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RANK ONE PERTURBATIONS OF SELF-ADJOINT OPERATORS

HAOXUAN ZHENG

1. Introduction

A linear operator T on a Hilbert space H, with inner product 〈·, ·〉, is said to be
cyclic if there exists a vector v ∈ H, a cyclic vector for T , so that the linear span of
{v, Tv, T 2v, T 3v, · · · } is all of H. The operator T is self-adjoint if 〈Tx, y〉 = 〈x, Ty〉
for all x, y ∈ H. Two examples of cyclic self-adjoint operators are (1) the operator

T : Cn → Cn, Tx = Ax,

where A∗ = A is a self-adjoint n × n matrix with distinct eigenvalues and (2) the
operator

T : L2[0, 1]→ L2[0, 1], (Tf)(x) = xf(x).

Note that in (1) the inner product on Cn is

〈v,w〉 =

n∑
i=1

viwi,

while the inner product for (2) is

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

The spectral theorem for cyclic-self adjoint operators T says that there is a
measure µT on R so that T is unitarily equivalent to the operator

Mµ : L2(µ)→ L2(µ), (Mµf)(x) = xf(x).

In this thesis, I will discuss the details of the work of Simon and Wolff [1, 2] which
deals with the properties of the spectral measures of rank-one perturbations of
operators. In particular, I will deal with the following problem: Given a cyclic
self-adjoint operator T on H with cyclic vector v, form the family of operators

Tλ = T + λ(v ⊗ v),

where λ ∈ R and (v ⊗ v)(w) = 〈w, v〉v. These operators turn out to be cyclic and
self-adjoint (see the details in the thesis) and so, by the spectral theorem, there is
a family of measures {µλ : λ ∈ R} associated with the family {Tλ : λ ∈ R}.

I will focus on this, almost magical, property of these measures:∫ ∞
−∞

(∫
f(x)dµλ(x)

)
dλ =

∫
f(x)dx.

This theorem was shown by Simon[1] but the details in their paper are a bit vague.
In this thesis, we will prove this theorem in its full detail. We will also work out
some specific examples this theorem in two main cases (1) self-adjoint matrices and
(2) multiplication by x on L2[0, 1].

1



2 HAOXUAN ZHENG

In Section 2 of this thesis, we prove the spectral theorem (as stated above) for
cyclic-self adjoint matrices. In Section 3, we prove the Simon-Wolff formula which
requires an elaborate approximation argument using harmonic functions and the
Hahn-Banach separation theorem. In Section 4 we work out some specific examples
of the Simon-Wolff formula for self-adjoint matrices – proving some interesting
integration formulas along the way. In section 5, we compute the family of spectral
measures for multiplication by x on L2[0, 1].

2. The Spectral Theorem

We will need the spectral theorem stated in terms of L2(µ), where µ is a measure
on R. But before we discuss the spectral theorem, we would like to review some
basic linear algebra.

Definition 2.1.

(i) An n × n matrix T of complex numbers is self-adjoint if T ∗ = T , where
T ∗ is the conjugate transpose of T .

(ii) A matrix T is cyclic if there exists a vector v such that Span{v, Tv, T 2v . . .} =
Cn.

(iii) A matrix T is unitary if T ∗T = I.

Theorem 2.2 (The Spectral Theorem). Given any self-adjoint n × n matrix T ,
there exists a unitary matrix P such that

T = PDP ∗,

where D = diag{λ1, . . . , λn} and λ1, . . . , λn are eigenvalues of T .

Proof. From linear algebra, we know that for a self-adjoint n × n matrix T , there
exists an orthonormal basis for Cn, each vector of which is an eigenvector for T . Let
{v1, . . . ,vn} be such a basis, and {λ1, . . . , λn} be the corresponding eigenvalues.
We then construct

P =
[
v1| · · · |vn

]
,

and D a diagonal matrix with {λ1, . . . , λn} as diagonal entries. Given P and D we
have

TP =
[
Tv1| · · · |Tvn

]
=
[
λ1v1| · · · |λnvn

]
= PD.

Since the columns of P form an orthonormal basis for Cn, we get

(PP ∗)ij =

n∑
k=1

PikPjk = 〈vivj〉 = 0

for i 6= j. Thus P is unitary. Therfore we have

T = PDP−1 = PDP ∗.

�

Corollary 2.3. A self-adjoint matrix T can be written in the form

T = λ1P1 + · · ·+ λnPn,

where {Pi : i = 1, . . . , n} form a set of orthogonal projections onto the eigenspace
of T according to the λi’s.
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Proof. Let Pi = PIiP
∗, where P is defined as in Theorem 2.2, and Ii is an n × n

matrix with all zero entries except for a 1 at the ith diagonal entry. Then the
desired equality comes easily from the equality in Theorem 2.2. Also it is easy to
see that PiPj = δijPi. �

As an example to the above corollary, consider the self-adjoint matrix

T =

[
1 2i
−2i 1

]
.

It is easy to obtain the eigenvalues λ1 = 3, λ2 = −1, and the corresponding nor-
malized eigenvectors

v1 =
1√
2

[
i
1

]
,v2 =

1√
2

[
i
−1

]
.

Then we have

P =
1√
2

[
i i
1 −1

]
andD =

[
3 0
0 −1

]
.

Thus

T = λ1P1 + λ2P2

= λ1P

[
1 0
0 0

]
P ∗ + λ2P

[
0 0
0 1

]
P ∗

= 3

[
1
2

i
2

− i
2

1
2

]
− 1

[
1
2 − i

2
i
2

1
2

]
Corollary 2.4. A self-adjoint matrix T has only real eigenvalues.

Proof. From Theorem 2.2, we take conjugate transpose and get

T ∗ = (PDP ∗)∗ = PD∗P ∗.

Since T = T ∗, we have D = D∗. Therefore T has only real eigenvalues. �

Theorem 2.5. A self-adjoint operator T : Cn → Cn is cyclic iff T has n distinct
eigenvalues.

