolu- |
tionsxwas a long and tedious process involving numerioal
calculetione into which numerous errore could creep.
Confessing to laziness, end having been told at an
impressionable age that "any fool can do it the hard way
but it takes a genius to find the easy way"‘ it became of
interest to £ind a simpler method of solution. It
eventually beceme olear that it 1s neoessary‘to find out
what has been done in the past to aooomplish this,

| The information is found to be interesting and
#eried, but scattered among many sources. Theee sources
are brought together here; not'only in the hope that
this history will be helpful in learning about the dee
VelOpment of cublc equations but elso to chellenge the
reader to find solutions of his own, which will not only
reduoe the labor and errors involved but also will ex~

plain the true methematioal meaning of a cubic equation,



‘An altar used for prayer to angry gods is the =
legendary beginning for the many attempts to find solu-
tions to cubic equations. The altar was in the shepe of
a oube, Xneeling before this cuba, ancient Greeks had
prayed successfully to their powerful gods for many years.
However, when pestilence ceme to the land and prayers to
the gods went unanswered, legend has it that the oracle -
he who passes as the local politiclan of today - sought
to appease the people with an explanation for the lends
depression.

mAh", sald the oracle, "The gods do not answer our
?rayer‘because he is insulted by our meager altar, It
mhséwbe’&odbledﬁin‘sizé;"} | “

| Work began at once to double the size of the cube.
Wnenvfinishedg bad tinmes remained. Noat conveniently,
the 6récié d1scovered that an error had beeh'maﬁe. “The
stupid slaves had simply constructed a cube with edges
twice as long! Work such as that would not.pacify the
gods, The oracle, stalling for timo in hopes that good
:6rtune would graduslly return, consulted Plato, & re-. .
ﬁowned philosopher and a man interested.in all problems,
bould he and his disoiples find a solution? Plato's
mathemhticiana applizd their skill.
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| An importént contribution to this problem was made
:by Hippocrates of Chios around 430 B; C. He shOWed that
the problem of doubling the'cube.could:be reduced to -
}rinding two mean proportionalsibetween a gilven lihefand
anbther twice as long. He failed, however, to find the
two mean proportionala‘by geometric construction with'
ruler and;compasses,,the s-called Euclidian tools.

A _,Having been defrauded of his property‘ﬂippocrataé
wésfcénéidérédvslow and stupid by his eontemparariés.
It‘wés also_éaid'that he had actually accepted pay for
wfhé ﬁeéchihg,df~mathematiés! waévar; he was a talented
mathematician and his work on the doublingvor ihe cubé;
'preseﬁted_a challenge to others.  Who could~$olvé this
.problem depending upon cubic equatiqns and'appease the
angry gods? | | B

o .Archimédes, legend has it, was an inventor of war
machines and mirrors to reflect the sun's rays to destroy
the énemy by fire. Hls mechanical inventions vion for
him the admiration of his fellow citizens. He himself
took more pride in his accomplishments in the field of
‘pure sclence, He is known to have sald, "Every kind of
art whioh is connected with daily needs is ignoble and
vulgar." Archimedes, during the second centuiy before
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Christ, gave a geometrio solution to cubic equations
with the help of spheric sections,

‘Commercielism - the inate desire of all mankind to
makelmoney’s was the incentive for even earlier attempts
to solve problems involving the ocubic. " The Babyloniahs,
situated as they were on great caravan routes, consulted
their mathematicians in order to obtain tebles of squares
end cubes so that they could have solutions to equations -
involving lengths, breadths and volumes,

.-""The love of beauty, which, regardless of plague,
famine and -rumors of war, remailns through history with.
allipeoplee, was an added incentive to the Babylonians.
Their‘erratid Tigris and Euphrates rivers must be cone.
trolled. Dams must be constructed and canals built to
irrigate the fields so that the gardens of Babylonia
would be Tecorded in history for their loveliness. ' The
skillful mathematiciané‘muat £ind solutions to equations -
concerning- volumes.

Known to the West as & great Persiesn poet end philoe
sopher, Omar Khayyem is known to the East primarily as 8
great astronomer and mathematicien. Omar Khayyem's verse
was regsrded by orthodox Liohemmedans as heretical, ma=~

terialistic snd even atheistic. He was under constant
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Qbsegyation,bepausqvitqwas,suspicioneq that hisépoetry
.1gogtained,politioal:and_antiéreligious,meanings;q'But~
in spite of the general unpopularity of his poetic works,
13‘1s'£o§nd that the Arab historlans and biographérs,
treat him with théxhighest esteen. for his solentific.
work,»iThé works of the Greeks‘in,fihding solutions to
cubic equations was built up into a general method by
-Omar Khayyam in the eleventh eentury. He not only classe
ified cubic equations but also found many solutions by
means of the intersection of various conic secfions;,

The dark ages throughout the world brought a halt to
the progress and disseminatibn of knowledgé.JaIt was nod
until the Renaissance (1450-1630) that. the Italian mathe=-
 mat1c1ans succeeded in getting algebraic solutions to
cubic equations,

In 1505 Scipione del Ferro, a professor of mathe-
,matigs;;solved;the eﬁuation x3 4 nX =7 R, HeAdid.not.pub-
lish his solution. It was the practice in those days to
keep discoveries seoret so-that rivals could not have the
_advanﬁage‘in solving publiclyvproposed-problemsg This .
led to many dlsputes over priority. |

Nicolo of Brescla, known as Tartaglia, the stammerer,

was involved in a serious dispute over priority.  The
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product of a poor family, self-taught; end heving the =
'disgdvantage/of,a-speech 1mped1ment,kTartaglia had worked
hard §015xce1 in mathemstics. After much labor, he
sucoeeded in finding soiutions to.cubios 6f the fo:m¢x3
;f.mx :,n,,x3'=,mx # n, end x3 é:pxz =.ge. He was entreated
by friends to meke knéwn_his'aolutions immeaiateiy‘bnt,_
gthinking.he°woﬁldvébon publish an,alsebré in whiéh hevT
wdgld:make knowﬁ hisvsolutions;'he refused. He did dai-
?ulge.his secret, howsver, to one he thought a scholar
andﬂa.gentleman, Hieronimo Carden., He was betrayed-when
Ca:d#n publishedfthp~méth0d_as’his,own; . |
cardanﬁwas'chaiacterized asza(man af;genius,,foliy,
seif-odnpeit and.mysticism.' Hblwas élready‘reopgnized».;
as §n;outstanding mathemétician.‘;ﬁbwever; his désire to.
exqel,aﬁ.anx cost causéd him to;break his vow to. Tartaglia,
When Tartaglia accused Cardan. publiol&, he found that
Gardan had powerful friends both. politically and soeially
and barely escaped with his life.
| Sinoce the solutions given by Tartaglia, the, aim has
'been to introduce refinements and to simplify the ‘method, -
fThere have been attempts to solve the SOacalled "1rre~
duoible" case not possible.by»the Cardan-Tartaglia method,

Trigonometric solutions have bgen developed and thefaa
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are methods using rapidly oonveéging series, In all of
these the goal has been simplicity, acocuracy and a clear
definition of the problem:

‘Mathematiecs; throughout history, has been used as
a tool in religion, politics; economics; and in further-
iﬁg«the ambitiOn.of selfish men, It is used today, with
more refinamént, for the same reasons, It is also used
for the betterment and progress of man in the hands of
chemists; physicists and engineers, But mathematics
reaches the pinnacle of truth when it 18 used as a tool
of the mathematician, Mathematical truth for its own
‘seke is unblemished. |

| Therafora; the conslderation of only what 1s import-
ant from a purely mathematical point of view 1s desirable
for this history. The political, social; and economic
sattings-ih which these developments have taken place
will not be included. This information cen be found in
many of fhe references. Since in some cases there 1s
more than one mathematician who solved & problem, it has
been neceséary to be selective in what 1s presented here
in order to avoid unnecessary duplication as far as the
, ﬁnderstaﬁding of the historical development of cubic

equations is concerned. In this case the names of other
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"solvers" have been mentioned. More information concern-.
ing them can also be found in many of the references.

- The numbers betweenvfhe slént lines reférlto the
‘refereﬁces'in the bibliography. For example, /4337/
refers to reference number 4 pggé 37. ‘These will re-
preseht the main sources of information and the sources
to which the reader nmay go in order to more full&’infbrm
himself concerning matters discussed.

. This history brings together the most important
aspects in the development of solutions to‘the'éubié
equation and presents'a selected list of literature and

notes.



CHAPTER I

THE BABYLONIANS

Babylonian mathematiqians were mekers of mathe=-
matical téﬁles and oomputérs of;great'ability. Thelir
aptitude in these fields was probably due to their
advanced economic development.

