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INTRODUCTION 

It has been said that the labor-saving devices ot 

this modern age have been made possible by the untiring 

efforts of lazy men. While working with cubic equations, 

solving them according to the standard methods appearing 

in modern text-books on the theory of equations, it be

came apparent, that in,.manf~cas~s, the finding ot solu-
' 

tion~.was a long and tedious process involving numerical 

calculations into which numerous errors couldo~eep. 

C~ntessing to laziness, and having been told at an 

impressionable age that "any fool can do it th~ hard way 

but it takes a genius to find the easy way", it became of 

interest to find a simpler method of solution. It 

eventually became clear that it is necessary to find out 

what has been done in the past to accomplish this. 

The information is found to be interesting and 

varied, but scattered among many sources. ·These sources 

are brought together here, not only in the hope that 

this history will be helpful in learning about the de

velopment of cubic equations, but also to challenge the 

reader to find solutions of his own, which will not only 

reduce the labor and errors involved, but also will ex-
' plain the true mathematical meaning of a cubic equation. 
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An altar used for prayer to angry gods J.s. t.he 

legendary beg~nninc; .. tor th·e many .attempts . to tind . solu

tions to oubio equati~ns~ The altar was in .the shape of 

a cube~ Y.neeling before this cubo, ancient Greeks ·had 

prayed suooesstully .to their powerful gods ror many years~ 

However. when pestilence oe.me to the land and prayers to 

the gods VJent unanswered~ legend bas it that the oracle -

he who posses as the local politician or today - sought 

to appease the people with an explanation for the landu 

depression'° 

"Ah"~ said the oracle, "The gods do not answer our 

prayer because he is insulted by our meager altar~ It 

must be doubled.in size~" 

Work began at once to double the size of the cube~ 

When :f'iniahed, bad timea remained• Moat conveniently; 

the oracle discovered that an error had been.made. The 

stupid slaves.had.simply constructed a cube with edges 

twioo as longl Work such as that.would not.pacify the 

gods• The oracl~, stalling for time in hopes that good 

fortune would gradually return, ·consulted Plato, a· re-. ' . 

nowned philosophar.and a man interested in all problems~ 

Could he and his disciples :f'ind a solution? Plato's 

mathematicians appl!c:i their skill. 



An important contribution to this problem was made 

· bf Hippocrates of Oh1os around 4)0 B. c. He showed that 

the problem of doubling the cube could be reduced to 

finding two _mean proportionals-between a given line and 

another twice as long~. He failed, however, to.find the 

two mean proportionals by geometric construction with 

ruler and compasses, the s::i-called Euclidian tools. 

Having been defrauded ot his property Hippocrates 

was considered slow and stupid by his contemporaries. 

It was also said that he had actually accepted pay tor 

the teaching of mathematical However, he was a talented 

mathematician and his work on the doubling ot the cube.: 

·presented a challenge to others. Who could solve this 

problem depending upon oubio equations and appease th~ 

angry gods? 

. Archimedes, legend has it, was an inventor ot war 

machines and mirrors to reflect the sun's rays to destroy 

the enemy by fire.. His mechanical inventions won tor 

him the adriiiration of his fellow citizens. He himself 

took more pride in his accomplishments in· the field ot. 

pure soience. He is known to have said, "EVery kind of 

art which is connected with daily needs is ignoble and 

vulgar." Archimedes, during the second century before 



Christ, gave a geometric solution to cubic equations 

with the help ot spheric sections~ 

Commeroialism - the inate desire ot all mankind to 

make money • was the inoent1ve tor even earlier attempts 

to solve problems involving the oubio. The Babylonians, 

situated es they were on great caravan routes, consulted 

their mathematicians 1n order to· obtain tables of squares 

and cubes so that they couJ.d have solutions to equations . · 

involving lengths; breadths and volumes. 

· .. The love ot beauty, which, regardless ot plague, 

famine and-rumors Of war, remains thr0ugh.h1storywith 

all- peoples, WeS an added incentiVG to the Babylonians. 

Theirerratio Tigris and Euphrates rivers must be con• 

trolled. · Dams must be constructed and canals built to 

irrigate 'the fields so that the sardens ot Babylonia 

would be recorded-in histoJ.'1' tor their loveliness. The 

skillful mathematic1ensm\1st find solutions to· equations 

oonoern1ng-volwnes. 

Known ·to the West as a great l,ersian poet and phil(J• 

sopher·, · Omar Khayyam is known to the Eaat primarily as a 

great astronomer end mathematician. Omar Khayyam's verse 

was regarded by orthodox Mohammedans as heretical, ma

terialinio ond even athe1st1o. lie was under constant 
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9~~~1:1'ation becaust? it:was suspicione~ that his,poetry 

9ontaineQ. political and anti•religious meanings· •. But· 

in spite ot ,~he general unpopularity of his poe~ic works, 

1'.t .is -found that the Arab-historians.and biographers . 

. treat .him with the: highest esteem tor his soientitic .. 
,' ,: ' 

~ork, ·The works of the Greeks· in finding solutions. to 

cubic equations was built up into a general .method by 

· Omar. Khayyam. 1n the eleventh century. · He not only ·class• 

.~tied; _cubic equa~ions but, also tound many solutions~ by

means of the intersection ot various oonic sections •. 

The dark ages throughout the world brought a halt to 

.the progre~s and dissemination of knowledge •.. It was not 

~~11 the Renaissance (1450-1630) tha~.the Italian·mathe

lllaticiaJ).s succeeded in-getting algebraic solutions to 

oubio equations• 

In 1505 · Scipione del ]rerro 1 a .. protessor of mathe-

ma ti~s,. solved. the equation x.3 I- m.x ='.". n. · He did .not pub

l~sh his solution., It was the praotioe in those days to 

keep discoveries secret so·that rivals oould~not have ths 

advantage in sol~ing publicly proposed problems.. This.· 

led to many disputes over priority. 

Nicolo ot Brescia; known as Tartaglia,·the stammerer, 

was ~volved in a serious· dispute over priority.· The 
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product,of' a poor f'amily, self-taught, and having the 

disad~ntage ot.a speech impediment, Tartaglia had worked 

hal".d to excel in mathematics. After much labor, he 

succeeded in finding solutions to.cubios of the form x:3 

./.)DX = ,n, x3· : m.x .J. n, and :x) t. px2 = q. He was entreated 

by .friends to make known _his sol.ut1ons immediately. but;. 

thip.king he·would soon pubiish an algebra in which he 

wol1ldmake known his solutions, he refused• He did di

vulge his secret;. however, to one he thought a scholar 

and a gentleman, Hieron1mo Card.an. He. wa~ betrayed·when 

Cardan published the-method as his own •. 

Cardan,was characterized as a.man of_ genius, .folly, 

self-oonoei t and mysticism. He was al.read' recognized . · 

as ~n outstanding mathematician. However, his desire to 
' . . . . . . 

excel.at any- cost caused him to ~reak ~s vow to. Tartaglia. 

When Tartaglia. accused· C~0rdan. pµblioly, he tound that 

Oa).-dan·had pawerful friends both politically and socially 

and barely escaped with his life. 

Since the solutions given·bf. Tartaglia, the.aim has 

been to introduce refinements and to simplify the method • 
. ' 

'There have been attempts to solve·the·so•called "irre-

duoible" case riot possible.by the Cardan-Tartaglia method. 

Trigonometric solutions have been developed and there· 
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are methods using rapidly converging series• In all ot 

these the goal has been simplicity, accuracy and a clear 

detinition ot the problem• 

Mathematics; throughout history; has been used as 

a tool in religion, politics, economics• and 1n further

ing the ambition.of selfish men• It is used today, with 

more refinement, for the same reasons• It is also.used 

for the betterment and progress of man ~n the hands of 

chemists, physicists and engineers. But mathematics 

reaches the pinnacle of truth when it is used as a tool 

ot the mathematician• Mathematical truth for its own 

sake is unblemished. 

Theref_ore., the consideration of only what is import

ant from a purely mathematical point of view is desirable 

for this history. The political, social, and economic 

settings-in which these developments have taken place 

will not be included. This information can be found in 

many of the references. Since in·some cases there is 

more than one .mathematician who solved a problem, it has 

been necessary to be selective in what is presented here 

in order to avoid unnecessary duplication as tar as the 

understanding of the historical development or cubic 

equations is concerned. In this case the names ot other 
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»solvers" have been mentioned. More information concern

ing them can also be found in many of the references. 

The numbers between the slant lines refer to the 

references in the bibliography. For example,'/4;37/ 

refers to reterenoe nwnber 4 page 37. These will re

present the main sources ot information and the sources 

to which the reader may go in order to more fully inform 

himself conc'erning matters discussed. 

This history brings together the most important 

aspects in the development of solutions to the cubio 

equation and presents a selected list of literature and 

notes. 



CHAPTER I 

THE BABYLONIANS 

Babylonian mathematicians were makers of mathe

matical tables and computers of great ability. Their· 

aptitude in these fields was probably due to their 

advanced economic development. 

Arithmetic, in Babylonia, had become a well-develop

ed algebra by 2000 B.o.. Babylonian cunietorm texts 
. . . 

which are perhaps the oldest used texts for quadratic 

equations (around 1800 B. C.) also give exercises ~sing 

oubio equations. These are senarated trom their ~eo- . 

metric and surveying problems and show purely algebraic 

character, although some show a geometric origin /2/. 

The problems on cubic equations in the text are 

numbered l,2,],12,14,15. They are classified as (l) 

pure equation (number 14), (2). normpl form (numbers l, 

12 and 15) and (J} general form (numbers 2 and 3) 

/1;119/, /3/. 
The pure equation in modern notation is as follows: 

V = xyz : 1 30/60, y : x, z = ux (u = 12) 

which gives 

x ~-rvru. ~~. =\¥1/s = 1/2 = 1. z = 6 

The terms used for the unknowns are length. 
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breadth and depth tor x,y, and cross-section for xyz. 

To show an· example of the normal form number l is 

given: .. 

xyz f xy ; l l0/60, y = 40/60 x. z = 12x 

from which is obtained 

(l2x)l f (12x) 2 = 4 j 60 ~ 12 (= 252) 

whereby the solution (l2x) = 6 will rollow. The ancient 

text does not show how this is achieved. However, in

cl~~ed in the text is a table which contains the sum of 

the cu~e and square numbers of the form nJ f n2 tor 

n = l to )O. Its use 1a evident trom the a~ove example~ 

In problem number 12 the procedure is as follows: 

V: xyz = J/60 f 20/602 (= l/18), y = x, z-• ux t 7, 

(u : 12) 

trom which 

V : x;-1- ?x2 

This is of the form n3 f n2• The answer obtained is 

ux = l or x ~ 1/12. 

As examples ot the general form problems 2 and ) 

are as follows: 

xyz f xy = 1 10/60, 

xyz t xy = l 10/60, 

z = ux, x f y = 50/60 number 2 
(u = 12) 

z : ux, x - y = 10/60 number 3 

The solution x = 1/2 is stated after short computation, 
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probably through interpolation using different values 

. ot x. 

One can bring every cubic equation ot the form. 

xl f ax2 f bx f c : O into the form. n3 I n2 = p. 

The transformation.to ul f qu2 : r comes from the eub-

sti tution x :' u f s and s can be determined from a 

quadratic equation. It u) f qu2 : r is dlvided by q3, then 

(u/q)l f (u/q)2 = r/q3 

which is again the :t'orm n3 .j. n2 = p and is tound in the· 

tables. 

· For each or the procedures the old Babylonian methods 

appear sutticient. Otto Neugebauer, to whom we owe most 

of our present knowledge of the Babylonian achievements, 

believes that they were quite capable of reducing the 

general cubic equation, although he has, as yet, no evi• 

dence that they actually did do it. 



CHAPTER II 

THE GREEKS 

The .G-reek concern· with cubic equations grew out ot 
• 

their determination to solve the two problems 

(l) the· doubling of the cube and' 

(2). ·the triseotion·ot any angle, 

The first real progress.in the doubling or the cube 

was the reduction.of the problem by Hippocrates of Chios 

(about 440 .B• c. ) to. the construction of two mean pro

portionals between two given line segments sand 2s/4;82/, 

/S;38/. If the t\VO·mean proportionals are denoted by· · 

x and y •. then 

From these proportions one obtains x2 : sy and y2 = 2sx. 