Proof. We will identify T with its matrix representation. If T is self-adjoint and
has distinct eigenvalues, then we can write T as

T = PDP−1,

where P−1 = P ∗, and D is a diagonal matrix with entries being the distinct eigen-
values {λ1, . . . , λn} of T . Let

v = P


1
1
...
1

 ,
then we have

T iv = PDiP−1v = P


λi1
λi2
...
λin

 .
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We want to show that {T iv : i = 0, 1, . . . , n− 1} are linearly independent.
Assume that there exists a vector c = (c0, c1, . . . , cn−1) such that

n−1∑
i=0

ciT
iv = 0,

which means

P

n−1∑
i=0


λi1
λi2
...
λin

 ci = 0.

Now, since P−1 exists, we have

n−1∑
i=0


λi1
λi2
...
λin

 ci = 0.

Notice that the above is equivalent to
1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λn · · · λn−1
n

 c = 0,

and that the Vandermonde matrix has

det


1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
...

. . .
...

1 λn · · · λn−1
n

 =
∏

1≤i≤j≤n

(λj − λi) 6= 0.

Thus c = 0 and {T iv : i = 0, 1, . . . , n− 1} are linearly independent. Therefore T
is cyclic with cyclic vector

v = P


1
1
...
1

 .
To prove the other direction, we assume for the sake of contradiction that T is

cyclic and does not have distinct eigenvalues. Without loss of generality, we assume
that λ1 = λ2 = λ, so

T = P


λ

λ
. . .

λn

P ∗,



RANK ONE PERTURBATIONS OF SELF-ADJOINT OPERATORS 5

and

T i = P


λi

λi

. . .

λin

P ∗, i ∈ N.

Let v be a cyclic vector of T and w = P ∗v, then any vector in Span{v, Tv, T 2v, . . .}
will be of the form q(T )v where q is a polynomial, and hence of the form

q(T )v = P


w1q(λ)
w2q(λ)

...
wnq(λn)

 .
Let x = (−w2, w1, 0, . . . , 0). It is obvious that x ⊥ Span{v, Tv, T 2v, . . .}, so
Span{v, Tv, T 2v, . . .} 6= Cn. This contradicts the fact that v is a cyclic vector
for T .

�

Definition 2.6. We define L2(µ) = {f : R → C,
∫
|f(x)|2dµ(x) < ∞}, which is a

Hilbert space with inner product

〈f, g〉 =

∫
fḡdµ.

Theorem 2.7. Given any cyclic self-adjoint operator T : Cn → Cn, there exists a
measure µ on R and a unitary operator U : Cn → L2(µ) such that

UTU−1 = M,

where (Mf)(x) = xf(x) on L2(µ).

Proof. By Corollary 2.3 we can write T in terms of its distinct eigenvalues λi and
orthogonal projections Pi:

T =

n∑
i=1

λiPi.

Let v be a cyclic vector of T , and we define a discrete measure

µ =

n∑
i=1

‖Piv‖2δλi

on R and the resulting L2(µ) = {f : {λi, i = 1, . . . , n} → C}.
Now we want to show that there exists a unitary operator U : Cn → L2(µ), such

that UTU∗ = M . Since {Piv : i = 1...n} forms a basis for Cn, for any w ∈ Cn we
have w =

∑n
i=1 ciPiv for some ci’s. We then define U : Cn → L2(µ) by

Uw =

n∑
i=1

ciχ{λi},

where for a set A we define χA(x) as

χA(x) =

{
1 if x ∈ A
0 if x /∈ A.
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Then we have

UTw = U

n∑
i=1

λiPi

 n∑
j=1

cjPjv


= U

n∑
i=1

λiciPiv

=

n∑
i=1

λiciχ{λi}.

On the other hand,

MUw = M

n∑
i=1

ciχ{λi} =

n∑
i=1

λiciχ{λi},

so we have UT = MU , and we want to show U is unitary, meaning that U is norm
preserving and onto.

For norm preserving, given any arbitrary w ∈ Cn,

‖Uw‖2 =

∫ n∑
i=1

ciχ{λi}

n∑
j=1

cjχ{λj}dµ(x)

=

n∑
i=1

|ci|2‖Piv‖2

= ‖w‖2.

To show onto, we need to show that for every element f ∈ L2(µ), there exists
a w ∈ Cn such that Uw = f . Since any f ∈ L2(µ) can be written in the form∑n
i=1 ciχ{λi}, we can always find the desired w =

∑n
i=1 ciPiv.

�

3. The Disintegration Theorem

As we have shown in Section 2, for each cyclic, self-adjoint T : Cn → Cn, there
is a corresponding measure µ as prescribed in Therorem 2.7. Now we would like to
describe one-dimentional perturbations to T as the following:

Tλ = T + λv ⊗ v,

where λ ∈ R and v is a cyclic vector for T , and v ⊗ v is defined as the following:

Definition 3.1. We define the operation ⊗ that maps an ordered pair of n-
dimentional vectors {v,w} to an n× n operator as

(v ⊗w) u = 〈u,w〉v,

where u,v, and w are any n-dimentional vectors.

Lemma 3.2. Tλ = T ∗λ .

Proof. We can show that Tλ is also self-adjoint by showing that v⊗v is self-adjoint.
For any w ∈ Cn,

〈(v ⊗ v)u,w〉 = 〈〈u,v〉v,w〉
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=
∑
i

(∑
k

ukvk

)
viwi

=
∑
i

∑
k

ukvkviwi.

Similarly,

〈u, (v ⊗ v)w〉 = 〈u, 〈w,v〉v〉

=
∑
i

ui

(∑
k

wkvk

)
vi

=
∑
i

∑
k

uiwkvkvi

=
∑
i

∑
k

ukwivivk (switched dummy indices i and k)

= 〈(v ⊗ v)u,w〉.

Therefore Tλ is self-adjoint. �

Lemma 3.3. Tλ is cyclic with the same cyclic vector v as T .

Proof. We will show that Span{v, Tλv, . . . , Tλnv} = Cn. First notice that

Tλv = Tv + λ(v ⊗ v)v

= Tv + λ‖v‖v.