Arithmetic, in Babylonla, had become a well~develop=-
ed algebra by 2000 B.C.. Babylonian cunieform texts
which are perhaps the oldest used texts for quadratic
equations (around 1800 B, C.) also give exercises using
cubic equations. These are separated from their geo=- .
metric and surveying problems and show purely algebraic
character, although some show a geometric origin /2/,

Thé problems on cublic equations 1ln the text are
numbered 1.2,3,12,11,;15. ‘Tne'y are classified as (1)
pure equation_(number 14), (2) normpl form (numbers 1,
12 and 15) and (3) general form (numbers éband 3)
/1;119/, /3/.

The pure equation in modern notation is as follows:

| V=2xyz=130/60, y=x, z2=ux (us=12)
which gives

x =W =\ v/12 Y18 =1/2 23,236

The terms used for the unknowns are length,
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breadth and depth for x,y, and cross-section for xyz.
- To show an exémple of the normal form number 1 is
givens . |
- xyz 4 xy 5 1 10/60, y = 40/60 x, z = 12x
from which is obtained
(12x)3 £ (12x)% = 4 * 60 # 12 (= 252)
whergby,tha solution (12x) = 6 will follow, The anclent
text does not show how this 1s achleved. However; in-
cluded in the text 1s a table which contains the sum of
the cube and square numbers of the form n3 £ n? for
n=11% 30, Its use is evident from the above example.
In problem number 12 the procedure is as followg:
V = xyz = 3/60 £ 20/60° (= 1/18), y = x, z-= ux £ 7,
u = 12) | | |
from which
v =2 fogx?

This is of the form n3 £ n®, The answer obtained is
ux & 1 or x = 1/12,
As examples of the general form probléms 2 and 3

are as follows:

xyz £ xy =1 10/60, z = ux, x £ y = 50/60 ?umber ?
u = 12
xyz £ xy = 1 10/60, 2 = ux, x = y = 10/60 number 3

The solution x = 1/2 is stated after short computation,
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probably through interpolation using different values
~of x. ,

One can bring every ocubic equation of the form
x3 fex? £ bx £ ¢ =0 into the form n3 £ n? = p.

The transformation to u’ £ qu?

S r comes from the sub-
stitution x = u £ 8 and s can be determined from a
. quadratio equation. If u® £ quf = r is divided by q3, then
(w/a)? £ (v/e)? = r/q3 | | o
which is again the form n? £ n® = p and is found in the
tables. !
- For each of the procedures the old Babylonian methods
appear suffioclent. Otto Neugebauer, to whom we owe most
of our present knowledge of the Babylonian achievements,
believes that they were quite capable of reducing the
general cubic equation, although he has, as yet, no evi-

dence that they amctually did do it.



CHAPTER II

THE GREEKS

The Greek conoern'with cublc equations grew out. of
thelr determination to solve the two problems

(l) the’ doubling of the cube and

(2). - the trisection of any angle,

The first real progiessnin the doubling of the cube
waS‘the reduction . of the problem_by Hippocrates pfﬂChios
(about 440 B, C. ) to the construction of two mean pro=~
portionals between two given linec segments s an6425/4§82/,
/5338/+ If the two mean proportionals are denoted by =
X and y , then

a' X=X yZyus2s
From‘theséuproportions one obtains x° = sy end y? = 28X.
Eliminating ¥, 1f‘18 found that‘x3 = 28°, Thus x is the
edge of a"cube-having~twice;the volume of the cube.of’
edge 8. _

He failed to find the two mean proportionals by geo-~
metric construction with ruler and compass.

VArchytas\(400~B;»C; ) was also one of the first to
give a'soiution:to the problem of duplicéting the cubé.
His.solution.festseon-rinding'a:point of intersection

of a right circular éylinder, a torus of zero inner dia-
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meter, and a right circular cone /5;28/, /4;83/,/7a;847.
| The solution\bylMenaeohmug (375 B, C.) a pupil of
Plato, ﬁaa‘given in two ways /5;4k4/. He showed that two
paiabdlas'having a common Vertex, axes at right angles,
and such that ﬁpe,latusvrectum‘gf one is double that of
the‘oﬁhei will‘interseot in another point vhose abscissa
(or~ordinate);will give.a‘solutioﬁ.A’If the equations

of the parabolas are yz‘s 2ax and x2 3 ay, they inter-

sect 1q a point whose. absclssa is given by-xa'g 2a3‘

' /1;126/. He also showed that the same point could be

' détetﬁihed by the intersection of the parabola y° = 2ax

and the hyperbola xy = a2, The first method wes probably -
suggested by the form in which HippOcrates'héd&presentedt
his problém, i.e., to find x and y so that a:x = x:¥ = y:2a,
whidh gives xz‘- ay and yz = 28X,

Thus the finding of two mean proportionala gives the
solution of any pure cubic- equation, or the equivalent of
extracting ‘the cube root.’
~ In the two propositions On the Sphere and Cylinder II,
i 5, Archimedes (240,B. C.) hses the two mean proportionals
when it is required to find x where

2 2°x.b

which today would be stated x = a°b,
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" In another problem (On the Sphere and Cylinder II,j)
he reduces the problem to dividing a sphere by a plane
into ﬁwo.segments whose volumes are in a glven ratio,
/630xxvi,62-72/, /1;127/;/5;65/, /32;128-159/,- Since thé
geometrical form of the proof 1s intricate, it will not
be given here, The procedure is clear 1f stated as follows:
Problem:

To cut a given sphere by a plane so that the segments
shall have a given ratio.
stages of the proof:

(a) Archimedes‘sayS:that if the problem is propaunded
in the general form, it requires a "diorismos", (that is,
it is necessary to investigate the limité of possibility),
but, if there be added the éonditions'axisting in a parti-
cular case, it does not require a "diorismos". Therefore,
in considering a particular case, the prpblem becomes as
follows: Given two straight lines & and b and an area
.02; to divide a at X so that

a~-x = %2 or x( x) = be”

(b) Analysis of this general prqblem,kin which it
43 shown that the required point can be found as the inter=~

sectibn of a §arabola whose equation is ax? = c?y and a



hyperbola whose equation 1s (a - x)y = ab. . .

: (Q)”‘Synthesis‘of this general problem according
as be? is greater than, equal to or less than 4a3/27,

(If greater, there is no real solution; if equal, there
ls one real solution; if less;jthere are-two real solu-
tions. ) |

(d) Proof that x?(af- x).is greatest when x = 2a/3,
This is done in two parts: (1) if x has any value less
thanpza/B;;(Z) if x has any. value greater 2&/3; then
xg(au- x) has a smaller value than when x = 2a/3,

(e) . Proof that, if be? is less than l,a3/27, there
-are always two real- solutions. ,

‘.(f) Proof that, in the particular case of the = -
geﬁeral problem to.which‘Archimedes‘has reduced his ..
original,problem, there is always a real solution. -

-, (g) Synthesis of‘the original problem,
. 0of. these stages, (a) and (g) are found in the
Arohimedian texts. Bustocius, the histqrian, found stages
| (b) through (d)hin an old book which he claims is the
work of Archimedes, Eustocius added stages (e) and (f)
himself. |
In the technical- language oﬁmGreek mathematics,

the general problenm requires a "diorismos" In modern
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language there must be limiting conditions if the eqha-
tiOnfxz(a -X) = boz\is,tq have a real root lying be-
tween zero end a, e A | L |
. In our algebxa;cAnotation,-xz(a - x) is a maximim
when.x_g 2a/3, This oan be easily proved by the‘caiculug,
By differentiéting and équating the result‘to'zero, it |
Ais found that |
~ 2ax - 3x2 2 0 and x(2 - 3x) =
from which is obtained x = 0 (minimum value) and X =z 2a/3
{maximum value)- This‘@ethod, of course, was not used
'byﬁxohimedés,
In showing that the required point can be found as
the intersection of the two conics, Archimedes proved
“that if 4&3/27 b02 then the parabola X = ¢ y/a touches
the.hyperbola (a = x)y = ab at the point (2&/3,3b) be~
dause they both;touch; at this point the;same stralght
line (gbx - ay = 3ab = 0)e This may be proved in the
following mauner,
The points of 1ntersection of the parabola and the
hyperbola are. given by the equation
| | x*(a - x)
which may be written

x?, - ax® # 483/27 = 18%/27 - be?,
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~length, FE is a second ruler at right angles to the first
with Glé fixed peg in it. (Fig. I). This peg moves in a
8lot made in a third ruler parallel to its length, while
this ruler has a fixed peg on it,in; in a straight line
with the slot in which C moves; and the peg DAcan move
along the slot in AB,

E
Fig. T

If. the ruler PD moves so that the peé D descoribes
the length of the slot in AB on each side of F, the
extremity of the rular; P; describes the curve which is:
the oonchold. .Nioomedes called the stralght line AB the
npuler”, the fixed point C the mpole”, and the length PD

the "distence”, and the fundamental property of the ourve,

-
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which in polar coordinates would now be denoted by the
equation r = a £ bsece, is that, if any radius vector
ba-d:awn from C to the ourve, as CP, the length inter-
cepted on the radius vector between the curve and the
sp:aight line AB is constant, - Thus any problem in whioh
one of the two given lines is a straight line can be
solved by means of the intersection of the other line
with a certain conchoid whose pole 1s a fixed point to
.whichAthe required straight line must verge. In practice
the conchoid was not always actually drawn, but for greater
ooﬁvenienee, the ruler was moved about the flxed point une-
t1l by trial the intercept was made equal to the given
length.