Eliminating y, it is found that x3 = 2s2• Thus·x is the 

edge of acube having·twioe the volume of the oube.ot· 

edge s. 

, He tailed to find the two mean proportionals by geo

metric construction with·ruler and compass.; 

Archytas ·(400 B. C• ) was· also one of the first to 

give a solution to the problem of duplicating the cube. 

His solution restscon finding a.'point of intersection 

of a right circular ~ylinder, a torus of zero inner dia-



17 

meter, and a right circular cone /5;28/, /4;83/,/?a;84/• 

The solution by Menaeo.hmus (375 B, c.) a pupil of 

Fla to, was given in two ways / 5; 44/. lle showed that two 

parabolas having a common vertex,.axes at right angles, 

and such that :the,latus·rectum. ~tone is double that of 
. . . 

the other will intersect in another point Vlhose abscissa 

(or·ordinate) will give a solution, I:f' the equations 

of the parabolas are y2 = 2ax and x2 = ay, they inter-

sect in a point whose.abscissa is given by x3 : 2a3 · 

/1;126/. He also showed.that the same point could be 

determined by the intersection of the parabola y2 : 2ax 

and the hyperpola xy : a2• The first method was probably 

suggested by the torm in which Hippocrates had., presented, 

his problem, i.e., to find x and y so that a:x ~ x:y: 1:2a, 
2 2 which gives x : ay and y : 2ax. 

Thus the finding of two mean proportionals gives the 

solution ot any pure cubic· equation, or the equivalent of 

extracting the c·ube root. 

In the two propositions, On the Sphere and Cylinder II, 

1,5, Archimedes (240~B. c.) lises the two mean proportionals 

when it is required to tind x where· 
~2 2 
a :x = x:b 

which today would be · st-ated x3 : a2b. 
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In another problem (On the Sphere and Cylinder II,4) 

he reduces the problem to dividing.· a sphere by a plane 

into two segments whose volumes are in a given ratio, 

/6;orrvi,62~72/, /1;127/,/5;65/t /J2;l28-l59/.· Since the 

geometrical_ form or the proof' is intricate, it will not 

be given here, The procedure is clear if stated as follows: 

Problem: 

To cut a given sphere by a plane so that the segments 

shall have a given.ratio. 

Stages or the proof': 

(a) Archimedes says that if' the problem is propounded 

in the general form, it requires a "diorismos", (that is, 

it is necessary to investigate the limits or possibility), 

but, if' there be added the conditions existing in a parti-

cular case, it does not require a "diorismos". Therefore, 

in considering a particular case, the problem becomes as 

follows: Given two straight lines a and b and an area 

.o2 ,· to divide a at x ·so that 

a - x - o2 
b - X2 

or x2 (a - x) : bc
2 

(b) Analysis of this general pr~blem, in which it 

· is shown that the required point can be found as the inter

section of a parabola whose equation is ax2 : o2y and a 
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hyperbola whose equation is (a - x)y = ab. 

(c) . Synthesis of this general problem according 

as bc2 is greater.than, equal to or less than 4a3/27. 

(If' greater, there is no real solution; i:f' equal, there 

~s one real ~elution; if less, tb.ere are-··t1f10 real._ solu

tions.) 

(d) Proof that x2 (a • x) is greatest when x = 2a/J. 

This is done in two parts: (l) if x has any value·less 

than. 2a/J, (2) if x has any. value greater 2a/J, then 

x2(a - x) has a smaller value than when x ; 2a/3. 
.. . '\ 

(e} .Proof that, if bo2 is. less than i.a3/27, there 

.are always two real~ solutions • 

. . (1') · Proof _that, in the particular case of the 

general problem to. which.Archimedes has reduced his 

original problem, there is always a real solution. 

, (g) . Synthesis of the original problem. 

· , Ot . these staE;.,;:a, ~ (a) and ( g) are f'o und in the 

Arohimedian texts. Eustocius, the historian, found stages 

(bl thr9ugh (d) in an.old book which he claims is the 

work ot .Archimedes,. Eustocius added stages (e) and (t) 

him.self'. 

In the techtdcal" -l~ua_ge_ oL Greek mathematics, 

the general problem requires a "diorismos". In modern 
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language there must be limi·ting conditions if the equa

tion x2(a - x) :: bo2 is to have a real root lying be• 
, 

tween zero end a. 

In our algebraic notation, x2 (a - x) is a ma:x:lm1Un 

when x : 2a/J• This oan be easily proved by the calculu~, 

By differentiating an.d equating the result to zero, it 

is round that 

. 2a:x: - J.;i. : o and x'(2 - Jx) = O 

from which is obtained x : O (minim.um value) and x : 2a/) 

(maximum. value)·. This method, of course. was not used 

by Arobime~es,. 

In showing that the required point can. be found as 
~· l ' 

the intersection o:r the two conics, Archimedes proved 
.. . ' , ~ .. 

·~bat if 4a3/27: bo2 then.the parabola x?-: c2y/a touches 

the hyperbola (a • x)y: ab at the point (2a/J,Jb) be

cause they both toQch, at this point the .same straight 

line (9b:x: ~ ay - )ab : O). This may be proved in the 

following manner. 
. .. 

~he points of intersection of the parabola and the 

hyperbol~ are given by the equation 

:x.2(a -:x:}: bo2 

which may be written 

~ - ~2 r i.a3/27 = 4a3/27 - bo
2

, 
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· length, FE is a second rlller at right angles to the first 

with a a fixed peg in. it. (Fig. I). This peg moves in a 
" . ~. 

slot made in a third ruler parallel to its length, while 

this ruler has a fixed.peg on it, D, ~n a straight line 

with the slot in which C moves; and. the peg D can move 

along the slot in AB. 
p 

A 

E 

Fig. I 

8 

It.the ruler PD moves so that the peg D describes 

the length or the slot in AB on eaoh side of F, the 

extrem.1 t7 ot the ruler, P, describes the curve which is . 

the ooncho!d. Nioomedes called the straight line AB the 

"ruler", the fixed point C the "pole", and the length PD 

the "distance",·and the tundam.ental propert7 ot .the ourve, 
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which in polar coordinates would now be denoted by the 

equation r :i: a r bseo9, 'iS that, lf, any radius vector 

be drawn from C to the ourve, as CP, the length in'ter- . 

oepted on the radius vector between the curve and the 

straight lin~ AB is constant. Thus any problem in whioh 

one of the two given lines is a straight line can be 

solved by means ot the intersection of the other line 

with a certain oonohoid whose pole is a fixed point to 

which the required straight line must verge. In practice 

the oonohoid was not always actually drawn, but for greater 

convenience, the ruler was moved about the fixed point un

til by trial the intercept was made equal to the given 

length. 

Hippias"ot Elis (420 B.C.), better known as a states

man and a philosopher, made his single contribution to 

mathematics by the invention of a simple device tor tri

secting a.n angle. Thia curve was called the quadratrix 

/S;J2/,/1;125/. 
It the radius ot a circle (Fig.II) rotates uniformly 

around the center O from the position OA through a right 

angle to OB, and at the same time a straight line, which 

is drawn perpendicular to OB, moves parallel to itself 

from the position OA to BC, the locus of their inter- · 



section will be the quadratrix. 
, 

Let OR and .MQ be the position ot these lines at any 

time,: and let them out in p', a point on the curve·. Then 

OM:OB = aro AR: arc AB : angle AOP; angle AOB. 

Similarly, it OR be another position ot the radius, 

OM' :OB : angle AOP': angle AOB. 

Therefore, 

OM:OM' : angl-e AOP: angle AOP'; 

therefore, 

angle AOP': angle P'OP: OM•:M•M. 

Hence,,, if' the· angle AOP is g1 ven, and it is required 

to divide it in any given ratio, it is sufficient to 

divide OM in that ratio at M', and draw the line M'P'• 
. I 

Then OP' will divide AOP in the required ratio. If OA 

is taken as the initialiline, OP: r, .the angle OP ... : e, 
and OA: a, then e ;l/2:rf • r einG:a and the equation ot -
the curve is Tfr : 2a9 ooseoe; 

B c 

M Q 

M' 

A 
Fig. II 
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The auadratrix 1a an example of a transcendental 

(nonalgebraic). curve which will not only trisect a given 

angie but will multiaect it into any number·-or equal parts. 

Another example or this .type or curve is the spiral of 

Archimedes. Archimedes revealed his solution 1n his 

Property 8·.of ~he "Liber Assumptorum'' /1;121/ ,/6; cx1/. 

A 

Fig.III 

As an example of the tr1eact1on or an acute angle, 

let AOB be any acute angle, (Fig.III). Draw line MN per

pendicular to ·oA, cutting OA and OB in D.and.L. Now.draw 
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the oonohoid ot MN tor pole O and constant 2(0L)_. At L 

draw the parallel to QA to out the conchoid in c. Then 

OC trisects angle AOB. 

B c 
Fig. IV 

In dealing with the trisection problem the Greeks 

appear first to have reduced it to what they called a 

"verging". problem (so-called geometry of motion). Any 

acute angle ABC (Fig. IV) may be taken as, the angle be

tween 'a diagonal BA and a side·BC of,a rectangle BCAD 

/4;8;/, /6;oxi1/. Consider a line through B cutting CA 

in E and DA produced in F, and suoh that EF = 2(BA). Let 

G be the midpoint of EF. Then 

EG :: GP' = GA : BA 

whence 

. L ABG • . L AGB : L GAF .;. L GFA = 2 L GFA = 2 L GBC i' 

and BEF trisects angle ABC. Thus the problem is reduced to 
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~t of constructing a straight-line· segment EF of given 

length 2(BA) b~tween AC and AF so that FE "ttyerges" 'toward 

B. 

Over the years many mechanioa~ contrivances, link

age machines, ·and compound compasses have· been devised to 

solve the trisection problem. A general angle may be tri

sected with the aid of a conic. The early Greeks were not 

:familiar enough with conics to.accomplish this and the 
. , I 

earliest proof' of' the type.was glven by Pappus (300 A.D.) 

/6;ox1/. 

It was not until the nineteenth century that it was 

shown that the duplication of the cube and the trisection 

of an angle could not be accomplished by means ot rulers 

and compasses. Pierre Laurent Wantzel (1814-1848) gave 

the first rigorous proots of this. /7;)50/. 

The following theorem was established to show the 

impossibility of solving these two problems with Euolidian 

tools. /4;96/. 

From a given unit length it is impossible to construct 

with Euclidian tools a segment in the magnitude of whose 

length is a root of a cubio equation with .. rational ooef:f'!

cients but with no rationai roots. 

In the duplication problem, take tor the unit of 
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length the edge of· the given cube'and let x·denote the 

edge or the cube to be·tound. · Then· one must have x3=2. 

It the problem is solvable with Euclidian tools one could 

construct trom the unit segment another segment ot length 

x. But this is impossible since x3 = 2 is a cubic equa

tion with rational coett'ioients but•without .. rational 

roots. 

c 

0 DA. 

Fig. V 

In.showing that the ·general angle cannot be. tri

sected with Euolidian Tools, it is only necessary to· 

:!how ,that. some particular angle cannot be trisected·/4;97/. 

From trigonopietry, 

cos9 = 4 oos) (9/3) :..;' 3 cos -(9/J)f · 

· Taking 9 = 60° and setting x = cos·'(9/)). ,this .becomes 

sxJ .. - 6x ·- l = o. 
Let OA be a given unit segment •. , Describe :the.circle with 
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center O and radius OA, and with A as a center and AO 

as radlus draw 'an arc to. a'ut the oirole , in. ·B (Fig. 'V) ~-

Then angle BOA • 60°. Let trisector ·oa·, whlch makes 

· angle COA : 20°, out the 'circle in 'o, and let D be the 

:root ot the perpendicular trom 0 on OA._.; 'Then OD·,: 00820° 

which is also equal to ·x~·· It follows that it a 600, angle 

can .be trise'oted with Euolidian tools, in other words 

it 00 can be drawn with these tools. then 'we can' con- ' .: ~· 

struct tram a unit segment OA another;'segment ot length 

x. ·But this is impossible by the theorem, since the 

above. cubic equation has ratioriai . ooetticients bU.t. no'(' 

rational roots~ 
. ' 

· Ot course·soma angles can be trisected with :Euoli-

dian tools. What has been shoVln is tliat not 'a11··angles 

can be trisected with.straightedge and compasses. 