Since λ‖v‖ ∈ R, Tv ∈ Span{v, Tλv} and Tλv = q1(T )v, where qi is a polynomial
of order i ∈ N. Now we will proceed to prove the induction statement: for all
k > 1, T kv ∈ Span{v, Tλv, . . . , Tλkv} and T kλv = qk(T )v if v, Tv, . . . , T k−1v ∈
Span{v, Tλv, . . . , Tλk−1v} and T k−1

λ v = qk−1(T )v.
Since

T k−1
λ v = qk−1(T )v,

Tλ
k−1v =

k−1∑
i=0

aiT
iv, for some ai ∈ C, ak−1 6= 0.

Then

Tλ
kv = Tλ

k−1∑
i=0

aiT
iv

= (T + λv ⊗ v)

k−1∑
i=0

aiT
iv

=

k∑
i=1

ai−1T
iv + λ〈

k−1∑
i=0

aiT
iv,v〉v

= qk(T )v.

Since v, Tv, . . . , T k−1v ∈ Span{v, Tλv, . . . , Tλk−1v}, we have

T kv ∈ Span{v, Tλv, . . . , Tλkv}.
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Induction complete. Thus, Span{v, Tv, . . . , T k−v} = Cn ⊆ Span{v, Tλv, . . . , Tλkv},
which implies that

Cn = Span{v, Tλv, . . . , Tλkv}.
Therefore Tλ is cyclic with cyclic vector v. �

With the above lemma, we can assign each Tλ its spectral measure µλ in a similar
fashion as we did for T . Now we are ready to present the following disintegration
theorem of Simon [1]. For the rest of this section, µλ is spectral measure for Tλ.
Note that each µλ is of the form

µλ =

n∑
i=1

c
(λ)
j δλj(λ)

Theorem 3.4. For f ∈ C(R) 3 f(x) ∈ O( 1
x2 ) as x→ ±∞,∫ ∞

−∞

(∫
f(t)dµλ(t)

)
dλ =

∫ ∞
−∞

f(t)dt

We first show two lemmas that prove the above equality for a special family of
functions:

Lemma 3.5. Let

F (z) =

∫
dµ(t)

t− z
and

Fλ(z) =

∫
dµλ(t)

t− z
.

Then

Fλ(z) =
1

F (z)−1 + λ
.

Proof. For any self-adjoint operator T : CN → CN we have

T =

N∑
j=1

λjPj ,

and for any polynomial q(x), we have

q(T ) =

N∑
j=1

q(λj)Pj .

Thus

(T − zI)−1 =

N∑
j=1

1

λj − z
Pj ,

and so

〈(T − zI)−1v,v〉 =

N∑
j=1

1

λj − z
〈Pjv,v〉,

where
〈Pjv,v〉 = 〈Pj2v,v〉 = 〈Pjv, Pjv〉 = ‖Pjv‖2.

Hence

〈(T − zI)−1v,v〉 =

N∑
j=1

1

λj − z
‖Pjv‖2 =

∫
dµT (t)

t− z
,
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Figure 1. The upper hemisphere CR and the closed path DR

where dµT is the spectral measure for T . Thus

Fλ(z) = 〈(Tλ − zI)−1v,v〉.

On the other hand, for any w ∈ Cn,

((Tλ − zI)−1 − (T − zI)−1)w = (T − zI)−1(T − zI − (Tλ − zI))(Tλ − zI)−1w

= −(T − zI)−1(λv ⊗ v)(Tλ − zI)−1w

= −λ(T − zI)−1〈(Tλ − zI)−1w,v〉v
= −λ〈w, (Tλ − z̄I)−1v〉((T − zI)−1v)

= −λ((T − zI)−1v)⊗ ((Tλ − z̄I)−1v)w.

Thus

Fλ(z)− F (z) = 〈((Tλ − zI)−1 − (T − zI)−1)v,v〉
= −λ〈((T − zI)−1v)⊗ ((Tλ − z̄I)−1v)v,v〉
= −λ〈(Tλ − zI)−1v,v〉〈(T − zI)−1v,v〉
= −λFλ(z)F (z).

Therefore

Fλ(z) =
1

F (z)−1 + λ
. �

The first class of functions that we will prove Theorem 3.4 for is the following:

Lemma 3.6. For fz(t) = (t− z)−1 − (t+ i)−1, z ∈ C \ R,∫ (∫
fz(t)dµλ(t)

)
dλ =

∫
fz(t)dt.

Proof. For RHS, we want to show:∫ ∞
−∞

fz(t)dt =

{
2πi if =z > 0

0 if =z < 0
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Let CR be an open path of the upper hemisphere of radius R, and DR the closed
path of CR and the diameter, as shown in Figure 1, then

lim
R→∞

∣∣∣∣∫
CR

fz(t)dt

∣∣∣∣ = lim
R→∞

∣∣∣∣∫
CR

(
(t− z)−1 − (t+ i)−1

)
dt

∣∣∣∣
= lim
R→∞

∣∣∣∣∫
CR

z + i

(t− z)(t+ i)
dt

∣∣∣∣
= |z + i| lim

R→∞

∫
CR

1

|t− z||t+ i|
|dt|

≤ |z + i| lim
R→∞

∫
CR

1

(|t| − |z|)(|t| − |i|)
|dt|

= |z + i| lim
R→∞

1

(R− |z|)(R− |i|)

∫
CR

|dt|

= |z + i| lim
R→∞

2πR

(R− |z|)(R− |i|)
= 0.

Thus

lim
R→∞

∫
CR

fz(t)dt = 0,

and therefore∫ ∞
−∞

fz(t)dt = lim
R→∞

∫ R

−R
fz(t)dt

= lim
R→∞

∫ R

−R
fz(t)dt+ lim

R→∞

∫
CR

fz(t)dt

= lim
R→∞

∮
DR

fz(t)dt

= lim
R→∞

(∮
DR

(t− z)−1dt−
∮
DR

(t+ i)−1dt

)
.

Now, we will show that for each R large enough,∮
DR

(t− c)−1dt =

{
2πi if =c > 0

0 if =c < 0,
(3.7)

so for RHS ∫ ∞
−∞

fz(t)dt = lim
R→∞

(∮
DR

(t− z)−1dt−
∮
DR

(t+ i)−1dt

)
=

{
2πi if =z > 0

0 if =z < 0.