 Hipplas of Elis (420 B.C.), better known as a states-
man end a philosopher, made his single contributionvtob
mathematics by the invention of a simple device for tri-
secting an angle, This cur;e‘was called the quadratrix
/5332/,/1;125/.

If the radius of a oircle (Fig.II) rotates uniformly
around the center 0 from the position 0A through & right
angle to 0B, and at the same time a straight line, which
is drawn perpendicula: tc'OB, moves parallel to itself
from the position 0OA :o BC, the locus of their inter-
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section will be the gquadratrix,

Let OR and~HQ be the position of these liﬁes at any
timé;gand let them out in P; a point on the curve, Then

~ OM:OB =1ar3 Anf»arc AB":‘angla AOQP: éngle AOB.
Similarly, if OR be another position pf‘theviadiﬁa,

- OM':0B = angle AOP': angle AOB, |
Therafore; '

OM:OM' = angle AOP: angle AOP';
thererore;
angle AOP': angle P'OP = OM':M'M,

Hence,-1f the angle AOP is glven, and”itmis Eéquired .
to divide it.in any given ratio, it is sufficient to
divide OM in that ratiolat M', and draw the line M'g’.
Then OP'! will divide AOP in the required ratic. If OA
is taken as the initial ‘line, OP_:'p;,thewanglg_Ong e,
and OA = a, then © ;1/2113 r 8ind:a and the equation of

the curve is Tir = 286 cosech,
, B C

Q
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The quadratrix is an example of a transcendental
(nonalgebraic) ‘curve which will not only trisect a given
angle but will multlsect it into any number of equal parts.
Another example of this type of curve is the spiral of
Archimedes. Archimedes revealed his solutlon in his
Property 8 of the "Liber Assumptorum" /1;121/,/6;cxi/.

Fig.III

.. As &an example of the trisection of an acute angle,
let AOB be any acute angle, (Fig.III). Draw line MN per-
.pendicular to OA, cutting OA and OB 1n D and L. Now draw:
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the concholid of MN for pole O and constant 2(OL). At L
draw the parallel to 0A to cut the conchoid in C. Then
0C triseots angle AOB.

D A

Fig. IV

In dealing with the trisection problem the Greeks
appear first to have reduced it to what they called a
"verging" problem (so-called geometry of motion). Any -
acute angle ABC (Fig. IV) may be taken as the angle be~
tween ‘a diagonél BA and a side BC of a rectangle BCAD
/4;85/;‘/6;ox11/.;,Consider a line through B cutting CA
in E and DA produced in F; and such that EF = 2(BA). Let -
G be the midpoint of EF, Then

EG -~ GF = GA - BA
whence

[/ ABG =/ AGB = / GAF # / GFA =2 / GFA = 2 / GBC,
and BEF trisects angle ABC. Thus the problem is reduced to
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that of constructing a straight-line segment EF of given
length 2(BA) between AC and AF so that FE "yerges" toward
B.

Over the years many mechanicalzcontrivanees,}link-
age machines, and compdund compassés‘ha§émbéen devised to
 solve the trisection problem. A general angle may be tri-
sected with the aid of a coniec, The early Greeks were not
familiar enough with conics to accomplish this and the
earliest proof of the type was given by Pappus (300 AJD.)
/650x1/,

It was not until the nineteenth century that it was
shown ihat the duplication of the cube and the tiisection .
of an anglé could not be accomplished by méaﬁé of rulers
ahd compésses. Pilerre Laurent Wantzel (181.4-1848) gave
the first rigorous proofs of this. /7;350/.

The following theorem was esteblished to show the
impossibility of solving these two problems with Euclidian
tools. /4;96/. '

" From a given unit length it is impossible to construoct
with Euclidianvtoolé:a segment in the magnitude of whose
length is a root of a cubiec equation with rationsl coeffi-
cients but with no rational roots. o

In the duplication problem, take for the unit of
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length the edge of the given cube and let x denote the
edge of the cube to be found. 'Then one must have x3=2.

If the problem is solvable with Euclidian tools one could
~construct from the unit segment another segment of lepgth :
X, ‘But this is impossible since x3 = 2 1s a cubie equa~
tion with rational coefficients but without rational |

Toots,

Fig. V

In showing that the general angle cannot be tri-

'sected'with Euolidian Too1s; it is onlyfnecessary:tOr
show that .some particular éngle cannot bevtrisectedu/4;97/.
From trigonqmetry; :

cosd = 4‘0083'(9/3)f§’3 cos (8/3)i
Taking.ef='60°;and‘setting x =»cosy(9/3)r$his,beoomea‘

8x3 - 6x = 1= 0. |
Let OA be a given unit segment;wvDesoribauthenoirolé with
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center O and radius OA, and with A as a center and A
as radius draw an arc to out the oircle in B (Fig. V).
Then angle BOA = 60° Let triséotbr'oc; whioh makes
.angle COA g 20°, cuz’tne‘biféle“in‘d; and let D be the
foot of the perpendicular from C on OA. 'Then OD ‘s 60820°
which 1s’a13o'équa1‘to‘x;?f1e~rbllows*tnat if & 60% angle
can be trisébted'withrEuclidian tools, in other words
1£ OC can be drawn with'these‘todla;itheﬁ'wa can con=" "
struct from a unit SGgmeﬁt,OK-anothef’éégmeﬂt'or length
x. But this is imp0531blé by the theorem, since the
abova:dﬁbic.équationthas”raﬁioﬁai~cdéfrléienté“ﬁﬁﬁ:ndv
rational rootss
 ~ Of course some angles can be trisected with Eucli-
dian tools, What has been shown 1s that not ‘all’angles
can be trisected with ‘straightedge and compasses.
Lorenzo Masoherdni:(175091600),fanflééiiaﬁf“ﬁrbfad
that all constructions possible with ruleér and compasses
are possible with compasses alone, Jean Vietor Poncelet
(1788-1867), a Russian, proved that all such construc-
tions are possible with ruler alone, if a rixad cirole
with 1ts center in the plane of construction is given. =
" Francois Vieta {1540-1603) gave a proof thét each

_of the two famous problems depend upoi ‘the solution
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of & cubic equation /5;208/s -
| ; DioPhagtus,of“Ale;ande#,(about 75 AeDe) presented
an 1h§eresting problem involving cubics. This is stat-
ed in 1 thé rolioﬁi£g manner /32;539/: |

| To rind a right-angled triangle such that ita area, -
}added to one of the perpendioulars, makas a; square, _
while_itg;penggter_ig_a cube,

He begins his proof by_1@tt1ngﬁthefgreqﬁo;ptyebgri-
angle bo equel to X and the hypotenuse be some square.
nﬁmhe?gminQS;XQdBQY 16 = Xo. .

é’31noe:th§ area is equal to x, then the product of
the;sidas about the.right,angla is equal to 2x. wa-‘}
ever,. 2x can, .be factored 1nto Xx and 2 so that we can
make one of tha sides of the right angle equal to 2
and the other aqual to x.;;w‘; ‘
o The perimeter is 16 - x 4 2 # x, or 18, which 1is
not a oube, but is made up of a square {16) £ 2. It is
;equiredghtherero;e, to rinﬁ a square number which,
ﬁhen 2 1s added, makes a cubes In other wdrds, the
cube must exceed the square by 2. -

Let the side of the .BJRare equal m ¢ 1 and the side

of the cube equal m - 1, Then the square equals.

m? £ 2m £ 1 and the cube equals m3 ¢ 3m = 3m? = 1.
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Since it is required to have the oube excesd the square
by 2, 2 is added to the square

m*fomg3zndFme m® -1
from which m = 4.

Thérerore;‘fhe s£aé”dr'the'Square 1s equal to 5 and
that of the cube is equal to three; and hence, the
sqqareﬁis 25 and the cube is 27.