Lorenzo Masohero'ni · (1750-lSOO) ,· an. Itfilian~ proved 

that all constructions possible with ruler' arid compasses 

are possibi~ with oomi>asses alone~~. J'ean Viotor:'.ponoelet 

( l 7S8-1S67)' a Russian, proved that aif''"'suoh .· con~truo

tions are possible with ruler alone, it a :f'ixed circle 
. . ·, " ' ' ' ' ' 1 ·' ." ~ ... ' .... ' .. ' • '. \ ... 

with its center· in the plane ot oonstruotion· is given. · 

. 'Francois Viets {lS40-l60J) gave a proot"tiiat each 

. ot .the· two" famous problems depend upon :the:,solutlon 
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ot. ~ cubic. equat;ion /5; 208/ • 

Diophantus.ot Alexan4.el" (about 75 A.D.) presente4 

an interesting probl~ involving cubics~ . This is stat-
.. , . : - ~ ' . -. ' . 

e~ 1n .. ~the t,ol~o!l,ing manner /32;539/: ... 
' '. t. ' .,. ~· 

To find ~ ;right•angled triangle e~ch that itff, .. area, · 
. ,,,111 

added 'fio one ot the perp,ndioulars, J!lake~ a ·.square,· 

whil~.its perim~ter is a cube. 
" :, . 

Be begins his proof bl' letting the. area ot. the tri-
:~ ' .~: . .; . " . ',. ' '. ~.· 

f:l~gle .be, !3qual to ~ and. the hypotenuse be som~ ~quare, 

n9J1Lbef. m1n~s x, .. say +6 - ,x. :, 

~ . Since the area is equal· to x, then the. product ot 

the sid~s. ~bou1i the. right angle is equal to 2x. , Bow- ... 
• •· • '' " •' \ . ' • ~ \r \ ·'• 

ever, ~x can.be ~actored into x and.2 so that we oari 
' " ., ..... 

make one.or the sides ot the right angle equal to 2 
, ~ :.. '\. ' . 

and the other equal ~o .. x •. • 

. , The perimeter is 16 - x t. 2 r x, or 18, which is 

not a o~be, but is made up of ~ square (16) f 2. It is 

required,. there:rore, to tind a ~quare n\Jmber which. 
' ,' • - ' ' I J. 

when 2 is added• makes a cube. In_other words, the 

cube must exceed the square by 2 •. 

Let the side of the;S;<J,qare equal m fl and the side 

of the cube· equal m - l. TP,en the square equals 

m2 /. 2m -/. l and the cube equals m3 .f )m - )m2 - l. 
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Since it is required to have the oube exceed the square 

by 2, 2 is added to the square 

m2 f 2m .)· 3 : ml f 3m - Jm2 - l .. · 

from which m ·= 4 •. 
Theretore·,· the side ·ot the square is equal. 'to 5 'and 

that of the cube is equal to three; and henoe9· the " 

square· is 2S and.the cube is 27. 

The. right-angled triangle 1 .is transfom.ed to meet... . . 
the new conditions. The area is still x but the 'litP<>te.;. 
nuse ls now 25·~ x; the base remains 2 and the perpen
dicular equals x. · 

The condition ·is~ still left.that the square or the 

hypotenuse is equal· to th.e sum ot the squares of the <; 

two sides •. Therefore, 

·x2 f 625 - SOX: x2.) 4 

from which 

x = 621/so 
and the conditions are satisfied.· 



multiplied by the square or the arbitrary number, and 

the oube of the arbitrary number, give the oube (ot" 

the given number)." 

34 

Expressions for n3 involving series were given by 

Sridhara (750), Mahavira and Naraye.na (1)56). The for-

mula 

n3 : ~ £3r(r - l) I- lJ 
I 

was given by Sridhara in these words: 

"The cube (of a given number) is equal to:the series 

whose ·terms are formed by applying the rule, 'the last 

term multiplied by thrice the preceding term. plus one•, 

to the terms ot the series whose first term is. zero, . ; 

the common difference is one and. the last term is the · 

given number~" 

Mahavira gave the above in the form ,, 
n3: 32rCr·- l} /..n. 

2 
He said, 

"In the series, wherein one ·is the first term as 

well as the common difference and the nwnber .of :.terms 

is equal to the given number (n), multiply the preceding 

term by the immediately following one. The. sum. of ·the': 

products so obtained, "when multiplied by ·.three ·and:,added 

to the last.term (i.e., n) becomes the cube (ot n)." 



·· Narayana s'tated, his series in this way: 

"From' 'the· series whose first term and common dit

t'erenoe are; ea oh orie,' (the -last' term being the· given 

number) th.e srim of' the ·aeries torined by ·the last ·term<' 

mUJ.tiplied ·t>y-three and the· preceding added-;to one,'. 

gives the cube (of' the last term).": 

Mahavi'ra also mentioned the results 

':x:J ·- x f Jx /. ;:x .; • •••• to xi terms -
·:xJ = x2 r . ( x - l) fl .; 3 t .... r ' ( 2x ' - l l] ' 

in these words: -

"The cube (ot a given number) is equal to the SWn 

of the series whoiie first term is the 'given ·number' ;the 

common' difference is tv1ioe that number, and the numb$r 

or terms is (equal to) that number." 

or 

"The squareot the given number when added to the 

product of that number minus one (and) the sum or the 

series in which the first term is one, the common 

difference two and the number of' terms (is equal to) 

that number, gives the cube." 

The Hindu terms tor cube-root are "ghana-mula" and 

"ghana-pada". The first description of' the operation ot 

the cube-root is tound in work·entitled "Aryabhatiya", 
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wh!oh was written by Aryabhata /31;175/. 

The method is described as follows: 

Divide the second: "aghana" (hundreds)· place by. 

thrice;the square ot the cube-root; substract from the 

first "aghana" (tons) place the.square of the quotient 

multiplied by thrice the .preceding (cube-root); and· 

(substrao~) the cube (of the quotient) from the "ghana" . 

(units) pl~oe;, (the.quoti:e~~.Pl:lt down at the next place 

(in the 1ine ot . the root) gives ·the. root) • "·. 
. ' . ' ' ' ~ . . :. 

The present method of extracting the cube-root is 

a oontraotion of·Aryabhata•s method. 

Bhaskara gave as a numerioai·exam.ple of a cubic. 

equation 

. xl I- l2x : 6x2 t 35 

which gives the root x: S attar conversion to" 

(x - 2)
3 = J 3 •. 



CH.APTER IV 

THE CHINESE• JAPANESE ANp .ARABS 

Little is known about the early mathematical works. ot 

the Chinese and Japanese. This is because both O()untries, 

to~ centuries, enjoyed almost complete isolation from.the 

rest.of the world. As a result, their ea~ly mathematical 

achievements did not affect or contribute.to the progress 

ot mathematics in the west. ,. 

In the first halt ot the seventh century, Wang 

Hs' Iao-T•ung published a work entitled- "0h'i-ku 
,. ' . . ·: 

Suan-ching", in. 1fhiOh numerical cubic equations appear 

tor the ti~st time in Chinese mathematics.. Ha gave .. · 

several problems ;leading ~o .cubics. .One of them is, as 

follows /8;74/:,. 

"There .. is a right triangle, the product. o~ who,se 

two sides is_ 706 l/SO, and whos~ h.ypotenuse·~~,sreater 

than the firs~ ~1~e by. JO. 9/60. It is requir~<i.:to know 

the lengths 01' the three .!Jides. " 

He gave the answer as 14 7/10, 49 ~/S, 51 l/4• 

He also.gave the·tollowing rule: 

"The product,·P, being squared and being divided 

by twice the surplus, s, make the result "shih" or the 

constant olass. ,Halve the surplus andmake,it the 
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*'lien;..ta" or the·aeoond'degree class. And carry out the 

operation of evolution according to the extraction or the 

cube root. · The result :gives the'':tirst aide~· Adding 'the 

surplus to it, one gets the hypotenuse. Divide the pro~ 

duct with the first side.and the'quotie~t i~:the second 

side.rt 

This ·rule leads ·to the cubic equation ' 

' x3 t S/2x2 - P2/28 : o. 
The method of solution is similar to the~process or 

extracting the cube-root, but Wang Hs' Iao-T'ung did not 

give the details. 

Horner's method ot approximating to the roots or 

a numerical· equation was known to the Chinese' in the' 

thirteenth century. This method was later adopted by 

the Japanese and published in the eighth book or' the' 

ffTegen Shinan" of.Sato Moshun·in 1698 /26;115/~ 

The first solution of the problem of trisecting an 

angle by the Arabs is towid in the geometry of the 

·"Three Brothers", Muhammed~ Ahmed and Alhasan, eons or 

Musa ibnShakir (about 875) /1;124/,/7;171/~/5;104/. 

They depended heavily on the Greeks, using the oonohoid 

in the tris eotion problem·. 

The tirst to state the Archimedian problem of' 



div1il1nga sphere by a plane so that the.two ~egmen~~ 

should be 1n a certain ratio and stating this in.t,he· 

tormot.a cubic equation was Al-Ivlahani ot Bagdad (about 
' ; ' . ' . " ' ~ 

860) /8;_107/; /7;171/; while Abu Ja',f'ar Alohazin was ~lie 
! ' .' ~ . .. • • . . ' ' ' '' ~ 

tirst Arab to solve the problem by oonio sections. 
: '· 

Solutions were given also by Al-KUhi, Al-Hasas. lbn 
' . I. . ' ' -· • ., <' • '· 

Al~Haitam, and others. Another difficult problem, to 

determine the side ot a regular heptagon, required.the 

oonstruotion of the side trom the equation.• 

xJ - x~ -:.2x.i l_: p. 
It was attempted by many and finally solved by Abu'l Jud. . . . 

A noteworthy work was produced by Al-Biruni (about · 
J . ' ·~ 

1048). He knew a rigorous approximation pr,ooedure ~n 

order to tigure out the roots of cubic equations •. His 

method used a polygon·o~ seven or nine sides /~plJO/. 

A sim!lar method was figured.out by Gijat Eddin Alkasi 
' • 1· 

(about 143.5). . 
The one who did most 'to elevate to a method· the 

solution of algebraic equations was the poet Omar 

Khayyam (about 1045-1123) /8;107/; /7a;286/~ He .. divided 
I 

oub.1os into two classes, .. the·. trinomial and the quadrinomia~, 

and; each class into tamilies:and species. Each species 

was treated separately b~t according to a general plan. 



He believed that cubics could not be solved by caloulation. 

He rejected negative roots and sometimes ·:railed to find 

the positive ones. 

Omar gave cubic equations reducible· to quadratic 

torms as containing three species /9;64/: 

E 

B 

(l) A cube and squares are equal to roots~ 

cx3 I- ox2 ·: bx) 

(2) A oube and two roots equal three squares,· 

(xl f bx : cx2) (general case) 

or a square plus two equal to three roots, 
) . 2 

(x f 2x : )x ) (partiouiar case)~· 

(3) A cube is equal to a· square and three roots~ 

(cx2 ·f bx: x3) (general case) 

or a square equal to a root plus the number three, 

· (xl =· l.x2 f Jx) (particular case). 
'J , ' ' 

To give an exampie· ot the proots, · ( 2)· is considered .. ,, 

D 

.. A 

·Fig. VI 



Let the cube ABODE with 1ts:: two roots be eqtial': to 

three squares,· and. let the square H equal CB and also" 

let K be equal to the number· three. Then the product 

Qt H by K will bc:t equal ··to. three times the square·of'' 

the cube AE• Construct on AC a rectangle equal to the 

nwnber two ~na. oo~plete the solid AZCTD •. ·It will be equal, 

then• to the number ot roots•· But the· line ZB multiplied 

by the square AO gives the solid BT.·and the solid AT 

is equal to the number'.·O:f' : sides. Consequently; the solid 

BT will be equal to·the cube plus a quantity equal to 

the numper of 1 ts sides. 'Heno·e j solid BT ·1s . equal to the 

number of squares• Consequently,· the line ZB is equal to 

three and the rectangle BL is equal to a square:plus two. 

Then a square plus two is equal to three roots because 

the re.ctangle BL is aqll.al to a 'square plus tvio. Then a 

square plus two is equal to three roots because the rectan

gle BL is formed by multiplying AB by three. 