Definition 3.8. A function is analytic on an open set D ⊆ C if for all x0 ∈ D, f(x)
is infinitely differentiable at x0, and the Taylor series of f at x in a neighborhood
of x0 converges to f(x).
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To show Equation (3.7), we first consider the case =c > 0. We deform the
contour D to a circle of radius r = =c/2. Clearly (t− c)−1 is analytic in the region
between D and the circle. By the Cauchy Deformation Theorem,

lim
R→∞

∮
DR

(t− c)−1dt =

∮
�(r)

(t− c)−1dt

=

∫ 2π

0

(c+ reit
′
− c)−1ireit

′
dt′ (t = c+ reit

′
)

= 2πi.

In the case =c < 0, c is outside the contour D, so (t− c)−1 is clearly analytic in
D.By Green’s Theorem,

lim
R→∞

∮
DR

(t− c)−1dt = 0.

This establishes the RHS of (3.4) for fz(t). Now given Lemma 3.5, the LHS of
(3.4) with fz(t)then becomes∫ (∫

fz(t)dµλ(t)

)
dλ =

∫ (∫
(t− z)−1dµλ(t)−

∫
(t+ i)−1dµλ(t)

)
dλ

=

∫
(Fλ(z)− Fλ(−i))dλ

=

∫ (
(λ− (−F (z)−1))−1 − (λ− (−F (−i)−1))−1

)
dλ.

Due to Equation (3.7), if we can show that =z · =(−F (z)−1) ≥ 0, then similar to
that on RHS, we have on LHS∫ ∫

fz(t)dµλ(t)dλ =

{
2πi if =z > 0

0 if =z < 0
.

To show =z · =(−F (z)−1) ≥ 0, first we show =F (z) · =(−F (z)−1) ≥ 0: let
F (z) = x+ iy, x, y ∈ R, then

=(−F (z)−1) = =
(
iy − x
x2 + y2

)
=

y

x2 + y2
,

which has the same sign as y = =F (z). Now recall that

F (z) =

∫
dµ(t)

t− z
=
∑
j

cj
1

tj − z
,

where ci ∈ R+. Similar to what we just showed for =F (z), =
(

1
ti−z

)
shares the

same sign as =(z − ti) = =z for all i. Thus

=(F (z)) =
∑
j

cj=
(

1

tj − z

)
shares the same sign as =z. Therefore =z · =(−F (z)−1) ≥ 0. �

Thus, Theorem 3.4 is proved for fz(t) as a lemma. Now we want to show that
the theorem works for all functions f ∈ C(R) and f ∈ O( 1

1+x2 ). To do this, we
need a few tools.
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Definition 3.9. We define the Poisson kernel:

Px+iy(t) =
1

π

y

(x− t)2 + y2
, x ∈ R, y ∈ R+.

It is easy to show that
∫∞
−∞ Px+iy(t)f(t)dt is harmonic on the upper-half plane,

and that

lim
y→0

∫ ∞
−∞

Px+iy(t)f(t)dt = f(x), (3.10)

for suitably smooth functions f . Now let µ be a measure on R with
∫∞
−∞

dµ(t)
1+t2 <∞,

then similarly
∫∞
−∞ Px+iy(t)dµ(t) is harmonic on C+.

Theorem 3.11. Let g ∈ Cc(R) and dµ =
∑n
j=1 cjδλj , then

lim
y→0+

∫ ∞
−∞

(∫ ∞
−∞

Px+iy(t)dµ(t)

)
g(x)dx→

∫ ∞
−∞

g(t)dµ(t).

Proof. Since we have integration over dµ(t) on both sides, due to linearity of the
discrete measure, it suffices to show that the result holds for dµ(t) = δc(x) for some
c ∈ R.

RHS is obviously g(c). Since∫ ∞
−∞

y

(x− c)2 + y2
= π, for y > 0,

we write RHS as ∫ ∞
−∞

(
1

π

y

(x− c)2 + y2

)
g(c)dx,

and need to show that RHS = LHS. Since

lim
y→0+

∫ ∞
−∞

(∫ ∞
−∞

Px+iy(t)dµ(t)

)
g(x)dx = lim

y→0+

∫ ∞
−∞

(
1

π

y

(x− c)2 + y2

)
g(x)dx,

we have

LHS −RHS = lim
y→0+

∫ ∞
−∞

(
1

π

y

(x− c)2 + y2

)
(g(x)− g(c))dx.

Because g(x) is continuous at c, there exists a δ > 0 for each ε > 0 such that for all
|x− c| < δ, |g(x)− g(c)| < ε. Thus

lim
y→0+

∫ ∞
−∞

(
1

π

y

(x− c)2 + y2

)
(g(x)− g(c))dx

= lim
y→0+

∫
|x−c|>δ

(
1

π

y

(x− c)2 + y2

)
(g(x)− g(c))dx

+ lim
y→0+

∫
|x−c|<δ

(
1

π

y

(x− c)2 + y2

)
(g(x)− g(c))dx

= 0 + lim
y→0+

∫
|x−c|<δ

(
1

π

y

(x− c)2 + y2

)
(g(x)− g(c))dx

≤ lim
y→0+

∫
|x−c|<δ

(
1

π

y

(x− c)2 + y2

)
|g(x)− g(c)|dx

≤ ε lim
y→0+

∫
|x−c|<δ

(
1

π

y

(x− c)2 + y2

)
dx
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= ε lim
y→0+

2

π
tan−1

(
δ

y

)
dx

= ε.

Therefore LHS = RHS. �

Corollary 3.12. If
∫∞
−∞ Px+iy(t)dµ(t) = 0 for all x, y ∈ R, then µ ≡ 0

Proof. From Theorem 3.11, if
∫∞
−∞ Px+iy(t)dµ(t) = 0 for all x, y ∈ R, then

lim
y→0+

∫ ∞
−∞

(∫ ∞
−∞

Px+iy(t)dµ(t)

)
g(x)dx→ 0, for all g,

which means that ∫ ∞
−∞

g(t)dµ(t) = 0, for all g.