The right-angled triangle .is transformed to meet -
the new conditions, The area is still x but thé hypote-
nuse 1is now 25 - x;7tha‘basq'rﬁmains 2 and the perpen-
dicular equals x, |

The condition is still left that the square of the
hypotenuse is equal to the sum of the squares of the
two sides. merefore;

ox? fee5 -s0m =R 44
from which

X - 621/56 '

and the conditions are satisfied.
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multiplied by the square of the arbitrary number, and
the cube of the arbltrary number, give the oube {of-
the given number).”

Exprassions,for-n3vinvolving series were given by
Sridhara (750), Mahavira and Narayena (1356). The for-
mula L S . :

- nd = 3{31'(1' - 1) # l}
was given bnyridhara in these words:

"The cube {of a given number) 1s-eQual to the series
whose terms are formed by applying the rule, 'the last
term multiplied by thrice the preceding~term,plua;one','
to the terms of the series whose first term is‘zero;-“;
the common difference is one and the last term is the -
given number,m.

Mahavira gave the above in the fom

03 - 33r(r-1) £n.

He seld, *

"In the series, wherein one~isvthé first term as
well as the common difference and the number of ‘terms
is equal to the given number (n), multiply the preceding
term by the immediately following one. ‘The sum. of the-?
products so obtained, when multiplied by three and:added

to the last term (i.e., n) becomes the cube (of n),"
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‘Nerayana stated his series in this way:
"From the series whose first term and common dif=-
ference are‘each one, (the last term being the given
number) the sim of the series formed by the last:term
multiplied by three and the preceding added*to'ohé;?
éi#éé the cube (of the last term)."
. Mahavira also mentioned the results
§i3~
3

xA3x A 5xd ... to xiterms |
12 ’((x - 1) {l,‘ 3 }‘ .".‘,l-"g‘x“. 1)} ’

in these words:

1

- 'wPhe cube (of & given number) is equal to the stm
of the series whose first term 1é'thetgivennhumbef;&the
common difference is twice that number, and the number
of termsiié (equal td)»that numbex, "
or
"Tﬁb Squéfe~of”the given numbexr when added to the

product of that number minus one {(and) the sum of the
series in which the first term is one, the common
difference two and the number of terms (1is equal to)
that number, gives the ocube.™

The Hindu terms for cube-root are "ghana-mula™ and
"ghana-pada", The first description of the operation of
the cube-root is found in work-entitled "Aryabhatiya",
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which was written by Aryabhata /31;175/.
- The method 1s described as follows:

Divide the aegondfﬂaghana" (hundreds) place by
thrice;the_square-bf the cube-root; substract from the
first "aghana” {tens) place the. square of the quotient
multiplied by thrice the preceding (cube-root), and.
(substract) the cube {of the quotient) from the “"ghana®
(units) place; (the quotient put down at the next place
(in the line of the root) gives the root).".

The present method of extracting the cube-rocot is
a contraction of Aryabhata's method.

Bhaskara gave &s a nume:icai'examplé of ‘a cubic
vequ‘ation ——

x3 £ 12x = 6x° 4 35 |
which gives the root x = S«after conversion to -

c{x - 2)3 = '330,5,



CHAPTER IV

THE CHINESE, JAPANESE AND ARABS

Little is known about the early mathematical works of
thezﬂhinese’gpd,Japanese._,Th;s is because both countries,
for centuries, enjoyed almost complete isolatlon from the
rest of the world., As a result, their eagly mathematical
achievements did not affect or contribute to the progress
of mathematics in the west.,

In the first haltJot the seventh century, Wang.

Hs' Jao-T'ung published a work enﬁitled;"Ch'i-ku
Suan-ching®, in which numerical cubic equations appear
for the first time in Chinese mathematics, He gave..
severalkproblams leading to cubics. One of them is as
follows /8;74/:

J "There is & right triangle, the product .of whose
two sides is 706 1/50, and whose hypotenuse is greater
than the first side by. 30 9/60. It is required to know
the lengths of the three sides." o

. He gave the answer as 14 7/10, 49 1/5, 51 1/he
He also gave the following rule:

:."The product, ‘P, being sqﬁared and beingvdivided
by twice the surplus, S, make the result "shih" or the

constent oclass.  Halve the surplus and make it the
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"lien-fa" 'or the second degree class, And carry out the
operation of evolution according to the extraction of the
cube root.n The result gives the first side, Adding the
surplus to it, one gets the hypotenuse, Divide the pro-
duct with ‘the first side and the quotient is the second
slde."

This rule leads to the cubic equation '

g £ 8/2x? - P?/28 = 0.

‘The method of solution is similar to the process of
extracting the cube-root, but Wang Hs' Iab-T’uné did‘nbt
give the details,

| Hbrhér‘s method of approximating to the roots of

a numerical equation was known to the Chinese in the
thirteenth century. This method was later adopted by
thé‘Japanese and published in the eighth book of the
"Pegen Shinan" of Sato Moshun in 1698 /26;115/.

‘ " 'The first solution of the problem of trisecting an
angle by the Arabs is found in the geometry of the
‘"Three Brothers", Muhammed, Ahmed and Alhasan, sons of
Musa ibn Shakir (about 875) /1;124/,/7;171/,/5;104/.

They'depended~heav11y on the Greeks, using the conchoid

in the trisection problem.
' The first to state the Archimedien problem of
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givia;ng,a sphere by a plane so that the,two«gégmenpg
should be in a certain ratlo and stating this in the.
form of & cubic eguétion was Al-Mahani ofVBégdéd (about
860) [8;l07/;}[7;l71/; while Abu Jaﬂfér Aiqhazin.ﬁas;fﬁé
girsvarablto sélyélﬁhe problem by conio seqtions; |
Solutions were given also by Al-Kuhi, Al-Hasas ibn
Aleﬂaitam, agd'others, Another diffigglt pfoblem; pq
deteimine'phé side of a regular heptagqn,‘rgqgireémtha
‘oohstructionagr the side fgom the equation.
» x’ -7-_,":? - 2x f 1,»:‘.‘9',

It was attempted by‘many and finally solved by Abu'l Jud.

A noteworthy work was produced by Al-Biruni;(abo?t‘
1048), He kneW»a’rigogous;approximation pgocedure 1nA
order to figure out the roots of cublc equations.  His
method used a polygon of seven or nine sides /%;130/.
A sim;;ar,mgthgﬁ was figured out by‘Gijat-Eddin Alkasi . .
(about 1&35)3

The one who did most to elevate to & method -the
solution of algebraic equations was the poet Omar»
Khayyam (about 1045-1123) /8;107/; /7a;286/, He. divided
cubics into two.classes,wthé_trinomialland the quadrinoﬁia;,
and:each class into familiesTand spé&ies. Each species

- was treated separately bgt;gooqrding to a general plan,
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He belleved that cubics could not be solved by caloulation,
He rejeoted negative roots and sometimes failed to find
the positive ones.
 Omar éave cuble equations reducible to quadratic
fbrms'as containing three species /9;64/:
(1) A cube and squares are equal to roots.-
| (x2 £ ox? - bx)
(2) A oube and two roots equal three squares,
(x3 £ bx = ¢x°) (general case)
or a square plus two equal to three roots,
”(xB'{ 2x = 3x2) (pgrtiouiar case).
(3) A oube is equal to a square and three rOOtB;
'"(cxz‘/ bx = 13)7°(genera1'case)
or a square equal to a root plus the number three,
S (x? = 1.x° £ 3x) (particular case).

To glve an example of the proofs, (2) is considered.: -

E B — K
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Let the cube ABCDE with its two roots be equal to
three squares, and.let the square H equal CB and also"’
let K be equal to the number three. Then the product
of H: by K will be equal to thres times the square-of’
the ocube AE, . Construct on AC a rectangle equal to the
number two und.complete the solid AZCTD, " It will be equél;
then, to the number of roots: But the line ZB multiplied
by the square AC. gives the solid BT;Vand the solid AT
is squal to the humbaryof*sides. Consequently, the solid
BT will be equal to-'the cube plus"a*quantity‘eqqal to
the number of its~aides;"Hence; so1id“BT“1s.aqualﬁto the
number of squares. ' Consequently, the line ZB is equel to
three and the rectangle BL is equel to a square plus two.,
Then a square plus two is equal to three roots because
the rectangle BL is equal to a 'square plus two. Then a
square plus two is equal to three roots because the rectan-
gle BL is formed by multiplying AB by three.