In a modern mathematical notation the problem would 

read as follows: 

the cube ABODE : x>, H ':'CB : x2f K : 3,· Ii·_. K : 3x2; 

AL = 2; AT • 2x; , BT • ZB • ~ · = ZB • 'x2; 
BT = 'AE t AT = x3 l· ·2x • ·3x2; then ZB = J; 

BL : BC f AL = x2 /. 2;, BL =' ZB • AB :' Jx; 'th.en x2·· t 2:~ = )x. 
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The speciea whioh Omar Khayyam claims could not be 

proved except by th~ properties ot conics include tour

teen: one simple equation (that in. which a number is 

oqual to a cube); six trinominal equations; and seven 

tetranomial. equations. 

The aix species of trinomial equations are (as 

taken trom a translation ot his work /9;64-86/): 

(l) A cube and. sides are equal to a number• 

(x3 .J bx : a) 

This species does not present varieties 

of cases or impossible problems. It is 

·.solved br means of the properties or the 

circle combined with those ot the parab

. ola.· 

( 2) A cube and a number are equal to sides• 

(x3 .J a = bx) 

This species includes different oases ·· 

· and some impossible problems. The species 

is solved by means ot the properties or 

the parabola and the hyperbola. 

(J) A cube is equal to sides plus a number. 

(x3 : bx I- z) · 

This species has no variety of oases and 



no impossible solutions •. It. is solved 

by means of the properties-of .tile parabola 

and hrperbola. 

( 4) A cube and squares are equal . to a number •. 

( :x:3 I cx2 : a) . 

This.species has no variety of oases and no 

impoaf:Sible problems• It is solved by means 
. ' 

of the properties ot the parabola and hyper- . 

bola combined. 

(;) A cube and a number are equal to a square. 

(xJ f. a : ox2) 

This.apeoiea has a variety of oases some. ot 

which are impossible. It is solved by the. 

properties of .the hyperbola and parabola. 

(6) A cube is equal to squares and numbers. 

(:x:J : cx2 f al 

1his species has neither a varlet~ ot oases 

nor impossible solutions •.. lt. is solved by 

means of the properties of the hyperbola 

_and parabola. 

The tetranomial equations Bre as follows: 

(l) A cube, squares l\nd sides are equal to numbers. 

(x3 f. ox2 f.bx: a) 

43 
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This species has no varieties of oases and 

no impossible problems. · It is solved by means 

of the properties of a hyperbola combined 

with those of a oirole. 

(2) A cube, squares, and numbers are equal to sides. 

x 3 t cx2 t a : bx 

There are a variety of cases in this speoies 

and some mey be impossible •. , This species 

is solved by means ot the properties ot two· 

hnerbolas~ 

()) A cube, sides and numbers are equal to squares. 

x3 f bx /. a : ox2 

There are a variety ot cases, some impossible. 

It is solved by means ot a circle and hyperbola. 

(4) ?iumbers, sides and· squares are equal to a cube. 

ox2 /. bx t a : x3 

This species ·has no variety ot cases.'· It 

is solved by using the properties ot two 

hyperbolas. o' 

( S) A cube and squares are equal to sides and a 

number. 

x3 f cx2 : bx I a 

This species has a variety ot cases but no· 



impossible cases •. It is solved by using the 

properties ot two hfperbo~as~ 

( 6): A cube and sides are· equal to squares and 

numbers.; 
J ~ ' 

(x ,1' ·bx ::.: c~ .f.. a) 

This species has a variety of cases and 

forms. It has no impossible problems. 

It is solved by means of the properties 

ot the oirole and hyperbola. 

(7) A oube and numbers are equ.al to sides and 

squares. 

(x3_f a: bx.t ox2) 

This species has· different cases, some 

impossible~ It is solved by means ot the 

properties ot two hyperbolas. 

As mentioned prenously, Omar Khayyam did not con

cern himself with negative or imaginary roots. This 

might have been due to the tact that he rarely complet

ed oonstruction of his curves, using semi-circles, semi

parabolas and only one branch of the hyperbola. His 

procedures were always logical. 

Although a manuscript of Omar's work on algebra 

was noticed in 17421. his work was not made generall7 



available to European scholars until 1851. 



CHAPTER V 

THE.RENAISSANCE 

After the work done by Omar Khayyam, nothing ot real 

importance was accomplished in the field or cubic equations 

until the middle ages. One ot the most important oontri-· 

butions was made by Leonardo ot Pisa (Fibonaccl). 

His greatest work, the "Liber Abaci" was published in 1202. 

To him is owed the.first renaissance ot mathematics on 

Christian soil. His work contains the knowledge the Arabs 

had in arithmetic and algebra. He advocated the use of 

the Arab notation. His concern with oubio equations was 

con.tined to the following problem: 

'l'o find by the methods used in the tenth book ot .· 

Euclid a line whose length x should satisfy the equation 

x3 t 2x2 t lox : 20. 

· Leonardo showed by geometry that the problem was 

impossible, but he gave an approximate value ot the root 

/8;120/, /5;159/, /7b;457/,'/57/, /59/, /60/. 

Scipione Del Ferro, a professor of mathematics 

at the University- ot Bologna~ solved the'.. equation· 

XJ t .mx : n in 1515. He did not say how he arrived at 

the solution /7b;4S9/. 

The first really great algebra to be printed was 



the Ars Magna ot Girolamo Carden (l50l·l576) whioh 

was published in 1545+ Among its contents was a 

solution.or cubic equations. A contempor~ry ot his 

was Niccola Fontana (Tartaglia, the stammerer) (.1500-

1;;9) •. Cardano, in his f:rs Magna, stated that an 

equation of the type xl r px : q was solved by a ,, 

.m.othod discovered ,by Scipio del Ferro. Tartaglia claimed 

priority tor the method ot solving equations ot .the . 

type .: x'.3 I- px.2 : q and also . the method olaimed tor del 

Ferro. A. discussion ot theea qlaim.s, is to be found in 

all ot the general hiatories ot mathematics. In modern 

publications the solution is usually ref erred to as 

"Cardan's Solution" although some. use "Oardan-Tartaglia 

Solution"•: 

A tr~slation of Cardan's solution in modern 

symbols is given here /11;20)/. 

Given x'.3~ 6x : 20 

let , ul-y~ :· 20 · and u'.3v3,: (l/j • 6)) - s. -
Then ( u - v) 3 l· 6( u ~ v} : u3 - v3, · ,. 
tor u:3_.- )u2v f )uv2 - v3 I- 6u - 6v : u3 ... v3, 

whenQe )uv(v :- u)_: 6(v - u) 

and uv e ·2 •.. 

Hence x : u - v. 



But . · u3 : 20 f v3 : 20 /. S/u3 • 

whence u6 : 2oul . .J. 8;. 

which is a quadratic in ul. . Hence u3 can ~e found, . 

and,therefore vl, and theretore.u - v •. A "geom.etrio" 

demonstration was also given by Cardan·/11;204/. 
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Carden discussed negative roots and proved that 

imaginary roots occur in pairs• , He .showed that it t.he 

three roots of a cubic equation were real, his solution 

gave them in a form which involved imaginary quantities. 

Cardan also noted the difficulty in the irreducible 

case in cubics •. · 

Rafael Bombelli of Bologna published a noteworthy 

algebra in 1572. In this work he showed that in the 

irreducible case of a cubio equation, the roots are 

all real. In textbooks it is shown that it (n/'if .J. (m/3)) 

is negative, then .the cubic equation x3 .J. mx : n has 

three real roots. In ~his case, however, the Cardan-Tar

taglia solution expresses these roots as the dit'ference 

of two oube roots ot complex 1magine.r1 numbers. Bombelli 

pointed out the reality of these apparentl1 imaginary . 

roots /4;221/, /5;203/ , /8;135/, /1;139/. 

In his publicatio~ he also remarks that the problem to 

trisect a given angle is the same as that ot the solution 



so 

ot a cubic equation•· 

Michael Stifel· ( 1486 - 1567) was the greatest 

German algebraist in the sixteenth century. In 155) he 

published an improved edition of Christoff" Rudolf's ·· · 

book on algebra entitled Die Coss /1;139/. · Rudolf::' 

gave three numerical cubic equations. One of them · 

gives an interesting method as"tollows in modern nota

tion: 

Given x3 : iox2 I- 2ox ;. 48 

by adding 8 to both sides one obtains 

x3 ·I- 8 : lOx
2 I- 20X ;. 56. 

Dividing by x·;. 2 

·x2 • 2x ;.;4: lOx I- 56/x I- 2, 

Now assuming·that·the two members may be split into 
2 l ·,. ·x - 2x: ox· 

and ·4 - 56/x f 2 

then both ot these equations are satisfied by x !! 12; 

However, the-method is not general•· 

Similar solutions using special cases were worked 

out by Nicolas Petri around 1567 and are tound in a sub

division ·on "Cubica·Coss". :He gave eight·oubic equa• 

tions. For example: 

.· x3 : 9X f 28, 2)X3 f )2X : 905 5/9, . X) : Jx2 f ')X r 16. 



He solved these using Cardan's mothod/7b;46')/ • 

.After the ground work had been laid by. Cardan [, 

and,Tartaglla, it was Franoois Vieta .(1540.-1603), one 

;1 

o·t .the great.est mathematicians of the sixteenth c&ntury, 

who generalized the method. Viete,·began'with the·torm 

x3 {- px2· f qx l· :r ·: O · 

and using the substitution 

x = .,. - p/'J : ' 

r'educed the equation to the form 

3 . y ../· )by : 2c. 

He then made the substitution 

• z) {- yz ::' b, .. or y ::: b, ·- z2 /z, · 

which gave 

z6 {- 2cz3 : b) 

which he solved as a quadratio·/4;222/, /7b;465/, 

/S;205/, /8;137/• 

He made an outstanding contribution· to .the·, symbolism 

ot algebra .and to the development ot tr!gonQ.metry •. 'Vi eta 

sho\ted that both the trisection and 'the duplication pro

blems depend upon the solution :ot :cubic equations•· work-· 

on these problems. led him to the discovery .or ·8' ·'trigono

metrical solution·o:t·cardan's irreducible case in ·oubios. 

He applied the equation: 
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{2 cos 1/3 -)3 - 3(2 cos l/J -) : 2 cos ~ 

to the solution or :x.3 - )a2x : a2b, when a l/2b,by 

placing x = 2a cos 1/3 fd, and determining f:4 from 

b : 2a cos ~ /1;147-150/. 

·· Vieta clearly estab'iished the tact that although · 

he did not recognize negative roots or cubic equations, 

he understood the relationship between the positive 

roots and its coefficients~ In his treatise De -
Emendatione Aequationum (published by Alexander 

Anderson in 1615) he states that tha·equation whose 

roots are x·: a, b, and o is /10;149/. 

x3 -(a t b t o):x2 t (ab t be t oa)x : abo. 

This relation can be used to solve problems of 

the tollowing type: . 

Given · .)x3 - 163x2 t 2Jx - 6 : o . and 

. the product of two roots is l. 

Let the roots be a, b, c. Their sum is 16/J; 

their sum taken two at a time is 2J/3; their product is 

2. From this last relationship, o is found immediately 

to be 2. The other roots may be found either by solving 

the remaining equations for a and b or by reducing 

the original equation to a quadratic by dividing it 

by x - o. 
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As 'Was recognized by Vieta • Rene Deaoarte . ( 1596-

1650) proved that every geometric problem giving rise 

to. a cubic equation oan,be reduced either to the dupli

cat.ion of the. cube or to .the trisection or an angle. In 

the third book ot his Gbom&trie he pointed out.that if 

a oubio.equation (with rational coefficients) has a 

rational root. then it can be factored and the.cubic 

oan be solved geometrically, by the u.se of rul~r and 

compasses~ He der! ved the .. cubic z3. : )z - q, as the 

equation upon which the trisection of an angle depends 

and etteoted the trisection with·the aid of a parabola 

and circle /8;17)-180/. He also gave the rule to:r.- deter

mining a limit to the number of positive and negative 

roots ot an algebraic ·equation and introduced the method 

ot indeterminate ooettioients for the solution ot 

equations. 