This can only be true if µ ≡ 0. �

Let R̂ = R ∪ {∞} and define a norm in C(R̂) by

‖f‖C(R̂) = sup{|f(x)|, x ∈ C(R̂)}.

One can show that C(R̂), with this norm, is a Banach space (a complete normed
linear space).

Let ν be a finite measure on R̂ = R ∪ {∞}, and let ` : C(R̂)→ C be defined by

`(f) =

∫
f(t)dν(t).

Then ` is clearly a linear transformation. We know that

|`(f)| =
∣∣∣∣∫ f(t)dν(t)

∣∣∣∣ ≤ ∫ |f(t)||dν(t)| ≤ ‖f‖C(R̂)‖ν(R̂)‖.

This says that ` is continuous.

Definition 3.13. Given a Banach space X , the dual space X ∗ is the space of all
` : X → C, where ` is linear and continuous.

Following the definition, C(R̂)∗ is the set of all continuous functions from C(R̂)∗

to C. We know the following theorem:

Theorem 3.14 (Riesz representation theorem). For any ` ∈ C(R̂)∗, there exists a

measure ν on R̂ such that

`(f) =

∫
f(t)dν(t).

Theorem 3.15 (Hahn-Banach seperation theorem). Let M be a closed subspace
of a Banach space X , M ( X , and f0 /∈ M . Then there exists a function ` ∈ X ∗
such that

`(f) = 0 ∀f ∈M,

`(f0) = 1.

Combining Theorem 3.14 and Theorem 3.15, the following corollary is immedi-
ate:
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Corollary 3.16. Let M be a closed subspace of C(R̂), M ( C(R̂), and f0 /∈ M .

Then there exists a finite measure ν on R̂ such that∫
f(t)dν(t) = 0∀f ∈M,∫

f0(t)dν(t) = 1.

A lemma then follows:

Lemma 3.17.

M = Clos(Span{(1 + t2)Px+iy(t) : x ∈ R, y > 0}) = C(R̂).

Proof. Suppose that there exists f0 ∈ C(R̂)\M , then by Corollary 3.16, there exists
a measure ν such that

∫
f0(t)dν(t) = 1, and that

∫
f(t)dν(t) = 0 for all f ∈ M .

This implies that ∫
(1 + t2)Px+iy(t)dν(t) = 0.

Let dµ(t) = (1 + t2)dν(t) and apply Corollary 3.12, we get µ = 0, and thus ν = 0.

This contradicts with the fact that
∫
f0(t)dν(t) = 1. Therefore C(R̂) \M = ∅. �

Now, back to the proof that Theorem 3.4 works for all f such that f ∈ C(R)
and f ∈ O

(
1
x2

)
. Since(

1

t− z
+

1

t+ i

)
−
(

1

t− z̄
+

1

t+ i

)
= 2iPx+iy(t),

the theorem works for all Px+iy(t) with x ∈ R, y > 0, i.e.∫ (∫
Px+iy(t)dµλ(t)

)
dλ =

∫
Px+iy(t)dt.

According to Lemma 3.17, for all f such that f ∈ C(R) and f ∈ O
(

1
x2

)
, and

any ε > 0, there exists a g(t) ∈ Span{Px+iy(t) : x ∈ R, y > 0} such that

|g(t)(1 + t2)− f(t)(1 + t2)| ≤ ε

2π
.

Then ∣∣∣∣∫ (∫ f(t)dµλ(t)

)
dλ−

∫
f(λ)dλ

∣∣∣∣
=

∣∣∣∣ ∫ (∫ (f(t)− g(t))dµλ(t)

)
dλ+

∫ (∫
g(t)dµλ(t)

)
dλ

−
∫

(f(λ)− g(λ))dλ−
∫
g(λ)dλ

∣∣∣∣.
Since g ∈ Span{Px+iy(t) : x ∈ R, y > 0}, and we have proved Theorem 3.4 for

the Poisson kernels, we know that∫ (∫
g(t)dµλ(t)

)
dλ =

∫
g(λ)dλ.

Thus the above equation reduces to∣∣∣∣∫ (∫ (f(t)− g(t))dµλ(t)

)
dλ−

∫
(f(λ)− g(λ))dλ

∣∣∣∣
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≤
∫ (∫

|f(t)− g(t)|dµλ(t)

)
dλ+

∫
|f(λ)− g(λ)|dλ

Now, since∫ (∫
|f(t)− g(t)|dµλ(t)

)
dλ ≤ ε

2π

∫ (∫
1

1 + t2
dµλ(t)

)
dλ

=
ε

2π

∫ (∫
P0+1i(t)dµλ(t)

)
dλ

=
ε

2π

∫
P0+1i(λ)dλ

=
ε

2π

∫
1

1 + λ2
dλ

=
ε

2π
π

=
ε

2
,

and ∫
|f(λ)− g(λ)|dλ ≤ ε

2π

∫
1

1 + λ2
dλ =

ε

2
,

we have ∣∣∣∣∫ (∫ f(t)dµλ(t)

)
dλ−

∫
f(λ)dλ

∣∣∣∣
≤
∫ (∫

|f(t)− g(t)|dµλ(t)

)
dλ+

∫
|f(λ)− g(λ)|dλ

≤ ε,

for any ε > 0. Therefore Theorem 3.4 is proved.

4. Some Matrix Examples

We will now compute some specific examples of the disintegration formula for
Aλ = A+ λv ⊗ v, where

A =

[
a c
c b

]
,

a, b, c ∈ R, a 6= b. Note that for any vector

v =

[
d
1

]
,

Av =

[
ad+ c
cd+ b

]
,

then

det
[
v|Av

]
= cd2 + bd− ad− c.

Let δ = b− a, then the roots for

det
[
v|Av

]
= cd2 + δd− c

would be

d =

{
−δ±

√
δ2+4c2

2c c 6= 0

0 c = 0.
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Thus, for values of d that does not meet the above roots, v would be an cyclic
vector for A, as well as for A+ λv ⊗ v.