In a modern mathematical notation the problem would
read as follows:

the cube ABCDE = x3, H'= CB = x°; K = 3, H'v K = 3x%;

AL = 2; AT = 2x; BT = ZB * Kﬁg~=*ZB-"x2;7
BT = AE £ AT = x3 #£ 2x = 3x2; then 2B = 3;
BL = BC £ AL = x° / 23 BL = 2B * AB = 3x; ‘then x2 f 2= 3x,
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The species which Omar Khayyam claims could not be
- proved except by the properties of conics’incluﬁa fouv-
teen: one simple equation (that in which a number is
equal to a cube); six trinominal equations; and seven
tetranomial equations,
The six species of trinomial equations are (as
taken from a translation of his work /9;64-86/):
(1) A cube and. sides are equal to a number,
(xé‘{ bxlg a) |
This species does not present varieties
" of cases or impossible problems, It is
" golved by means of the properties of the
'oiréle_oombined with those of the parab-
- ola. | |
(2) A cube and a number are equal to sides.
‘ (13 £ a = bx)
This species includes different cases
“and some impossible problems. The species
~ 1s solved by means of the prqperties of
the parabola and the hyperbola.
(3) A cube 1s equal to sides plus a number.
| f’(23 S bx £ 2)

' Thié‘speoies has no variety of cases and



‘no impossible solutions. . It is solved

(&) A

by means of the propertles of the parabola .
and hyperbola.
cube and squares are equal .to a number,.

(xazf Q323§‘&)~

This species has no varlety of cases and no

impossibie problems, It is solved by means

of the properties of the parabola and hyper-

Ybola combined.

(5) A

(6) & "

cube and a number are equal to a squara.'
(x3/a=ox?)

This species has a variety of cases some of
whiéh}are impossible. It is solved by the
properties of the hyperbola and parabola.
cube is equal to squares and numbers,

(x3 2 0x2 fa) |

This sgecies‘ﬁas neither a variety of cases
ndr%impossibie solutions., 1t is solved by

means of the properties of the hyperbola

- and parabola.

(1) A

The tetranomial equations are as follows:

cube, squares and sides mre equal to numbers.

(x3 f ox? fbx = a)

43
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This species has no varieties of cases and
no impossible problems. It is solved by means
‘of the properties of a hyperbole combined
with those of a oircle.

{2) A cube, squares, and numbers are a§ual to sides,
x> £ ox?'{ a = bx
There are a variety of cases in this species
and soms may be impossible, This species
is solved by means of the properties of two
hyperbolas;

(3) A‘oube;'Sides and numbers are eéual to squares,
2 fbxfazo |
There are a varisety of cases, some impossible.
It is solved by means of a circle and hyperbola.

(4) Numberé;‘éides and squares are equal to a cube,
cx2 fbxfa=x
This speéies has no variety of cases. It
is solved by using the properties of two
hyperbolas.’

(5) A cubs and squares'are esqual to sides and a

number, |
34 -bxda

This species has a veriety of cases but no’
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‘impossible ceses.. It isMsélved by using the.
propertiés»of two hyperbolas.: . '
(6} A cube and sides are equal to squares and
numbers.
(x f DX = cx2 # a) .
This species pas a variety of cases and
roxmé.: It has no impossible problems.
It is solved by means of the properties
of the cirdle and.hyperbola, ;
(7) A oube'and nunbers are eéual to sides and
 BQuares. .
(x> # a = bx f ox?)
This speciea-has-different,cages, some
impossiblé# It is solved by means of the
properties of twovhyparbolas.

As mentioned pre!iouqu; Omar Khayyeam did not con-
cérn himself with negative or imaginary roots. This .
might have been due to the fact that he rarely complét-
ed construction of his ourves, using semi-circles, semi=~
parabo;aa and only one branch of the hyperbola. His
procedures were always logloal,

Although a manpscrigt of Cmart's work on algebra

was notioced in 1742, his work was not mede generally



avallable to Europeen scholars until 1851,



CHAPTER V

THE RENAISSANCE

After the work done by Omar Khayyem, nothing of real
importance was accomplished in the field of:cubic equations
until the middle ages. One of the most important contri-
 butions was made by Leonardo of Pisa (Fibonaccl).

His greatest work;'the‘"Liber Abaci" was published in 1202.
To him is owed the first renaissance of mnthematics on
christian soil. His work contains the knowledge the Arabs
had in arithmetic and algebra, He advocated the use of
the Arab notation, His concern with cubic equations was
confined ‘o the following pfoblem:

" To f£ind by the methods used in the tenth book of
Euclid a line whose length x should satisfy the equation
3 ,t 2x% # 10x = 20. | ‘

Leonardo showed by geometry that tha problem was
impossible, but he gave an approximate value of the root
/8 120/, /5;159/, /7o3457/, /57/y 159/, /60/.

- Soipione Del Ferro, a professor of mathematics
at the University of Bologna solved the- equation
x> £ mx = n in 1515, He did not say how he arrived at
the solution /7b;459/.

"' The first really great algebra to be printed was



the Ars Magna of Girolamo cardan*k1501-1576) which
was published in 1545, Among 1ts contents was a
solution of cubic equations. A contemporary of his
was Nleccola Fontana (Tarteglia, the stammersr) (1500~

‘.1559).»_Cardano, in his Ars lagna, stated that an |
equation of the type x3 £ px = g was solved by &
| mothod discovered by Sciplo del Ferro. Tarteglia clalmed
priority for the method of solving equations of the .
type;x3 ¢ pxz = q and als0o the method claimed for del
Ferro, A discussion of theseclaims is to be found in
all of the general histories of mathematics. In modern
publicatidns the solution 1s usually referred to as
"Cardan's Solution” although some use "Cardan-Tartaglia
Solution®, .

A trenslation of Cardan's solution in modern
symbole is given here /113;203/.
Given x°¢ 6x = 20

let . u’~v> =20 and u3v3 - (/3 ¢ 6)3 = 8.
Then (u - v)3 £ 6{u - v) = u3 : v3,»
for .. . u 3.- 3u v/ erz - v ¥ 6u - 6V = u3 - 73

whence 3uv(v = u) = 6(v - u)
and - uv e 2, .

Hence x = u = v,



49

But - W =20 £ ¥ = 20 # 8/u,
whence u® - 2003 f 8,

which is a quadratic in u},m Hence u? can be found,

and therefore v}, and therefore u - v. A "geometrio”
demonstration was also given byvCardan-/ll;ZOA/.

| Cardan discussed;negaﬁiva rbéts,and proved. that
imaginary roots occur in pairs;. He showed that if the
thrae roots of a cubic squation were real; his solution
gave them in a form which involved imaginary quantities.
Cardan also‘noted‘the dirficultyuin the irreducible
cass in cubics,

- Rafael Bombelli of Bologna-published a noteworthy
algebra in 1572. In;thig work he_shoyesthat in the
irreducible case of a cublc equation, the,rdots”are
all real. In textbooks it is shown that 1z (n/2F { (n/3)°
is negative, then the cubic equation <’ # mx = n has
three real roots. In ihis case, however, the Cardan-Tar-
taglia solution expresses these roots as the difference
of two cube roots of complex imeginary numbers, Bombelll
pointed out the reality of these apparently‘imaginaryx,”
roots /43221/, /5;203/ , /8;135/, /1;139/.

In his publication he also remarks that the problem to

trisect a given angle is the same as that of the solution . .
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of a oublc equetion,

‘Michael Stifel (1486 - 1567) was the greatest
German algebralst in the sixteenth cénturya ~In 1553 he
published an improved edition of Christoff Rudolft's
bookréh algebré entitled Die Coss /13;139/. Rudblf?
gave three numerical cubic equations. One of them
‘gives an interesting method as follows in modern nota-
tion:

Given = x° = 10x° # 20x £ 48
by adding 8 to both sides one obtains

| ‘x3.4 8 = 10x° £ 20x £ 56.
Dividing by x'£ 2 -

xR e 2x fih = 10x £ 56/x £ 2;'
Now assuming that the two members may be split into
x? < 2x z 10x"

and 4 = 56/x 4 2
then both of these equations are satisfied by x ¢ 12.
However, the method is not general.

Similar solutions using spescial cases were worked
out by Nicolas Petri around 1567 and are found in & sub-
divisionﬁon-"Gubicafcdss".‘1He gave eight ‘cubic equa=~
tions., For example:

o2 sox 428, 23x3 #32x = 905 5/9, x> = 3x2 £ 5x £ 16.
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He solved these using Cardan's mothod /7b;465/.
“Af'ter the ground work had besn laid byncérdan &
and ‘Tartaglia, it was Franocois Viata=(154091603); oné
of ‘the greatest mathematicians of the sixteenth_csntury,
~whclgenaralized the method, Viet&fbsgénWWithfthe'form
PP faxdrz0 |
and using the substitution
xzy-p/3
reduced the equation to the form
¥’ # 3y = 2c.
He then made the substitution.
23 d gz é’b;“dr y=b- zz/z;f
which gave .
‘zﬁ-{ 2cz3i:‘b3~ |
which he solved &s & quadratioc-/4;222/ , /7o;465/,
/5;205/, /8;137/,

He made an outstanding contribution to the . symbolism

r

of algebra and to the development of trigondmetry. : 'Vieta
showed that both the trisection .and the duplication pro-
blems depend upon the solution of :cubic equations, Work -
on these problems led him .to the -discovery of a trigono-
metrical solution of Cardan's irreducible case in ‘cubics.