CHAPTER VI 

THE SEVENTEENTH AND EIGHTEENTH ,CENTURIES 

.The latter halt ot the seventeenth century saw 

the beginning of many attempts to refine and simplify 

solutions to cubic equations. There was increased 

activity in the search for new solutions. 

Johann Hudde (1633-1704) was the author ot an in

genious method tor. :tindina equal roots. As an illustra

tion let the equation be 

x.3 - x2 • ax .;. 12 : o. 
Taking an arithmetical progression 3,2,1,0,ot which the 

highest term is equal to the deg:ree ot the equation, 

multiply each term ot the givan equation by the corres

ponding term. or the progression obtaining 

JxJ - 2x2 - .sx t 0 = 0 

or 2 ·Jx - 2x - S: o. 
The last equation is one degree lower than the original 

one. ·.The next step in the procedure is to f'ind the 

greatest common divisor of the two equations. This is 

x - 2, so 2 is one ot the two equal roots;. If there 

had been no common divisor then the original equation 
. ~ " 

wo11ld not have had-
1 
equal roots /8;180/. 

This method will be recognized as being analagous 
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to the modern method ot determining when a cubic equa-
. . 

tion has equal roots. Taking the derivative of the 

original cubic; the equation · 

)x
2 ~ 2X - 8 =· 0 

ls immediately obtained~ ·:The rest' of the procedure is 

the same, · 

Budde simpliitied the work of Vleta~ He also 

realized that a letter in.an equation might stand for 

either a po~itive or.)1egative number. 

His metliod·ot·solvins the oubio equation is as 

:t'ollows /?b; 466/: : 

"Given· ·x3·= qx tr 

let x =·1 ~ z 

Substituting this in the original equation one obtains 

· :'y3 f 312z t )yz2 t z) : qx f. r. 

Now let y3 t z3 : r 

and , ·. Jz,2 ·f 3t2y : qx 

which gives .. 1·: q/Jz~ 

Therefore, 

y3 - r - z) • q3/27z3, - . 

and ·z) '~ -~/21:.ir?-/4 ... q3/27 : A · 

and 13: r/2 t1r2/4 - q3/27 =·B. 

Hence, 



x.:~io/B. 
.. Christian Huygens ( 1629-1695) u.sed a method 

' . . . . . 

sim.1lar to Hu.dde•s /l;U.5/ •. He began with 

x3 I px - Q. : O 
' . 

and let x : 1 - z and. Jyz : p. 

Through these substitutions. is ob.tained 

13 - z3 .:" q : o , y) •• p3 /27y3 - q : o • 

.16 .: qy.,.· (. p3 /27 • y : ~ q/2 .;.YQ.2/ 4 t. P3 /27 •.. 

FrOlll this value ot '!! one can obtain z and find 
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x f¥ q/2 lfq2 / 4 .;. PJ /27 .. • ·. p/;/\){/2. ifci2 I 4 .;. pJ /27 •. 

In tracing back a geometrical solution of the tri

section of an angle, Albert Girard in 1629 gave his solu

tion in algebraic terms as follows /1;150/:. 

Given 

let 

where 

:z:) :.PX t q 

Xl : 2r COB ; 

'a:2 : ... 2r cos (60° (. ~) 

X3 : • 2r OOS (600 - ;) 

. r :1P/J and cos 3 ; : )q/2pr • 

. A. Oagnoli in 1786 gave a trigonometric solution 

using as his given equation: 



.z.3 ·.:. px '1· q : ·o where 4p3~ 27 ci2 ~· · 

lie t1ses the relationship · 

sin ) ¢ : '3q/p ~ iJ2YiJ3 
and with this help determines that 

x1 : t sin ~ • 2 p/3 

x2 : C sin (600 - ¢} • 2fp/J 

··x .3 : · f sin ( 60° I- II) • 2fp/ 3 ~ 
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For the form xJ t px t q & O he uses the tangents of 

two angles to obtain his solution /l;l5l/. 

EhreritriedW. Tschirnhausen (1631~1708) endeavored 

to solve equations ot any degree by removing ell terms 

except the first and last.a- Thia method boars his name.· · 

Tho equation x3 t qx t r = O is combined with the equa• 

tion x2 I vx I w : y and x is eliminated between thetl'l 

leaving a cubic oquation in Y'• Through en eppropiate 

selection ot v and w, one obtains 

y3 :-a constant 

and by- substitution" in the quadratic in x, a solution 

ts round /l;l.46/. 

• Isaac Newton ( 1642.;.1727) published in 1707 ·a 

treatise restating Descartes' rUlo of signs in accurate 

torm and gave tormulee e,;pressing the 'sum ot the )owere 

ot roots up to tho sixth power /8;191-205/. lie used 



his formulae tor fixing an upper limit of real roots 

by showing that the sum of any· even power or·· all the 

roots must exceed the same even power of any one ot 

the roots. He showed that in equations with real 

coefficients, imaginary roots always occur in pairs. 

;s 

He also developed a rule tor determining the 1nf erior 

limit of the number of imaginary roots, and the 

superior linlits tor the number ot positive and negative 

roots. He did not prove this rule~ 

The treatise on "Method of Fluxions" contains 

Newton's method ot approximating the roots of numerical 

equations. The earliest printed account of this appeared 

in Wallis' Algebra in 1685. He explained it by working 

one·example /8;202/, /7b;47)/. He assumes en approxi

mate value is known which ditf ers from the true value 

by less than one•tenth of that value. 

Given 

.,; ..; 2y - ' : 0 . 

lie takes 2<Y<3 and substitutes 1: 2 t pin the.equa• 

tion, 'which becomes p) t 6p2 t lOp - 1 : o. Neglect

ing the higher· powers of p 1 he gets lOp - l : O ~· 

Taking p : .l r q, he gets q3 f 6.)q2 I ll.2)q t .061 : o. 
From ll.23q t .o6l : 0 he gets q : - .00;4 t 1-1 



and by the srune process, r : - · .0000485.J. Finally .. 

y: 2 t .1 - .0054 - .00004853.: 2.09455147. Newton 

arranges his work in a paradigm /64/. If there is 

doubt whether p ~ .l is sutficiently close, he suggests 

finding p from 6p2 f lOp ~ l : o. He does not show 

that even the last will give a elose solution. He . 

finds by the same type o~ procedure - by a rap+dly 

converging series - the value ot 1 in terms ot x in 

the equation y3 t axy f a2y - x3 - 2a3 = o. 
Joseph Raphson 91648-1715) in 1690 gave a method 

' . 

closely· resembling Newton!s. The only difference is 

that Newton derived each successive step, p,q,r, ot 

approach to the root, from a new equation, while 
. -

Rap.llson found it eaoh time by substitution in the 

orisinal equation. In Newton!s cubic! Rapheon woul~ 

not find the second correction by the use of 

xJ t 6x2 r lOx -.l: 0 but would substitute 2.1 f q in 

the original equation9 finding Q ~ -.0054. He then would 

substitute 2.0946 t r in the orlg~nal equation, finding 

r : .0004853, and ao on. The method used in modern 

textbooks, therefore, should properly be called the 

Newton-Raphson method /8;202/. 

The defocts in the process {successive corrections 
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not always yielding results converging to the true 

value o:f the root sought) were removed by J'~ ·Raymond 

Mourraille in 1768 and a half oentU.rt later by Fourier 

/8;247/. · M:ourraille and Fourier introduced geometrical 

considerations. Mourra1lle concluded that security 

is insured if the first approximation is selected so 

that the curve is convex toward the axis or·x tor the 

interval between the approximation and the root. He 
. . 

shows that this condition is sufficient, but not nee-

essary. 

A noteworthy algebra by John Wallis ((1616-1703) 

was published in 16SS. In this work' Wallis makes the· 

first recorded attempt to give a graphical representa

tion of complex roots. This book was the·· :first serious 

.attempt to give a history Of mathematics in England. 

His account ot the histor1 ot mathematics·in antiquit1 

was very comprehensive. This book was used as a ' 

standard textbook tor many years. The algebra of 

Thomas Harriot (1560-1621) and Newton were discussed 

in detail.· In many instances, work which should have 

been credited to Vieta, Girard, and Descartes was 

credited to Harriot by Wallis. In the Treatise of -
:!lgebra it is dift'iouit to distinguish·between what 
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We.a ·done .bY' others and thf;' work, actually d_one by Wallis'. 

He gives. twenty-five .. improv8:fnents in algebra'.· 

In. Section V of. the 'Algeb;ra·,. the following proposi..:. 

tions .· a~e given /lo:; 141/: · 

Jl) . An equat.:ton .a~,,;.. )b2a, : 2c~ is satisfie'1, 'by 

one root if b is less than c; .as a matter ot 

taot,.!n,th~t oase.there is only one,positive 

root,,· 

( 2) . The equa t!on · a3. - )b2 : 203" is s~tistied by. 

one root it c - b. -
()) . The equation a3 -.3b2a : -203 is satisfied by 

two roots when c is·less than b• whereas, of 

course, in that partioular case the equation 

has two positive·roots and one nega~ive. 

Wallis was familiar with imaginaries, and he knew 

that all such roots oooured. in pairs. Moreover he woul4 

not allow the use or the word "impossible" aa applied 

to.an equation with imaginary roots. In his own words, 

~These are no~ impossible equations, and are not alto

gether useless but may be m,ad~ use of to "Very good . 

purposes •. For they serve not only to show::that the 

O.e.se .proposed (which resolves itself' into 3UCh an · 

impossible equation).is an Impoasible case, and cannot 
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be so perto:cmed as was supposed, but it also shows the 

measure ot that impossibility; how far it is impossible, 

and what alteration in the case proposed would make it 

possible." /10;156/~ 

Harriot had shown how, by multiplication, compound 

equations could be derived from laterals. Wallis 

carried the investigation much further, by illustrating 

how these compound equations might by di vision be reduced 

to much simpler equations. Wallis' own example is ae 

follows /10;157/: 

The. equation 

is composed ot 

Now suppose the 

ot·. the · simple, 

· aaa - baa f boa - bod : 0 

- caa /. bda · 

-·daa .;. oda 

three laterals, 

a - b : o, 
a - .0 - o, -
a - d -o. -

compound equation be divided by one 

say by 

a - d : O, 

the'result is a quadratic equation containing the other 

two roots 

aa - ba 

- ca r be - o. 



Hence .to solve an e~uation such as 

aaa - lOaa f )la - 30 : 0 

Wallis says, "If by any me~ns I·.have discovered the 

value of one.root, f suppose a : 2) I may (dividing 
-

the original equation by a - 2) depress that cubic 

into a quadratic, namely, 

aa - Sa t 15 : o, 
which ._can easily be solved "• 

Harriot investigated the equation 

,., , aao. /. )bba : 2occ. 

His method was essentially the same as Vieta•s. 

6J 

Putting a: ee - bb/e, one.obtains (in modern .notatio~) 

e6 - Jb2e4 f )b4e2 - b6 t Jb2e4 - )b4e2 ; 203, 
::·3 
e 

whence 

e6 : b6 /. 20Ja3, 

\Vh!oh was solved by comp'11.eti11B the square. 

Wallis gave a new method of solving the cubic which 

h~ said. he d1$covered about 1647. This method is 

substantially an application: or ·cardan ts~' though 'viallis ' 

claimed he tnew nothing or it. This investigationiin

o.ludes a methot!·ot·extraoting the cube root ot a binomial·• 

whioh he claimed as his ovm. - This method ha~ .previousl~ 



been given by Girard. The method is illustrated by 

Wallis in the following manner /10;159/. 

Given aaa - 6a : 40 

Put a : e2 t 2, . 
e 

the equation becomes e2 - 4oe3 f 8 : o, 
whence a3 =. 20 tn92,. 
This becomes e3 : 20 ! l4f2° 

trom which e : 2 t-rz; 
so that a -- e2 I= 2 • sf 4(2 - 4. 

e - 2tf'l" · - • 
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To this Wallis says, "Therefore, those equations which 

have been reputed desparate are truly solved as .the 

others, and thus by casting out the second term, the 

cubic may be reduced to one of the following forms, of 

uhioh one root at least is.Real, Affirmative or Negative; 

(the others being sometimes Real and sometimes Imaginary)tt 

/10;160/. 