We first investigate a specific cyclic vector

v =
1√
2

[
1
1

]
.

It is easy to verify that v will never make det
[
v|Av

]
= 0, so it is always a cyclic

vector for A. A standard matrix calculation shows that the eigenvalues for Aλ are

λ1 =
1

2

(
a+ b+ λ−

√
(a− b)2 + (2c+ λ)2

)
,

λ2 =
1

2

(
a+ b+ λ+

√
(a− b)2 + (2c+ λ)2

)
,

and following the procedure described in Thereom 2.7, we have the spectral measure
for Aλ:

µλ =
−2c− λ+

√
(a− b)2 + (2c+ λ)2

2
√

(a− b)2 + (2c+ λ)2
δλ1 +

2c+ λ+
√

(a− b)2 + (2c+ λ)2

2
√

(a− b)2 + (2c+ λ)2
δλ2 .

Then by Theorem 3.4, for f ∈ C(R) 3 f(x) ∈ O( 1
x2 ) as x→ ±∞,∫ ∞

−∞

(∫
f(t)dµλ(t)

)
dλ

=

∫ ∞
−∞

(
−2c− λ+

√
(a− b)2 + (2c+ λ)2

2
√

(a− b)2 + (2c+ λ)2
f(λ1) +

2c+ λ+
√

(a− b)2 + (2c+ λ)2

2
√

(a− b)2 + (2c+ λ)2
f(λ2)

)
dλ

=

∫ ∞
−∞

f(t)dt

Example 4.1. Let f(t) = e−t
2

, then we have∫ ∞
−∞

1

2
√

(a− b)2 + (2c+ λ)2
×(

(
√

(a− b)2 + (2c+ λ)2 − 2c− λ) exp
(
− 1

4
(−
√

(a− b)2 + (2c+ λ)2 + a+ b+ λ)2
)

+(
√

(a− b)2 + (2c+ λ)2 + 2c+ λ) exp
(
− 1

4
(
√

(a− b)2 + (2c+ λ)2 + a+ b+ λ)2
))

dλ

=
√
π.

Example 4.2. Let f(t) = 1
1+x2 , then we have∫ ∞
−∞

(
1

Aλ2 +Bλ+ C

)
dλ = π,

where A,B,C are constants independent of λ:

A =
a2 − 4c(a+ b) + 2ab+ b2 + 4c2 + 4

2 (a2 + b2 + 2)− 4c(a+ b) + 4c2
,

B =
−2c2(a+ b) + c(4− 4ab) + 2(a(b(a+ b) + 1) + b) + 4c3

a2 − 2c(a+ b) + b2 + 2c2 + 2
,
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C =
2
(
a2 + 1

) (
b2 + 1

)
+ c2(4− 4ab) + 2c4

a2 − 2c(a+ b) + b2 + 2c2 + 2
.

If we now set b = 0, c = 0, and a 6= 0, we have∫ ∞
−∞

(
a2 + 2(

a2

2 + 2
)
λ2 + 2aλ+ 2(a2 + 1)

)
dλ = π.

We can take derivatives with respect to a on both sides, and obtain∫ ∞
−∞

(
(a+ λ)(aλ− 2)

(a2 (λ2 + 4) + 4aλ+ 4λ2 + 4)
2

)
dλ = 0.

Example 4.3. Let a = 1, b = 0, c = 0, and f(x) = 1
1+xp , where p is a positive even

number. Then∫ ∞
−∞

(
1− λ/

√
λ2 + 1(

−
√
λ2 + 1 + λ+ 1

)p
+ 2p

+
1 + λ/

√
λ2 + 1(√

λ2 + 1 + λ+ 1
)p

+ 2p

)
dλ =

π csc
(
π
p

)
2p−2p

.

In addition to functions that are nonzero on (−∞,∞), we would like to study
step functions of the form

f(x) = g(x)(θm1(x)− θm2(x)),

where g is integrable on (m1,m2) and θm(x) is the Heaviside function:

Definition 4.4. For m ∈ R, the function θm : R→ R is defined as

θm(x) =

{
0 if x ≤ m
1 if x > m

.

Applying Theorem 3.4 to these step functions then yields∫
m1≤λ1≤m2

(
−2c− λ+

√
(a− b)2 + (2c+ λ)2

2
√

(a− b)2 + (2c+ λ)2
f(λ1)

)
dλ

+

∫
m1≤λ2≤m2

(
2c+ λ+

√
(a− b)2 + (2c+ λ)2

2
√

(a− b)2 + (2c+ λ)2
f(λ2)

)
dλ

=

∫
m1≤λ1≤m2

f1(λ)dλ+

∫
m1≤λ2≤m2

f2(λ)dλ

(f1 and f2 are just the terms above in parentheses as a function of λ)

=

∫ m2

m1

g(t)dt.

To simplify the above equation, we would like to find out the ranges for λ corre-
sponding to m1 ≤ λ1 ≤ m2 and m1 ≤ λ2 ≤ m2. We take derivative of λ1 with
respect to λ:

dλ1

dλ
=

d

dλ

(
1

2

(
a+ b+ λ−

√
(a− b)2 + (2c+ λ)2

))
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=
1

2

(
1− 2c+ λ√

(a− b)2 + (2c+ λ)2

)
≥ 0.

Since λ1 is monotonically increasing with respect to λ, we calculate the limits as
λ approaches ±∞:

lim
λ→−∞

1

2

(
a+ b+ λ−

√
(a− b)2 + (2c+ λ)2

)
= −∞

lim
λ→∞

1

2

(
a+ b+ λ−

√
(a− b)2 + (2c+ λ)2

)
=

1

2
(a+ b− 2c).

Thus, we only need to solve for λ from λ1(λ) = m for m = m1 and m = m2

respectively. The solution only exists for m < 1
2 (a+ b− 2c) and is calculated to be

Λ(m) = −
2
(
ab− c2

)
+ 2m(−a− b) + 2m2

a+ b− 2c− 2m
.

Similarly,
dλ2

dλ
≥ 0,

λ2 ∈
(

1

2
(a+ b− 2c),∞

)
,

and the solution only exists for m > 1
2 (a+ b− 2c) in the same form Λ(m).