He applied the equation: .
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(2 cos 1/3 ¢)3 ~ 3(2 cos 1/3 §) = 2 cos ¢
to the solution of x> - 3ax = a2b, when a 1/2b,by
placing x = 2a cos 1/3 #, and determining § from
b = 2a cos ¢ /1;147-150/.

. Vieta clearly established the fact that although ’
he did not recognize negative roots of cublic equations,
he understood the relstlionship between the positive
roots and its coefficients., In his treatise De

Emendetione Aequationum {published by Alexander

Anderson in 1615) he states that the equation whose
roots are x = a; b; and ¢ is /10;149/.
x3 -(a £ b fo)x2 £ (ab £ be £ ca)x = abo.

This reletion can be used to solve problems of
the following type:.

Given:x~313a-»163x2 £23x~-6=0  and
-+ . the product of two roots is 1,

Let the roots be a, b, ¢. Their sum is 16/3;
their sum taken two at a time is 23/3; their product is
2., TFrom this last relationship, ¢ is found immediately
to be 2. The other roots may be found either by solving
the rhmaining.equations for a and b or by reducing
the original equation to a quadratic by dividing it

byx-co
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As 'was recognized by Vieta, Rene Descarte (1596~
1650) proved that every geometric problem giving rise
to a cubioc equation can be reduced either‘to the dupli-
cation of the;cubevor’to\the trisection of an angle. In
the third book of his Géomdtrie he pointed out that if
a oublic equation (with rational coefficients ) has a . .
rational root, then it can be factored and the. cubie
can be gsolved geometrically by the use of ruler and
compaases,,.ﬂelderived the cubic z2 = 3z - q as the
equation upon which the trisection of an engle depends
and effected the trisection with the aid of a parabola
and circle /8;173~180/. He also gaveﬁthe»rule'for deter-
\mining,é limit to the number of positive and negative
roots of an algebraic eguation and introduced the method
of 1ndéterminate coefficients for the solution of

equationé.*



CHAPTER VI

THE SEVENTEENTH AND EIGHTEENTH CENTURIES :

The latter half of the seventeenth century saw
the beginﬁing of many attempts to refiné and‘simplify
solutions to cubic equations. There was increased
activity in the search fdr new solutions, |

Johann Hudde (1633-1704) was the author of an in-
genious method rorAfinding equal roots. As an illustra-
tion let the equation be .

x3 - x? - gx £12 = 0.
Taking an arithmetical progression 3,2,1,0,0f which the
highest term is equal to the degree of the equation;
multiply each term of the given equation by the corres-
ponding term of the progression obtaining '
3x) - 2x? -8x£0=0

or ',:Bx? -2x -8 = 0,
The last equation is one degree lower than the original
one. ~The next step in the procedure is to find the
greatest common divisor of the two equations, This is
X - 2, 80 2 is one of the two equal roots.. If there
had been no common”&iviébr then the original equation
would not have had}éﬁh&1<roots /8;180/.

- This method will be recbgnized as being enalagous
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to the modern method of determining when a cubic equa-
tion has equal roots. Taking the derivative of the
original cubic; the equation

‘ 3x% s2x -8 =0

*is'immediately obtained. 'The rest of the procedure is
‘the seme,

' Hudde ‘simplified ths work of Vieta; He also
realized that a letter in an equation might stand for
"éither}&”pqqitiﬁe'orﬁpegative'numberg

His method of solving the oubic equation is as
follows /7b;466/: -
‘Given~ X3 = ax £
‘let | X =y iz
‘Substituting this in the original equation one obtains
y3 £ 35%2 £ 3y2° £ 23 - ax 4 1
‘Now let y2 £ 22 = r
and  3zy? f 38%y = ox
which gives" y = q/3z.
Therefore, I
- r - 22 & g3/2723,
and 23 = r/2Efe2/L - o3/27 = A
72 = r/2 §fP/4 - d3/21 = B.

™

]

Bt

Cq
\Jd
]
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x :'\3/7&_: #A\/B.
i Ghristian;ﬁuygensh(l629-1695) used a method
similar to Hudde's /1;145/. ‘He begen with
P fpx-qz0 | |
and let X = y -~ 2 and 3yz = p,
Through thgsefsuhétitutionsAis obtained
3 ~;z?f; Q=0 ;_"33 =p3/2793 - q =0,
' ;361:.4?3 y /27 , ¥ :\3/;}2 AVa?/u ¢ 221
From this value of y one can obtain z and find
x ,}?/q/z A p/B/\%/;_, AVP/4 # 93727 o

In tracing back a geometrical solution of the tri-

section of an angle, Albert Girard in 1629 gave his solu-
tion in algebraic terms as follows /1;150/:
Given

x zpx fq

it

let

X} = 2rcos f
- 2r cos (60° £ ¢)
Xy = = 2r cos (60° - ¢)

X9

where S
r =Jp/3  and - cos 3 ¢ = 3q/2pr.
A, Cagnoli in 1786 gave a trigonometric solution

using as his given equation: -
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B lpxdq=-0 vhere 4p3z27 q°

He uses the relatlonahip | I
| sin 3 # = 3a/p « 1/2)0/3
and with this help determines that
o ‘:ilz':'ia'inﬂ- 2 p/3
- ¢ ain (60° - §) - 21073
=7 sin (60° £ 8) « 212/3 .

For the fonm x} £ px# £ q = 0 he uses the tangents of
two angles to obtain his solution /1;151/.

Ehrenfried W, Tschirnhausen (1631-1708) endeavored
to solve equations of any debree by removing all terms
except the first and last. This method bcara his name.
The equétion x3”f qx £ T = 0 is combined with the equa<
tlon x2 £ vx £ w = = y and x is eliminated between them
leaving & cubic equation in y, Through an eappropiate
selection of v and w, one obtains

| y3 = a constent
. and by substitution in the quadratio in x, a solution
1s found /I; 146/ |
' Isaac Newton (1642-1727) published in 1707 a
treatise restating Descartes' rule of signs in eccurate
form and‘gavé‘formalae expressing the sum of the powers

of roots up to the sixth power /83191-205/. He used
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his formulae for fixing an upper limit of real roots
by showing that the sum of any'éVEn power 6f’all the
roots must.exoeed the same even power of any one Qf

the roots. He showed that in equations with real
-coefficients, imaginary roots always occur in pairs,

He also developed a rule for determining the inferior
limit of the number of imaginary roots, and the
superior limits for the number of positive and negstive
roots, He did not prove this ruie;

The treatise on "Method of Fluxions" ‘contains
Newton's method of epproximating the roots of numerical
equations. The garliest printed account of this appeared
in Wallis' Algebra in 1685. He explained it by working
oﬁe‘éxample /8;202/, /7v;473/. He assumes &sn approxi-
mate value is known which differs from the true value
by less than one-tenth of that value.

Given |

v -z2y-5:z0
ile takes 2<y<3 and substitutes y = 2 # p in the equa=
tion, ‘which becomes p3 }?6p2/{ 10p - 1 = 0, Negleot-
ing the higher powers of p, he gets 10p - 1 = 0.
Taking p = .1 £ q, he gets @@ £ 6.30% # 11.23q # .061 = 0o
From 11.23q £ .061':,0 he gets q = = :0054 # r,
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end by the same process, r = = .00004853. Finally .
y=2#.1~.005, - .00004853 = 2,09455147. Newton
arranges his work in a paradigm /64/. If there is
doubt whether p = .1 is sufficiently close, he suggests
£inding p from 6p? £ 10p - 1 = O. He does not show
that even the last will give e close solution., He.
finds by the same type of procedure - by a rapidly
converging series - the value of y in terms of x in .
the equation y3 £ axy £ a?y - x3 - 227 = 0,

Joseph Raphson 91648-1715) in 1690 gave a method
closely resembling Newton's. The only difference is
that Newton derived each successive step, p,q,r, of
cpproach to the root, from a new equation, whils
Raphson found it each time by substitution in the
crigina -équation. In Newton's cubic, Raphson would
not £ind the second correotion by the use of
x3 £ 6x2 £ 10x - 1 - 0 but would substitute 2.1 #£ g in
the original equation, finding q = ~.0054. He then would
substitute 2.0946 { r 1n the original equation, finding
r - .0004853, and sc on, The method used in modern
textbocks, therefore, shculd properly be called the
Newton-Raphson method /8 202/

The defects in the process (successive corrections
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not always yielding results converging to the true
value of the root sought) were removed by J. Raymond
Mourraille in 1768 and a half century later by Fourier -
/83247/. - Mourraille and Fourier intfoduced geometrical
considerations, Mourraillefconcluded that security
is insured if the first approximation is selected so
that the curve is convex toward the axis of x for the
interval between the apprroximation and the root. He
shows that this condition is sufficient, but not nec-
essary.