Equation Root 

aaa t Jba - 2d = o •. f-v/ d ttdd r bbb -'i -d fYdd 7 bbb : a. 

aaa · f Jba f 2d : o. -\Yd ffdd f bbb .;.'?/ -d f(dd f bbb : a. 

aaa - Jba - 2d : o. t'¥ d fYdd. - bbb lV/ /.d -Vdd '!' bbb : a. 
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aaa - Jba . .; 2d : o. ~V d t~dd - bbb -"VJ t d -Ydd ... bbb : a. 

Having given the solution of each ot these types. 

Wallis had given a solution ot all· cubic equations. ot 

least, es far as one ot its roots is concerned. He had 

previously ·shown that onoe one root is discovered, the 

oubio oan always be reduced to ~ quadratic by division. 

Joseph Louis Lagrange (1736-181)) gave e solution 

ot cubio equations by a method of combinations. Previous 

solutions, as ho.a been seen, were made by a substitution 

method. In the substitution method the original forms 

are transtol"med so that tho determination ot the roots 

is made to depend upon simpler functions (resolvents). 

In the method of combination awtiliar,r quantities are 

s~bstituted tor certain simple combinations (types) 

ot the unknown roots ot the equation, and auxiliarr 

equations (resolvents) are obtained for these quantities 

with the aid ot the coefficients ot the given equation. 

' ' . t ' "Reflexions sur la resolution algebrique des equations" 

t;>ublished in Memoirs ot the Berlin Aoadem7 for the 7ears 

1770 and 1771) contains all known algebraic solutions 

of equations of lower degree whose roots are linear·· 

tunot1ons of the required roots, and ot the roots ot 

unity. In this study Lagrange considered ~he number ot 
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values a rational function can assume when its 

variables are permuted in every possible way /8;25)/. 

Langrange•s solution ot the cubic equation must be 

·introduced by a brief :d.tsoussion ot Newton• s formulas 

and the fundamental theorem on· symmetric functions upon 

which it depends. Newton's :t'ormu.l.as are a particular 

case of the general theorem. of. symmetric tunctions. 

·Symmetric functions of the roots or an equation 

are those which are not altered it any two ot the roots 

are interchanged. For example, it xi, x2, :x) are the 

roots, of a cubic equation, . 

x1 I- x2 I- x3, x1x2 .J.-'x1x3 t x2x3, x1x2x3 are symmetrio 

tunctions, tor all the roots are involved al!:ke •. The 

functions Pl•q and r ot 

xJ.;. p1x2 . .J. qxfr: 0 

are the simplest symmetric tunotiona ot the roots, each 

root entering in the first degree· only in any one ot them. 

One can often obtain a great variety pf sYminetrio tune• 

tions in terms of the coefficients of the equation whose 

roots are being considered. A symmetric function is 

usually represented .by .. the Greek letter~ attached to 

one term o,~ 1 t • :rrom which the, entire expression 

may be written /25;134/. 
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Lagrange considered a rational integral function 

in three variables x1,x2,x3• It they are permuted in 

six possible manners, the function, in general, will 

acquire six distinct values. In particular cases, 

however, it may happen that the number of distinct 

values will be less than six, then it will be either 

one (for symmetric functions) or two or three. Lagrange 

showed that it is possible to find a linear function 

whose cube has only two different values. His method 

is as follows · /24;27J/. Let W be an imaginar1 oube 

root ~t unity and consider the linear function 

Xl f W X2 t· W
2

X3• 

To every. even permutation of the indices 12), 2)1; 

)12 there correspond three values of this tunction: 

71 : xi I- w x2 I-. wlx3 , 

y 2 : x2 I- w x3 I- w2 xi , 

1) : x3 I- w x1 I- wzx2 , 

and to every odd permutation 132, 213, 321 there correspond 

three more: 

Y 4 : x1 .;. w x3 I- w2x2 • 

1'5 : x2 t W\Xl t W
1

x3 ' .~ ~ 

'16 :-x3 ·r W x2 I- W x1 ' . 
Observe that 



'U' - ' •• 11.V' 
"2 - VJ "1 ' 

13 : w Y'1 • 

15 :w14 , 
~ l .. 

Y6._..W Y'4 ' 

so that 

Hence, 

(x1 1'.w x~ f w2
x3>

3 

has only two distinct values · 
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ti: <x1 ~w x2' "··wz.x3>3 , . t 2 : (x11' w-ix;/l~x3 )l, 
and_ the.. oombinations t 1 f t 2 and t 1t 2 are symmetric ~unctions 

ot x1 ,x2,x3• 

Suppose that x1,x2 1x3 are the roots or a cubic 

equation 

x.3 f px2 {- qx 1' r : o, 
then 

t 1 .J. t 2 : 2~xi - J z_ xi_x2 I- l2x1xr3 
in which : 

~ Xf : -p3 ~ ,3,Pq, - )r,_Ixii2 : -pq .f Jr, f x1x2x3 : -r 

and on substituting 

t1.f t2 : -2pJ f 9pq - 27r. 
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Also in .. finding t 1 t 2 . : 
J . 
~2. : ~ xy •.2: X1X2• 

where 

~ xy : p2. -· Jq ·; and · ~ x
1 

:&:2 : q 

trom which 

t1t2 : 'c·pz - Jq)? • 

Consequentl1, t1 and t2 are the roots of the quadratic 

equation, 

t 2 f (2p) • 9pq /. 27r) t f (pl - )q)3 -· O· 
. -· 

and can be '9und alsebraical~y. Having found t 1 and t 2 , 

on ex,~raoting cube roots, one obtains 
1 1 l. "'\Jr.;;- •' d .1 . 2. , "'\3.r;-xl r w x2 r w x3 : v t 1 , an x1 r w X2f w x3 : v t 2 , 

and also' 

. Xl f ~ f · XJ t : -p·. 

By solving these equations one obtains the roots'· 

X1 ::1/:H-P ~l "~ ) ~, 

ot t.he cubic equation. Between the cube roots there· 

exists the relation 

n ·~ = p2 - Jq • 



CHAPTER VII 

THE. NINETEENTH AND TWENTIETH CENTURIES 

The search tor new methods of solutions to cubic 

equations continues into modern times.. Some of the 

methods consist of different approaches to known 

procedures /75/, /79/. Solutions using mechanical 

apparatus and hydraulic apparatus have been suggested 

/70/, /73/. Work continues to be done on the nature 

ot~he roots and on the approximation to the roots /71/, 

/77/, /79/. Several ~i~ferent procedures will be.pre

sented here. 

The value ot x in any algebraic equation may be 

expressed as an infini~e series. Let the equation be 

ot any degree. and by dividing by the coefficient or 

the first power of x let it be placed in the form 

a·: x ~ bx2 t ox3 f dx4.;. ex; f tx6 /. ••••• 

Now let it be assumed that x can be expressed by the 

series 

x -- •••••• • 

• 

By inserting this value ot x in.the equation and equating 

the coefficients of like powers ot a, the values ot 

m, n, etc •. are found, and then the following is an 

expression ot one ot the roots or the equation& 



x = a - ba2 ; (2b2 - c)a) - (5bl - 5bc /. d)a~ 

f (l4b4 - 2lb2o /. 6bd .J )o2 - e)aS ••• ,. 

In order for this series to oo:irferge rapidly, a must 

be a small traction. 
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To apply this to a cubic equation, the coetf ioients 

d, e, etc. are made zero. 

Example: , 

xl - Jx I o.6 : o 
Divide by ;, the ooett!oient of the x term and obtain 

0.2 =- x - l/Jx-.3. 

Then ... 

a : 0,2, b : 0, C-,: • 1/), 

and 

, ' x =. 0.2, ,. 0.23/3 f 0.25/3 t .... = 0.20277 

which is. the value ot one ot the roots correct to the 

4th deoim.al place /Jl;27/. 

When c. cubic equation has three real roots, a 

convenient solution;~ is by trigonometry. 

Givelb· 

y3 t JBy /. 20 : 0 

let 

1 = 2r sinQ 

then ,.. ~. ,,, 



a sin) 9 f 6 B ainQ /r3zc/r3 : o. 
B7 comparison with tho known identity' 

8sin)Q · .... 6sin9 .;. 2 ein)9 : O 
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r ·: •B S:ln)Q : c/a ,· in which B is always 

negative for the case of three real roots. 

39 is found in a table and then 9 is known. 

Theref'ore, · · 

11 :·2rsin9 

12 :-2rs1n(240° I- 9) · 
'', 0 

1; : 2rsin(l20 .;. 9) 

are the real roots. 

When B) is negative and is less than c2, and 

when s3 is positive~ the solution fails sine& one 
' ' 

root is real and the others imaginary. : In this case, 

a· similar solution is obtained by means of hyperbolic 

sinos /69/. 

D. B. Stein.man in 1950 ge.vo a shortcut method 

tor solving cubics /53/. The solution is explained 

by use or numerical emmples. ~o or them· will be 

given here. 

(1) xl ': sx2 /- 2x .;. 3 

Write the coeftioients and computations in 
' 

the following mc.nner. ' ' 
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; 2; 135 740 • • • • 
2 < 10 ;4 •••• 

2 ' 12 •••• 

r =' 27 148 609 •••• 

x = 809/148 - 5.466 -
Explanation; · 

The coettioient .. ot _x) is unity. · The other 

given numerioal ooe:f'fioients (5 1 2, J) are written· 
'• 

diagonally across the rows and columns •. The rows are 

written by multiplying the coefficients heading each 

row by the sequenoe or values of r, as these values 
~· 

beoome available •. The :values Q;frn~e written by add

ing .the terms in ~aoh respective.column •. The·values of 

rPIP:r+-:--11 tthe suooessl:ve approximations. to x,er.e given 

by the converging_ratiosr 

x = 5/1, 27/5, 148/27, 809/148, .... ' 

or ·" . x = s, 5.4. 5,48, 5.466, .•••• 

Stopping the computation at thi3 point gives the .· 

answer oorreot to tour significant figures. 

(2) . x3 = 2x2 - Sx f l 

Let 1 x : l/y 

Then y3 : ;y2 ..;.. 2y /. 1 

Write in the following manner. 



5 25 115 

-2 -10 

l 

r = S 23 106 

x = l/y : 0.217 
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In example (l)t the absolute value of x was 

greater than unity which is a necessary condition tor 

convergence. It the absolute value of x is less than 

unity. then by substit_uting the reciprocal one obtains 

an equation which has a root whose absolute value is 

great·er than one. The transformed equation has the 

ooeffioients ot the squared term. and the first degree 

term interchanged, with the signs changed. Since the 

solution requires l/y, the inverse ratios are used 

to give the reciprocal. 

The application of this method oan be further 

simplified in special cases. It can be used when the 

coefficient ot ·x} is not unity. It can be used to 
tind the cube root of a number~ 

Consider the equation 
3 2 

x 1-x -2:0 

By transforming this equation by the substitution 

x : y - 1/3 
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to 

13 - l/Jy - S2/27 - o -
and using the Oard.an-Tartaglia Formula, one obtains 

the following real root.for the original equation: 

Xl : l/'J (\Y 26 f· lff) tV' 26 •· 15YJ ~ l ) 

Using Steiriman's method: · 

xl : .. .,:;. I- 2: 

-1 1 ..;1 

0 

r - -1 1 -
x = l/l;l/l 
x - 1 -

0 

2 
l 

Which is exa~t and the only real root ot the 

equation. However, this method has its weaknesses. 



CHAPTER VIII 

THE 00.NOLUSION, BIBLIOGRAPHY AND NOTES 

This,history has presented a survey.of ,the many 

attempts to interpret and obtain solutions to cubic 

equations~ - a survey covering.almost.4000 years. 

It has been seen that there are many ditf erent methods 

or solution. and a.number of dit:rerent approaches to 

·solutions. They are .varied and interesting. All of 

them contribute to· a more clear detin1t1on of the pro

. blems involved •.. 

.. Some of the procedures are short, but are not .. · 

always accurate or are only approximations. There 

are some w~oh are exact but are long and tedious. 

There are methods which are long and not always accurate. 

Improvements a·re needed.' 