Therefore, our integration formula for a step function then becomes

∫ m2

m1

g(t)dt =


∫ Λ(m2)

Λ(m1)
f1(λ)dλ if m2 ≤ 1

2 (a+ b− 2c)∫∞
Λ(m1)

f1(λ)dλ+
∫ Λ(m2)

−∞ f2(λ)dλ if m1 <
1
2 (a+ b− 2c) < m2∫ Λ(m2)

Λ(m1)
f2(λ)dλ if 1

2 (a+ b− 2c) ≤ m1

Example 4.5. Let a = 1, b = 0, c = 0, and f(x) = θ0(x)− θ1(x). Since 1
2 (a + b−

2c) = 1
2 ∈ (m1,m2) = (0, 1), we have∫ m2

m1

g(t)dt = 1

=

∫ ∞
0

(
−λ+

√
1 + λ2

2
√

1 + λ2

)
dλ+

∫ 0

−∞

(
λ+
√

1 + λ2

2
√

1 + λ2

)
dλ

=

∫ ∞
0

(
−λ+

√
1 + λ2

√
1 + λ2

)
dλ (change of variable for the second integral)

This is verifiable through classical calculation.

Example 4.6. Let a = 1, b = −1, c = 0, and f(x) = xp(θ0(x)−θ1(x)), p ∈ N. Since
1
2 (a+ b− 2c) = 0 = m1, we have∫ m2

m1

g(t)dt =
1

p+ 1

=

∫ 0

−∞

(
(λ+

√
4 + λ2)p+1

2p+1
√

4 + λ2

)
dλ



RANK ONE PERTURBATIONS OF SELF-ADJOINT OPERATORS 19

=

∫ ∞
0

(
(−λ+

√
4 + λ2)p+1

2p+1
√

4 + λ2

)
dλ

5. Computing the Point Masses

In the work of Simon and Wolff [2], they present a direct way to compute the
µλ measure in terms of the spectral measure µ0 for a given T via the following
theorem:

Definition 5.1. We define function

B(x) =

(∫
(x− y)−2dµ0(y)

)−1

with the convention that ∞−1 = 0.

Theorem 5.2 (Simon-Wolff). Fix λ 6= 0. Then dµλ has an atom at x0 ∈ R, i.e.
µλ({x0}) > 0 iff

lim
ε→0+

F0(x0 + iε) = −λ−1 (5.3)

and

B(x0) 6= 0. (5.4)

Moreover, λ−2B(x0) is precisely the µλ measure of {x0}.

Proof. From

Fλ(x0 + iε) =

∫
dµλ(t)

t− (x0 + iε)

=

∫
(t− x0 + iε)dµλ(t)

(t− x0)2 + ε2
,

we have

=Fλ(x0 + iε) = ε

∫
dµλ(t)

(t− x0)2 + ε2
,

<Fλ(x0 + iε) =

∫
(t− x0)dµλ(t)

(t− x0)2 + ε2
.

Then, since

lim
ε→0+

ε2

(t− x0)2 + ε2
=

{
1 if t = x0

0 if t 6= x0

,

by dominated convergence theorem, which allows us to push the limit through the
integral, we have

lim
ε→0+

ε=Fλ(x0 + iε) = lim
ε→0+

∫
ε2

(t− x0)2 + ε2
dµλ(t) = µλ({x0}),

and similarly

lim
ε→0+

ε<Fλ(x0 + iε) = lim
ε→0+

∫
ε(t− x0)

(t− x0)2 + ε2
dµλ(t) = 0.

Therefore,

lim
ε→0+

εFλ(x0 + iε) = µλ({x0})i.
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Now, if µλ({x0}) 6= 0, then |Fλ(x0 + iε)| → ∞. Together with the fact from
Lemma 3.5 that

F0(z) =
1

1
Fλ(z) − λ

,

we have

lim
ε→0+

F0(x0 + iε) = −λ−1.

This proves condition (5.3).
Moreover, by the monotone convergence theorem, which again allows us to push

the limit through the integral,

lim
ε→0+

ε−1=F0(x0 + iε) = lim
ε→0+

∫
dµλ(t)

(t− x0)2 + ε2
= B(x0)−1.

Now, if

lim
ε→0+

F0(x0 + iε) = −λ−1,

then

lim
ε→0+

=
(
F0(x0 + iε)

εFλ(x0 + iε)

)
= =

(
− λ−1

µλ({x0})i

)
= (λµλ({x0}))−1.

On the other hand, due to Lemma 3.5,

lim
ε→0+

=
(
F0(x0 + iε)

εFλ(x0 + iε)

)
= lim
ε→0+

=
(
ε−1(λF0 + 1)

)
= λ lim

ε→0+
=ε−1F0 = λB(x0)−1.

Thus, we have

λ2µλ({x0}) = B(x0),

which also proves condition (5.4).
Conversely, if conditions (5.3) and (5.4) hold, then in particular, the above dis-

cussion shows that condition (5.3) implies

λ2µλ({x0}) = B(x0).

Thus if B(x0) 6= 0, i.e., condition (5.4), then µλ({x0}) 6= 0. �

Example 5.5. Let A =

1 0 0
0 2 0
0 0 3

, then we can easily calculate

lim
ε→0+

F0(x+ iε) = lim
ε→0+

∫
dµ0(t)

t− (x0 + iε)

= lim
ε→0+

(
1

3

1

1− (x0 + iε)
+

1

3

1

2− (x0 + iε)
+

1

3

1

3− (x0 + iε)

)
=

1

3

(
1

1− x0
+

1

2− x0
+

1

3− x0

)
.

Thus the atoms for µλ would be the x0’s that satisfy the equation

1

3

(
1

1− x0
+

1

2− x0
+

1

3− x0

)
= − 1

λ
,

and the corresponding weight for each x0 is

λ−2B(x0) = λ−2

(∫
(x0 − y)−2dµ0(y)

)−1
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Figure 2. The blue curve is the graph of F0(x). The purple curve
is a fixed value of λ = 0.4. The red dots, point masses of µλ, are
the solutions to F0(x) = − 1

λ .