A noteworthy algebra by'iohn Wallis 11616-1703) :
wés published in 1685. In this work Wallis mekes the
first recorded attempt to give a graphical representa=-
tion of complex roots. This book was the first serious
‘attempt to give a history of methematics in England.
His account of the history of mathematies in antiquity
was very comprehensive. This book was used as a
standard textbook for many years., The algebra of |
Thomas Harriot {1560-1621) end Newton were discussed °
in detail. In many instances, work which should have
been credited to Vieta, Girard, and Descartes was '
oredited to Harriot by Wallis. In the Trestise of
Algebra 1t is diffioult to distinguish between what
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ﬁasidpha by'bthérs'and the work actually done by Wallis.,

He gives twenty-five improvements in algebra.'

In Seetion V of the Algebra, the folléWing,proﬁosi;
tions are given /10 141/

(1)

(2)

(3)

“4n equation a3 - 3bla = 203 is satisfied by
one root 1f b is less than ¢; as a matter of
faot, in that ocase there is only one-positive
root,

The;equation~a3‘- 302 :~203;is satisfied by
one root if ¢ :vb. |

The equation a’ -Bbga - «203 is satisfied by
two roots when ¢ is less than b, whereas; of
coursa; in that particular case the.equation

has two positive roots and one negative, -

Wallls was familiar with imaginaries, and he knew

',that‘all such roots oocureé‘in pairs, Moreover he would'

not allow the use of the word "impossible" as applied

to an equation with ilmeginary roots. In his own words,

"These are not impossible equations, and are not alto-

gether useless but may be made use of to Very good

purposes.,

For they serve not only to show that the

case proposed (which,:ésolves itself into such an -

impossible equation).is an Impossible case, and cannot
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be 80 performed as was supposed, but it also shows the
measure of that impossibility, how far 1tAis impossible,
and what alteration in the case proposed would meke it

| possible.” /10;156/.

Harriot had shown how;by'multiplicgtion5 compound
equations could be derived from laterals, Wallis
carried the investigation much further; by illustrating
~ how ‘these compound eQuations might by division be reduced
to much simpler equations. Wallis' own example is as
follows /10;157/: |
The équation  aaa - baa £ bca -~ bod = O

‘= gaa £ bda:
- daa £ cda
is composed of three laterais,
a->b = 0;
a -0 - 0;
8 =4 =06
Now suppose the compound equation be divided by one
of the simple, say by
a -4 =0,
the result is a quedratic equation containing the other
two roots
aa - ba

- ca £ bo = 0.



Hence to solve an eguatiqn such as
. @ea - 102a £ 3la - 30 = 0
Wallis says, "If by any means Ijhave discovered the
value of one root, (suppose a = 2) I may (dividing
the original equation by a - 2) depress that cubic
into a,guadratio,tnamaly,
_aa -.Ba # 15 :.0; )
which can easily be solved ".
Harriot investigated the equation
‘ ~ aaa { 3bba = 2ccc.
His method was essentially the same as Vieta's, |
Putting 3,3 ee - bb/e, one obtains (in modern notation)
b - 3b2e* 4 3p*e? - b6 £ 3p2ehk - 3phe? - 203,
. ‘ ';3 | '

whence ‘ o
66 - b6 £ 20363,

which was solved by completing the square.

~ Wallis gave a new method of solving the cubic which
he saild he discovered about 1647. This method is
‘substantially an applicatibn:of’Cardan's;7th0ugh”Wallis-
¢claimed he knew nothing of it. This investigation in-
ocludes & method of - extracting the cube root of a binomial *
whioh_he c%aimeq as his qwn.v’Tpis methqd hag¢prev1oualx
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been given by Girard. The method is illustrated by
Wallis in the following manner /10 159/

Given aaa - 6a = 40
Put a = o2 £2,

the équatiqn becomes _32 LOeB»{ 8 =0,

whénce N 63 - 20’£1§§§; 

This becomes o3 :yéb Z 1472 )

frém which e = 2 f1§: _

so that v; a = gf_é_g ;“Sf L2 = 4

ﬁ

ATo this Wallis says, "Therefore, those equations which
haVe been reputed desparate are truly solved as the'
others, and thus by casting out the second tenm, the
cubic may be reduced to one of the following forms, of
which one root at least is Real, Affirmative or Negative'
{the others being sometimes Real and sometimes Imaginary)”
/10;160/. |

Equation ) \ ~ Root

asa £ 3ba - 2d = . f\ald /ﬂ55777T3) \9/-a {VEEf]'EEB -
0. -\ a ¢/aa £ voo ;\%/-d £Yad £ bbb =
0. /Y4 Alas —vvs V72 -Vag 7 o%% -

!
o
.

i
?

aéa'/ 3ba £ 2d a.

aaa - 3ba = 24

8.
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asa - 3ba £ 2d = 0, ~\/ d £yaa - bob -\/ 7 & ~7aa - bod = &,
| Having given the solution of sach of these types,
VWallis had given a solution of all oublic equations, at
least, &s far as one of its roots 1s concerned. He hed
previously shown that once one root is discOVered, the
oubic can always be reduced to a quadratic by division.
Joseph Louis Legrange (1736-1813) gave a solution
of cubic equations by a method of combinations. Previous
solutions, as has been seen, were nade by a substitution
method. In the substitution method the original forms
are transformed so that the determination of the roots
is made to depend upon simpler funotions (resdlvents);
Iﬁwthe method of combination auxiliary quantities are
aqbstitute&;tor certain simple combinations (types)
of the unknown roots of the equation, snd auxiliary
squations (resolvents) are obtained for these quantities
with the aid of the coefficients or~thehgivan equation, .
"Reflexions sur la resolution algebrique des &quations"
bublished in ifemoirs of the Berlin Academy for the yéars
1770 and 1771) contains all known algebraic solutions
of equations of 1ower.degrae-whose roﬁts‘are linear
funotions of the required roots, and of the roots of

unity. In this study Lagrange considered the number of
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values a rational funotion can assume when its

variables are permuted in every possible way /8:253/.
Langrange's solution of the cubie egquation nust be

‘introduced by a brief discussion of Newton's formulas
‘and’ the fundamental theorem on symmetric functions upon
whichiit depends,  Newton's formulas are a particulsr
.case of tﬁe general theorem of symmetric functions,

-+ Symmetric functions of the roots of an equation

are those which are not altered if any two of the roots
are interchanged. For example, if xl; xz; xy are the
roots of a cubic eqnation;"

x, £ x3 f x3, %1% %fxle # x2x3; X3Xpx3 are symmetrio
functions, for all the roots are involved allke. . The
functions p;,q &nd r of

x3 £ p1x2 £ qxfr = 0

are the simplest symmetric functions of the'roots, each
root entering in ‘the first degree only in any one of them.
One can often obtain a great variety of symmetric fune=
tions in terms of the coefficlents of;the equation whose
roots are being considered;' A symmetric,fhnction\is
usually represented by .théA Greek letter = attached to
one tem o; it, from which the, entire expression

may be written /25;134/.
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Lagrange considered a rational integrél function
in three variables X39%p0X30 If they are permuted in
s81x possible manners, the functlion, in general, will
acquire gix distinot values. In partioular cases,
however, 1t may happen that the number of distinct
values will be less than six; then it will be either
one (for"symmetrio functions) or two or three. lLagrange
showed that 1t is possible to find a linear function
whose cube hasg only two different values. His method
is as follows /24;273/. Let W be an imaginary cube
root of unity and consider the linear function
X fwxy £ w213; |
To every even pernutation of the indices 123, 231,
312 thers correspond three values of this function:
yi=x3 fwxp # wzx3,‘ |
Yo = %2 ?was F wn ,
v3 25 fwx, F wix,,
and to every odd permutation 132, 213, 321 theie correspond
three more: k
¥, 2 xm fwxg f wix,
¥z % Awix, fuwixg
£3 4;”-::3 4w x, P wle , »
Observe that ' |
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w
1]
g
w
(N
g
W

| 5 =
Hence,

2. 43
(ﬁfwxzhu%)
has only two distinot values‘v
- | ﬁv" R L ‘ 3 - ” 2 ..v":v.;’.-,.f..... 3
8z (3 AWy Awix)’ , b, o (s AW, "‘wa) ,

end. the combinations t, # t, and t.t, are symmetric functions

1
of X1 9X50%30
- Buppose that x,,Xp,Xx3 are the roots of a cubloc
e_qﬁation |
BppPfaxdrzo,
then |
t) %2 2 22x) - 35 xix, £ l2xmxox,
in which =
. S_x;_ = -p ¢/ 3rq = 31,2
and on substitnut‘inig’ .