By now it is hoped that there are many ideas for 

new solutions in the mind or the reader. Perhaps also 

he is asking himself questions • 

. It is sincerely hoped, however, he is not saying 

to himself' what Omar Khayyam said in his Rubaiyat as 

translated by Edward Fitzgerald: 



"Myself when young did eagerly frequent 

'Doctor and Saint,.and heard great argument 

-About it and about; but evermore 
l 

Came out by the same door where in I went•" 
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One ot the most important· parts ot any history is 

the source material. · The material presented here has 

been selected carefully in order that it may be of 

maximum use to· the reader. A number or references have 

been discarded as not containing sutfioient material 

on the sub~eot to warrant the time it takes to obtain 

a reterenoe work. Some have not been included because 

ot their poorly presented contents. 

References in· several foreigh languages are here 

since the scholar has at least en acquaintance with some 

language other than his own. 

Summaries are given of many ot the articles. Notes 

are included when it appeared they would ~e.helpful. 

The numbers appearing in parenthesis following the 

ref erenoe work are the Library or Congress card catalogue 

numbers. 

It is hoped that this selected listing of source 

material will be of maximum benefit to the reader. 
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1. Troptke,.Johannes, Geschichte der.Elementar: Mathematik 

7.v. 19.37 )rd •. v.p. ll8-l60,conta1ns a discussion 

of the .equation .of the_ third degree •. •(QA 21 ~T85) 

2• Vogel, Kurt, "Kubische Gleichungen bei den Baby

.loniern?" Bayerisohe Akad. der Wissensohaften. 

Sitzungsberiohte •.. Math-Naturw •. 1934•35· 

J. 

P• . 87-94• Contains a discussion ot the geometric • 

aspects .. of the oubio ·equations or the Babylonians. 

(AS 182 ~M8?2) 

" Neugebauer, o., "Uber die LOsung kubisoher Gleich•· 

" ungen in Babylonien". ~tt!ngen K. Gesellschaf't 

der Wissenachaften. Nachriohten. Math-Physik. 

1933, P. )16-321 •. Discusses in detail the three · 

forms ot cubic equations in Babylonian texts. 

(AS 182 .G822) 

4 •. EVes, Howard, Introduction to the History of Mathematics 

R!nehart,·N. Y., Apr1l·l9.55 (QA 21 .E8) 
;• .. ": 

;. Ball, w.w.B., A Short Account of the Historr of 

Mathematics •. lla.cmillan. and Co.• London, 1888 

( Q,A2l .• Bl8} . 

6. Heath, T.L., The Works of Archimedes o. J. Ola1 

and So~s, Cambridge University Press, London, 

1897. p.ox1•ox111, p. cxxiii-cxl. (QA Jl .A69) 



79 

7 •. a. Smith,· D. E., General Sur;vez:of the ·History of 

Elementary ·. Mathematics ( Vol.1) ·Ginn' and Company, 

N. Y. 192) b. ----------, Special 'l'opios ot 

·Elementary Mathematics (Vo1.2·) ·:l.925 (QA.·21 .s6) 

S. Cajori, .Florian, A HistO;j o:r Mathematics 2nd. ed-. 

The.Macmillan Company, U>ndon, .1919 ··(QA 21.Cl' R.R.) 

9. Xasir, Daoud s., ~he Algebra of' .Omar Khai1am,1 Teachers 

College, Columbia University, 1931 . (LB S .CS) 

10.' Scott, l.F., The Mathematical Work of John Wallis 

Taylor, and Francis,. Ltd'•: London 19.38 ('QA 29 .W3SJ) 

11, . . Smith, D. E. , A Source Book ·in Mathemat1 cs McGraw-

Hill Company, Inc.,. N.Y., 1929· (QA') .S63) 

12, · Allman1 · G •. J'. Arti~les on Greek. Geometry from. Thales 

to Euclid 9 Herm.athena. Dublin, 1879-1887. 

' (QA 22 .A4)) 

1). Cantor, M• ,. Vorlesungen uber die G-eschiohte · der 

·Mathematik, B. G:. Teubner, Leipzig,.) Vol. 

(Fr(.')m. oldest times to 1758) · 1894-1901, 4th Vol. 

(1759-1799), 1908 (QA 21 .• C24) 

14. Gow, J., A Short Histoq of Greek Mathematics·_ 

Cam.bridge, 1884 (Q,A 22 .G7) 

15,. Hankel, H., Zur Geschiohteder Mathematik. 

Leipzig, 1874 (QA 21 .H2) 
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16. Sullivan, J. W.N., The '.His tort of Mathematics in. 

Eur()pe, trom the Fall of Greek· Science to the; 
' 

rise ot the Cono·eption ot. Mathematical Rigour. 

London, Oxford University Press, 1925. (QA. 21 .• s9;) 

17. Merriman, Mansfield, The Solutions of Eguations, 4th, 

·ed.· N.-Y. John Wiley &: Sons·., Inc., 1906 ( Q,A 37 ,M57) 

18 Miller,. G.A., Historical Intrt>duotion to Mathematical 

Literature. N. Y. The J4aCmillan Company, 1916 

(QA 21 .M;) 

19 Heath, 'r.I.~,'Histo:xz of Greek Mathematics.· N. Y. 

Oxford University Press, 1921, (Q,A 22 .H4) 

20. --------•-, A Manual of Greek Mathematics. N. Y •. 

Oxford University Freas, 19)1 •. (Q.A 22 · .H42) 

21 Bell, E. T., The Development·of Mathematics 2nd. ed. 

N. Y., 1945. (Q,A' 21 .B4) 

22 Struik, D. J., A Conoise·History ot Mathematics. 

Vol. l: The Beginnings in Western Europe. Vol. II: 

The Seventeenth Century-The Nineteenth·. Century. 

Dover l1ublioat1ons,. Inc. , 1948 · · 

2J. Barton,· G, Introduction to the History of Science, 

Vol. I, From Bomer.to Omar Kh.a11am. Vol. II 

From Rabbi ben Ezra to Roger Bacon. Vol. ·III, '' 

Science and I.earning in the Fourteenth Century. 
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Washington. D. o •• 1927, 1931, 1947·48~ (Q 125 .832) 

24. Uspensky, J. v., Theory of Equations. McGraw Hill 1 

N. Y., 1948. (QA 211 .u7;} 

25. Barton, A. o., Theory- of Equations. D. o. Heath. 

N. Y., 2nd. ed~ 1899. (QA ·211 .B2} 

26. Smith, D. E~ and Mikami, Yoshio, A History of 

Japanese Mathematics, The Open Court Publishing 

Co., Chicago, 1914• (QA27 ,JJS5) 

27.· Young, J. w. A.; :Monographs on Topics ot Modern 

Mathematics, Dover Publications, Inc., 195;. 

(QA) .Y?) Cubic equations P. 2J)•2J;, Each 

section contains a bibliography. 

28. Klein, Felix, Famous Problems of Elementary Geometrz, 

2nd. ed., tr. by w.- w. Beman and D. E. smith, 

r~,y. by R. c. Archibald, G. E. Steohert & Co., 

19)0. (f~ 466 ,K64) 

29. Steiner, Jakob, Geometrical Construction with a Ruler, 

tr. by M. E. Starke, e~. by R. o. Archibald, 
x c-.:· ~-" . 

Scripta Mathem.a.tica, Yeshiva ~lege, 1950. 

(Q,A 471 .S82)) 

This is a translation or the lat. German edition 

ot 18)) •. It is ·concerned with'geOm.etrical construe-
.;, 

ions with a ruler, given a fixed oirole with its center. 



82 

Bibl~9graphical references p~ 1~9 

)O •. Yates,. R. Or-, The Trisection Problem.J: Edwards 

Brothers,, Inc., .. Ann Arbor, Mich., 1947 (QA 468 .Y)) 

)l. Datta, B. &:. Singh, .History ot Hindu Mathematics A 

Source B.ook, Part l,, History; Part II Algebra. 

Lahore, 1938. (QA 27 •. UD28) 
' . ' . ~ \' . ' . 

The Library or Congress 4oes not have Part II. 

)2. Thomas, Ivor. Selections.Illustrating the Historz 

ot Greek Mathematics with an English Translation, 

Vol •. I·· From Thales to Euolicl. Vol.: II From 
'J;. "' ,·. • 

Ari~taro~~s to Pappus, ·(Loeb Cla~s.,.cal Library), 

London and Cambridge,. Mass.,· 1939· (PA 3611, .A 95) 

.Translations are given·t~oing the Greek t~xts. 
. ' ~ 

Contains a subject index for the two volumes. . . ~ . 

Greek solutions to oubio equations are in Vol. II, 
' . ' 

33 • .Merriman, ¥anstield, and Woodward, Higher Mathematics, 

John Wiley &:. Sons .. ).896 .. · (QA 37 .• 1157) 
~ ' . 

Bibliography. on .P•· S6S-570~ 

)4. Smith, ·D. E., History ·of Modern Mathematics,, John 

Wiley & Sons,, 4th.· ·ed. 1906 .. (Q,A,26 .s64) 

)5•; Smith,. ~·· E., ·"The· Influence of the Mathematical 

Works of tile ,l;th Century Upon those of Later Times", 



(In the papers of the Bibliographical Society of 
- America), Chicago, Ill. Vol. 26, 1932~. (Zl008. •B5lp) 

Algebra on P• 161-16;. 

)6._. Ball, w.w.R., .Mathem.atioal Recreations and Essays, 

llth. ed~ revised by H.S.M. Coxeter, Macmillan·· 

and Co., N.Y., l939 •. (Q,A95 .~2) 

37. Klein, Felix; Elementary Mathematics from an· 

advanced standpoint, tr~ :f"rom the. Jrd. German .. 

ed• by E. R. Hedrick a~.o. A. Noble, Macmillan.· 

Co., N. Y., 193211 (QAJ9 .K52) . 

)S. Miller, G. A. end Yowig, J.·V!•4• (eq..), ?lonomphs 

sm Topics 'cif !iMQdern Mathematics, revelant to the 

elementary field, Longman•a, Green, & Co.~ N.Y., 

1911. (QA) ·Y7> 
39. Dorrie, Heinrich. Kubisohe und biguaAratische 

Gleiohungen, Munchen,. Leibniz Verlag, 1948. 260 ·p. 

( Q,A215 .D58) · 

40. Eckhardt,, Ernst.. Elli rotationsproblem, Marburg, 

Buohdruckere1 F •. Sommering '· 1892. __ 56 p. · ( Q.A85 3 •. El9) 

Discusses the '~trisection or an angle and cubic 

equations.: 

41• Ferrari, Lodovico. I sei cartelli di m.atematica 

disfida • • • Milano, ·1876. 222 p. (QA)3 .F)?) 
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Collection or Tartaglia's work on cubic equations. 

42. Larkey, Charles s. Tables of Functions or Cubic 

Equations, Tulsa, Oklahoma, o. s. Larkey, 1943• · 

28 numb. l. (Q,A2l; .L)) 

43. Lockhart, lames. A Method or Appro:x:imatill8 Towards 

the Roots ot Cubic Equations Belonging to the 

Irreducible Case, London. 1813. 87 p. (.QA2l8 •LS) 

44. Siebel, Alfred. Ein Beitrag zur Geometrischen,un~ 

AJ.sebraisohen Autlosffil6 der Cubiaohen Gleiohunge~. 

Dusseldort, 1866. 52 p. (QA215.85) 

45. Wolfe, CJ.ytl.e Lynne·Earle• On the Indeterminate 

Cubic Eouation xl f DY3 r n2z) • )DXYZ : 1 1 Berkeley. 

Calif'., 1923. 369 p. Thesis (Ph.D) - University 

ot California (Q,A215.W6S) 

46. Zavrotsky, A. Table para la Resoluoion de las 

Ecuaoiones Cubicas, Caracas, Editorial Standard, 

1945. 162 p. (Q.A215 .2J) 

A discussion ot cubic equations and numerical 

· solutions. 

47. Chu, Yaohan and Yeh, v.c.M., "Study of Cubic 

Characteristic equation by root-locus method", 

Transactions'of the American society Of Mechanical 

Engineers, April 1953, P• 343-348. (Tl l .A7) 



\ 

. s; 

It is shown in this paper that all possible 

roots of.a cubic characteristic equation lie on 

a portion of a hyperbole and ot its a.xis. 'lbis 

hyperbola ~y be sketched from the values or, the 

coefficients. A root• locus chart is, given. 