= λ−2

(
1

3(x0 − 1)2
+

1

3(x0 − 2)2
+

1

3(x0 − 3)2

)−1

.

See Figure 2 for a drawing which helps explain the computation.

6. A multiplication operator

So far we have considered only matrix representations of self-adjoint operators
for Theorem 3.4. Now we would like to consider operators on L2[0, 1]. Let

A = M,

where M is defined in Theorem 2.7, then

dµ0(t) = dt.

Obviously 1 is a cyclic vector for M , so we have

Aλ = M + λ1⊗ 1

as a measure on [0, 1], and we would like to know what the corresponding µλ is.
Due to some technical details in Simon’s paper [1], µλ has no continuous singular
component. Thus we can write dµλ in the form

dµλ(t) = gλ(t)dt+
∑
i

c
(λ)
i δ

y
(λ)
i
,

and our goal is to find out what gλ(t) and y
(λ)
i ’s are. Note that the λ in c

(λ)
i δ

y
(λ)
i

is

to denote their dependence on λ, not an exponent.
From Lemma 3.5, we know that for y 6= 0,

F0(x+ iy) =

∫
dµ0(t)

t− x− iy

=

∫ 1

0

dt

t− x− iy

=

∫ 1

0

(t− x+ iy)dt

(t− x)2 + y2

=

∫ 1−x

−x

(t+ iy)dt

t2 + y2
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=
1

2
log

∣∣∣∣ (1− x)2 + y2

x2 + y2

∣∣∣∣+ i

(
arctan

(
1− x
y

)
− arctan

(
−x
y

))
,

and we are able to calculate

Fλ(x+ iy) =
F0(x+ iy)

1 + λF0(x+ iy)
. (6.1)

On the other hand,

Fλ(x+ iy) =

∫
dµλ(t)

t− x− iy
=

∫ ∞
−∞

gλ(t)dt

t− x− iy
+
∑
i

c
(λ)
i

y
(λ)
i − x− iy

,

and

lim
y→0+

(Fλ(x+ iy)− Fλ(x− iy))

=

∫ ∞
−∞

(
1

t− (x+ iy)
− 1

t− (x− iy)

)
gλ(t)dt

=

∫ ∞
−∞

(
2yi

(t− x)2 + y2)

)
gλ(t)dt

=2πi

∫ ∞
−∞

Px+iy(t)gλ(t)dt (from Definition 3.9).

Then, by Equation 3.10, we have

gλ(x) = lim
y→0+

∫ ∞
−∞

Px+iy(t)gλ(t)dt

=
1

2πi
lim
y→0+

(Fλ(x+ iy)− Fλ(x− iy)).

Before we plug in Equation 6.1, we would like to simplify it:

Fλ(x+ iy)− Fλ(x− iy) =
F0(x+ iy)

1 + λF0(x+ iy)
− F0(x− iy)

1 + λF0(x− iy)

=
F0(x+ iy)− F0(x− iy)

(1 + λF0(x+ iy))(1 + λF0(x− iy))
.

Now plug in

F0(x+ iy) =
1

2
log

∣∣∣∣ (1− x)2 + y2

x2 + y2

∣∣∣∣+ i

(
arctan

(
1− x
y

)
− arctan

(
−x
y

))
and simplify the equation, we get

Fλ(x+ iy)− Fλ(x− iy)

=
2i
(

arctan
(

1−x
y

)
+ arctan

(
x
y

))
(

1 + 1
2λ log

∣∣∣ (1−x)2+y2

x2+y2

∣∣∣)2

+ λ2
(

arctan
(

1−x
y

)
+ arctan

(
x
y

))2 .

Now consider the limit y → 0+,

lim
y→0+

arctan

(
1− x
y

)
=


π
2 if 1− x > 0

0 if 1− x = 0

−π2 if 1− x < 0
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lim
y→0+

arctan

(
x

y

)
=


π
2 if x > 0

0 if x = 0

−π2 if x < 0

,

then

lim
y→0+

(
arctan

(
1− x
y

)
+ arctan

(
x

y

))
=



0 if x > 1
π
2 if x = 1

π if 0 < x < 1
π
2 if x = 0

0 if x < 0

.

Therefore we have

gλ(x) =
χ(0,1)(x)(

1 + λ log
(

1−x
x

))2
+ λ2π2

.

Now we consider the point mass. According to Theorem 5.2, to have a point
mass at y(λ),

B(y(λ)) =

(∫ 1

0

dt

(t− y(λ))2

)−1

= y(λ)(y(λ) − 1) 6= 0.

The above integral is only defined on R \ (0, 1), so the above condition is only
satisfied when y(λ) /∈ [0, 1]. In addition, it must satisfy the condition that

lim
ε→0+

F0(y(λ) + iε) = −λ−1,

so

log

(
1− 1

y(λ)

)
= −λ−1,

y(λ) =
(

1− e− 1
λ

)−1

.

Note that here the gλ(t) part covers [0, 1] while the y(λ) covers the complement
R \ [0, 1]. Putting the pieces together, we have

dµλ(x) =
χ(0,1)(x)dx(

1 + λ log
(

1−x
x

))2
+ λ2π2

+
e−

1
λ

λ2
(

1− e− 1
λ

)2 δ
(

1−e−
1
λ

)−1(x).

7. Schrödinger Operators

Of great interest in physics, the Schrödinger operator

T = − d2

dx2
+ V (x)

on L2(−∞,∞), where V (x) is a real-valued function, is self-adjoint. The pertur-
bation

Tλ = T + λδ0

is particularly interesting. Simon [1] worked out the spectral theory for these rank
one perturbations and, in particular, computed the spectral measures µλ for these
perturbations. Unlike in our previous examples where the support of µλ was a finite
set for the self-adjoint matrices and the support was a bounded set for multiplication
by x on L2(0, 1), the supports of µλ in the Schrödinger case are unbounded sets.
Although some of the technical details are somewhat beyond what we are trying
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to accomplish here, we mention the Schrödinger operator as another example of
self-adjoint operator one can consider here.
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