x°x

1%2 2 P f 3T X xpEy 2 oT

b1 f b = ~2p% £ 9pq - 27r.
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2 :
3 tltz .= z XE -5 Xlxzo :

Also in finding t;t

where
£22 2 p2 o 39 e -
| Zxy - pf - 3q and sxlxz -q
from which |
ttp = (0% = 30)7 .
Consequently, ti"and'té‘are the roots of the quadratic
equation.
t2 4 (2p° - 9pa £ 27r) ¢ £ (3 - 30)3 = 0
éﬁd;can be found algebraically. Having found t; and ¢,
on extracting cube roots, one obtains
2 Y s g L ol
X3 ;‘wxz Fw Xy =\/ t, , and x; ;lwxszxs :\/—1-;; ’
and also
'k"‘xl ¢ X 7{'13 i = ~P.
By solving these equations one obtains the roots'

1/31-p Ao, #V/T ),

Il =
x5 = 1/3(-p AW E AN E)
x5 2130 F W T ANT,)

of the cubic equation. Between the cube roots there

exists the relation

VE - 230



CHAPTER VII

THE NINETEENTH AND TWENTIETH CENTURIES

The search for new methods of sclutions to cubio
eﬁuatiohs‘continuas 1nto:modefn times, Some of the
methods consist of different approaches to known
‘proqedures'/75/,,/79/. Solutions using mechanical
-apparatus and hydraulic apparatus have been suggested
/70/, /73/. Work continues to be done on the nature
of “the roots and on the approximation to the roots /71/,
/71/, /79/. Several different procedures will be pre=-
sented here, ,

The vaihe 6f x in any algebraic’equation may be
expressed as an infinite series., Let the equatiop»bev
of any degree, and by dividing by the coefficient of
the first power of x let 1t be placed in the form

8 =x / bx? { ox3 £ axt f ex? 4 22 F vieee e
Now let it be assumed thet x ecan be expressed by the
series | _

. x=za{ ma2:f¢na3 ¢ paL £ Qas £ oeeeese
By 1nserting this value of x in the equaﬁién and equating
the ooeffioients of like powers of a, the values of

m, n, etec. are found, and then the following is an

exgression of one of the roots of the equation:
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x=a-ba® f (202 - c)a’ - (503 - 5bc £ d)ak
# (14b% = 21b% £ 6ba # 302 - e)ad.....
In order for this series to coaverge rapidly, a must
be a small fraction. - o
To apply this to a cubic equation, the coefficients
a, e, eto. are inade Zero.- | |
Exanmple:
x3 - 3x £ 0.6 % 0
Divide Syi3;.théooefficient of the x'term‘and obtain
0.2 =.x = 1/3x3, | '
Then -
a=0,2 b= o; ¢e-= - 1/3,

and

"

X 2 0.2, £ 0.23/3 £ 0.25/3 # eees = 0.20277
which is the value of one of the roots correct to the
4th dsoimal place /33;27/.

When ¢ oubic equation has three real roots, &
convenient solution: is by trigonometry.
Given.: o
- y3 {4 3By £26=0
let _ S
¥ = 27 sing
then
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| 8 sin? 6 £ 6 B aine /1220/r3 = O,
By comparison with the known identity
8sin38 - 6sind / 2 8in3e = 0
r= =B 9in30 = o/7f:§f , in which B is always
negative for the case of three real roots.
36 is found in a table and then 8 is known,
Therefore,
'y, = 2rsine
y2 =-2rain(240° £ @)
y3”- 2rsin(120° # e)
are the real roots.
‘ Vinen B> is negative snd is less than 02,'an&

3 18 positive, the solution feils since one

when B
root 1s real and the others imsginary. ' In this cese,
a ‘similar solution is obtained by'means of hyperbolio
ainca /69/. o |
| D. B, Steinman in 1950 geve a shortout method
ror-solving cubdces /53/. The solution is explained
by use of‘numericai‘ezamples. ‘Two of them will be
glven here.

(1) B zsf faxy

Write the coeffioients and computations in

the rollawins manner."‘
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5 25 135 740 ...
2 . .10 54 sene
3 15 sees
r=5 27 148 809 ....
X = 809/148 = 5.466
Explanation: -

vThafcoeffioient¢of‘x3'is unity, - The 6ther
given numerlocal coefflclents (5, 2, 3) are written-
diagonally aoross the rows and columns. The rows are
written by multlplying the coefficients headihg<each
row by the seéuence of values of 1, as,these;valugg
become available, = The values ofrare writtehhby add-»
ing the texms.in\qéoh respective column, The values of
rn/rn-1, mhe‘suoceaéi#aﬂapproximations,to x,are given
by the‘converéing,ratioar"

- x = 5/, 27/5, 148/27, 809/148, «.s...

OF .. X = 5, 5.hs 5:48, 5466, seee.
Stdpping;tﬁe computation at this point gives the
answer correot to four significant figures.

(2) x3=z2x2~5x41

Let, x = 1/y

Then y3 = 552 = 2y £ 1
Write in the following msnner,
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‘r=5 23 106
x = 1/y = 0,217
' In example (1), the absolute value of x was
greater than unity which is & necessary condition fork
convergence.' If the absolute value of x 1s less than
uﬂity, then by sﬁbstituting the reciprocal one cobtains
an equation which has a root whose absolute value is
greaﬁer than one, The transformed equation has thé
coaffibignts of the squared term and the first degree
ternﬁ iﬁtérchénged, with the signs changed. Since the
solution requires l/y; the inverse ratios are used
to givé‘thé'reciprocal. | |
The application of this method can be further

simpiified in special cases., It can be used when the
coefficient of xJ is not unity. It cen be used to
£ind the cube root of a number,

Consider the equation

< #x* -2 -0

By'tranéforming this équation by the substitution

xzy-1/3
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to

y - 1/37 - 52/27 = 0
and using the Carden-Tartaglia Formula, one obtains
the following real root for the original equation:
xy 21/3 (V26 £ 1515 #V 26 - 1575 - 1)
Using Steinman's method:

x3z-x% 42

-1 1 -1

0

o
2
rz=-1 1 1
- x z 1/1;1/1

. x=1
Which is exact and the only real root of the

equation. However, this method has its weaknesses,



CHAPTER VIII

THE CONCLUSION, BIBLIOGRAPHY AND NOTES

This history has presented a survey of the many
attempts to interpret and obtain solutions to cuble
equations - ~ & survey covering almost.,000 years.

It has been seen that there are many different methods
of solution and a number of different approaches to
-solutions, They are varied and interesting. All of
them contribute to a more cleaxr definition of the pro- .
'-blems,involved.~

“Some\orvthe prooedures are short, but are not’
alwéysvaccdrate~or are only approximations. There
are some which are exact but are long and tedious.
There are mathods which are long and not‘always accurate.
Improvements are needed.’ |

By now»it'is hoped that there are many ldeas for
new solutions in the mind of the reader. Perhaps also
-he is asking himself questions.

. I% 1s sincerely hoped, however, he is not saylng
to himself what Omar Khayyam seid in his Rubaiyat as
translated by Edward Fitzgerald:
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"Myself when young did eagerly frequent
‘Doctor and Saint, and heard great argument
~ -About 1t and about; but evermore

Ceme out by the same door where in I went."

One of the most important parts of any history 1s
the source matefial.‘ The materlal presented here has
been selgcted carefully in order that it may be of
meximum use to the reader. A number of references have
been discarded as not contalning suffioclent material -
on the aubject to warrent the time it takes to obtain
a reference work. Some heve not been included because
of their poorly presented contents.

References in several foreigh languages are here
since the scholar has at least en acquaintance with soﬁe
language other than his own,

Summaries are given of many of the articles. Notes
are included when it appeared they would be helpful,

The numbers appearing in parenthesis following the
reference work are the Library of Congress card catalogue
numbers.

- It is hoped that this selected listing of source
material will be of maximum benefit to the reader.
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" 48+ Davis, W. R,; "Graph solves cubic equatibn when .
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'Danska~Vidensk.ﬂ"sélskabs; Meddalaiser;kno.fl;
1893, p. 18-28, (AS 281 ,D215)
Wbepoke;‘F;;‘"Suf un essai de determiner la naturs
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cuneiform‘Texts; American Oriental Series, Vol. 29,

New Haven: American Oriental Soclety;, 1945.
(#A22.N37) Bibliography p. 152«;56.
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