· 48. Davis• w. R., "Graph solves cubio equation when 

Oardan • s formula: :f'eils" • C iv 11 Engineering, V • 18 t 

Feb. 1948, P• 1001 (TA.J.. .c4;2)· 

In the .9~p10. xl f bx f a, Oardan•s formula 

gives the one on~y, real· root when b, is positive 
~ "'\<' ~. .. - ~. 

and also , when b is neg~~ive and. numerically . 

equal to or less than (2702/ 4)1/3/ Fo.r all other 

negative values of b, there are three reel. roots. 

and Cardan's solution fails, for which case one 

of the three real roots may be obtained by use of 

the graph accompanying this article. 

49. Hogan, Joseph. T., ·"Simple Chart Solves Cubic Equations" 

Chemical Engineering v.62, Deo. 1955. p. 222. (TN l.M45) 

A chart is given consisting or three scales. 

These scales are similar to the D,C end B scales 

ot the ordinary slide rule. The cubic equation 

is transformed to the type x3 f Ax: B •. After 

determining, the limiting.values ot x, the chart 



gi Ven in the article is. Used to determine the 

oorre ot value of x ·by trial and error• The ·. 

following references are given: 
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(a) Boswell• L.P., "Solving Cubic Equations 

on the Slide ,Rulett, Oklahoma A. and M• 

College,· Publication .No. 28 t Engineering 

Experimental Station (l9J5). 

(b) Dehn, E., "Algebraic Charts", Nomographio 

Presa, N. Y,, · (1930). 

( o) Running, T. R., "Graphical Mathematics, •c 

John Wiley·a~d·Sons. Ino. N. Y., (1927). 

( d) ·Wylie, c. R., Jr, 1 "A )lew Nomographio 

Treatment of· the· Cubic, n;r, Eng. Education 

50. Jones,~ E. E. • "Solution of the Cubic Equation by a 

· Proced~o", Product Engineering, September 19 52, 

.p. 18)-1$9. (';I'S l ~7) , 

·This·. also appeare.'1 , in a mimiographed leaflet 

entitled "Solution ot the· Cubic and _Q.uartic 

Equations" by~~. V. I,yon . . ot ,the Electrical 

. Engineering Department, MIT •... 

The derivation ot this meths>d is not presented 

in this article. The steps of the method may be 
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constructed trOlll the following: 

(l). With the cubic equation stated in the 
< ..... .., 

torm x) .;. ax2 l bx .J.' o = O determine 

the, co.ordinates of the point of in

tleotion~ 

(2). Restate the oubic equation in terms 

of the new coordinates in reterenoe 

to the new axi's that intersect at the 

point ot·intleotion of the cubic curve. 

()). Three d.istinot cases arise. Each is 

identified b1 the sign of the slope 

of the,cubio curve at the point of 

inf leotion. 

The results ot the prooedu~e are given in 

tables included in this article. The range of 

tables is broad enough to cover all oases in 

which table~ ;r1el4 greater ·accuracy thai( <~an be 
' . '·'' 

obta1ne4 by approximation methods. The relation 

between the cubic. equation and the transtormei 

equation is given in a table. 
. . 
. . ' ~ ' ~ 

;1. Miller, G.A., "Solution of the Oubio Equation", 

Science, Oct. 1944, p. )3)-4. (~ l .s);) 

This is a discussion of the quarrel between 



Cardan and Tartaglia over who shoUld receive 

credit tor the solution both claim. 
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52. Sim, A.c., "Solution of Cubics and Quartics", 

Wireless Engineering, November 1954, p. 294-300. 

(0 62768) 

A iiscuseion of this article is made by G. 

Millington, January 1955, p.30. 

This article contains a routine for the 

determination or the roots ot cubic equations 

and is develope4 sepc1t1cally to meet the re• 

. quirements tor ciro~t designers. A collection 
·1 

ot cubic and quartic Laplao~ transformations is 

appended. The basis of the method consists in 

reducing the cubic equation to a form which con-

. tains only one arbitrary parameter. 

;3. Steinman, D.B., "Engineer's Shortcut Solves Cubic 

Higher Equations and.Roots'*, Oivil Engineering, 

June 1950. p. 399-400 (TA l.0452) 

;4. Weber, A.R., "Slide.Rule Applications to Algebraic 

Equations; Solution of the Cubio Equation", 

Journal of Engineering Education, May 1945, 

P• .507-514· (T 61 .S63 ). 

s,. Luokey, P. '*Die Au.sziehung Cler n-ten Wurzel un4 



;6. 

ier binomisohe .Lehrsatzin cl.er islamischen 

Mathematiok", Ma.them. Annalen, v.120, 1948, · 

P• 217-274. (QA l .MS6) 

89 

The work or Omar Khayyam, Al-Berunf ~· Ruf:fihi, · 

Horner and others are discussed~ Contains many 

references. 

" Wieleitner, · H., · "Uber Cardan' s Bewe.is fur die 

L8sung tier kubischen Gleichung", Physik.-
" . . · medizinische Sozietst, Sltzungsberiohte, . 

v. 56-;9, 1928, p. 173-176. (49 •E7) 

;7. Gram, J.P., "Essai sur la restitution du calcul 

··de Leonard. ie Pise sur L•equation :x3 I- 2x2 t iox :: 20*1 

'Danske Vidensk •. · Selsk8.bs, l.!eddeleiser, no. l, 

189), p'~· 18-28. (AS 281 .D215) 

58. Woepoke; F~, "Sur W1 essai cl.e determiner la nature 

d.e la raoine cl• une equation du troisieme clegre~ ~. ", 

Jn. A. Math. Pures et Appl•, v.19, 1854, 

p. 401-406. (Q.A 1 J9) . 

59._ . Genocchi,A., Annali di Soienze Uatem., Fisiche, 

v.6, is;;, p. 161-1.68. (Q,A l A55) 

A discussion ot the equation :x3 t 2x2 t lOx : 20 

of Leonardo•s. 

60. Vetter, Quicio. "nota alla risoluzione dell' 



equazione cub'ica cii 'Leonardo Pisano", R. Aeoa4 •. 

4.' Torino, 'Att1, 01; 4. $00. Fis., Metem. e Nat., 

"• 63, 1928, p.· 296-299.· (AS 222, '!62) 

A aalution is obtained ·by ·the method ct talse 

poaition. · 

61• Neugebauer, o~.- ti:h:• Exaot Sciences in ·Antig,Uitl• 

Princeton University l?ress,·H.J;,i9;2. 

(Q.AZZ~ N)6 l9Sla) 

62 ........ .:. •• .:;...;..,..: ___ arid Sachs, A~J., eds• ?t.athemat!cal 

Cuneiform Texts, American Oriental Series, Vol~ 29, 

New Haven: American Oriental Sooiety~ 1945• 

(AAZZ•N37) Bibliography P• 152•;56• 

6;. Neugebauer, o., yprlesunaEtn·ub~r,p.eschiohte ie~ 
antiken niathem.at1schen Wissensche.tten. v. I. 

Vorg.r1eoh1sohe.Mathem.at1k 1 Berl1n1 J'. Springer, 

p •. · 19)-197, 1nolu4es bibliographies l. math-hist 

2~ math .BabyloD.ian 3. ·math-~ypt 4. o1v1lizat1on

anoient. 

64. Wasohoe, · H. ·and. Neugebauer, . o., Reihen in· ier 

Babyloni.scban 14athematik, Qu. u. Btwt• B. 2 

(19)2), P• 30)•)04 (W.Q.4) • 

6;.· Berger, Alexander Frecleriok. Sur quelgues, 

relations entre les raoiozies 4o. certain~s 
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,.gwi~ions du:tro!is.ieme !lesr&,· Upsal, E. Berling,. 

l~99"~ P•.l4~· (QA 215 B 49) 

66~ .Archibald.-~ R~. A~·· a·utlln~ ot·the Hiatorv of'. 
4 a I ..... 

Mathematics pu.blished as a supplem'ant to the· 

American M8thel!lat1oei Monthly·• · Vol·• 561 Jan. 1 

1949~ tO..A I A Sl') 

61~ Burnham~ A~ O~'I "On the Complex Roots ot Nls.merioel 

Equations ot the Third and. Fourth Degree. ff .Amer. 

· Math. uon~hl,r, v.4, p. 201, 1897~ 
68. Dickson, L• E. , ''A New-Solution or the·'cubio 

Eq'-lation", Amer. Math. Mont.b.ly', V~.;, P• JS, 
1898, ( Q.A I A SlS) • 

69. La:nbert, ·w. D., "A General.1ze4 Trigonometric 

Solution ot the Cubic Equation", Amer. Math. 

Monthly, V. l)~ p.; 73,(1906). (QA I A 515) 

10. aneh, Arnolds'"Hydraulio soiution ot an Algebraic 

Equation ot the n th Degroo", .Amer •. Math. 

Monthl1, V. ', P• 58., ( 1901). (QA I A 51S) 

71. Gilpin, Charles, Jr.,· ".Approximation ot tho 

Greatest Root of a Cubic-Equation with Three 

Real Roots", Amer. Math. MonthlJ, v. 13, p. 140 

(l90l).(QA I A 515) 

72. Ce.~ori, Florien, "Historical Note on the Newton-



Raphson Metho4 ot Aprroximation, Alner~ .Math. 

M'.ontnly ,'. v. ls• p~ · 29 c·1911). · (QA I A ;15) 
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73• Can.dy; A-. L·. , "A. MGi)hanism For the Solution ot 

a1:i: Equation ·or the Nth ·vesrieo'l, .Amer. Math. M 

Monthly, v.· ~?s P• ·19; ('1920)• (QA ·I A 515) 

74• Ba:llantine, ;r; P. 1 "A Graphic Solution ot the 

· Cubic Equation"• Amer. Math. Monthlf t ·v. 27, · 

P• 20) (1920). (QA I A ·515) , 

75. · Ogle~by, ~·~ J. , "Note on the Algebraic Solution ot 

, the Cubic", Amer. Meth. Monthly,· V •· JO, p. 321 

(192)). (QA I A 5lS). · 

76• Fri·nk, Orr1n,1r•, "A ·Method for Solving the 

Cubio", Amer. Hath. Monthly, ·V. 321· p. 1)4 

(1925). ·(QA I ·A 515·) 

:17. James, Glenn, "An Algehraicly Reducible Solution 

ot. the 6ub1o Equation", Amer.- Math. Monthl.y, · 

V. 32, P• 162 (1925) (QA,I A 515) 
' 7s.· · Vandiver, H. s., "A Criterion that a Cubic 

Equation has an Integral Root", Anter.,. Math. 

l.lonthly, V. J), P• 94 (1926).(~A 'I A 515) 

79. .Anning, Morman:, "A Cubic. Equation or Newton' e" 

Amer.· Math. ·uonthJ"~ V. ) ) , p. 211 ( 1926) 

(Q.A I A 515) 
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80. Garver, Raymond, ''~rans:tormationa· ori Cubie 
. . 

Equations" 1 Amer. ·Moth.· 11.onthly 1 V.. )6~ 

P• )66 .. (QA· I A 515) 

.. 
C);.~ F~~tJH}·~·:·~4"J1lJD 
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Minna Newbold Burgess Connor was born in 

Petersburg'., .Virginia on August 21, 1922·. She was the 

fourth ohild ot a family ot three girls an4 two boys. 

Her elementary education was received in North Carolina 

and West Virginia. She was graduated from Eastern 

High School in Baltimore, Md.. in 19)9. She attended. 

Concord College, Athens, w. Va. and was graduated with 

a Bachelor of Soienoe degree in January, 1946; While 

here she assisted in the art and physics departments• 

The years between 1939 and 1946 were war years• 

Consequently her activities were varied in this inter

val. She worked for Western Electric Co.mpany, ·Baltimore; 

Md. as an electrical equipment inspector in· 1942. 

She taught high school in West Virginia in 1943; In 

1944 she attended Purdue Universit11 Lafayette. Ind., 

receiving a diploma after completing a.special war-

time course in Aeronautical engineering. After leav-

ing Purdue.she was employed by the Curtis-Wright Corp

oration, Columbus, Ohio as a flight-test engineer's . ' 

assistant until·thetime of her marriage to John Samuel 

Connor of Allentown, Penna. ·1n April, 1945· Mr. Connor 

is now the division engineer or Allied Products of 

Reynolds MetaltL Oompanf:a In Januray, 1946 she began 



her duties as a grad.uate researo.h :fellow in l?syohology 

at Lehigh University, Bethlehem, Penna. She continuei 
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