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Abstract: Nitrite was once thought to be inert in human 
physiology. However, research over the past few decades 
has established a link between nitrite and the production 
of nitric oxide (NO) that is potentiated under hypoxic and 
acidic conditions. Under this new role nitrite acts as a stor-
age pool for bioavailable NO. The NO so produced is likely to 
play important roles in decreasing platelet activation, con-
tributing to hypoxic vasodilation and minimizing blood-cell 
adhesion to endothelial cells. Researchers have proposed 
multiple mechanisms for nitrite reduction in the blood. 
However, NO production in blood must somehow overcome 
rapid scavenging by hemoglobin in order to be effective. 
Here we review the role of red blood cell hemoglobin in the 
reduction of nitrite and present recent research into mecha-
nisms that may allow nitric oxide and other reactive nitro-
gen signaling species to escape the red blood cell.

Keywords: erythrocyte; hemoglobin; hypoxia; nitric 
oxide; vasodilation.

Introduction: nitric oxide in the 
blood
Endothelium-derived nitric oxide (NO) is an important car-
diovascular signaling molecule whose production increases 
blood flow, reduces blood pressure, decreases blood cell 
adhesion, and diminishes platelet activation. In normoxic 
conditions, nitric oxide synthase (NOS) found on endothe-
lial cells and red blood cells catalyzes the production of 
NO and L-citrulline from molecular oxygen and L-arginine 

(Andrew and Mayer, 1999; Forstermann and Sessa, 2012). 
The source of normoxic vasodilation is widely believed to 
be endothelium derived NO (Moncada and Higgs, 1993). 
As oxygen is a substrate for NOS, at low oxygen levels NO 
production by NOS is diminished (Totzeck et  al., 2012). 
Therefore, at low oxygen tension mechanisms of hypoxic 
NO production, such as nitrite reduction by deoxygenated 
hemoglobin (Hb) in red blood cells (RBCs) can take over.

Hb is present in the blood at a concentration of about 
10 mm and Hb rapidly scavenges NO. NO reacts with oxy-
genated Hb (oxyHb) at a rate of 5–6 × 107 m−1 s−1 and deoxy-
genated Hb (deoxyHb) at a rate of 2–6 × 107 m−1 s−1 (Cassoly 
and Gibson, 1975; Morris and Gibson, 1980; Doyle et al., 
1981; Cooper, 1999; Kim-Shapiro et  al., 2006). Addition-
ally, NO has a high affinity for Hb, with a dissociation con-
stant of about 10−11–10−12 (Cooper, 1999).

Although Hb is abundant in the blood it is compartmen-
talized to the RBC and the RBC is pushed to the center of the 
blood vessel in circulation. These mechanisms keep the Hb 
away from the endothelium, a major source of NO in oxygen-
ated conditions, and minimize NO scavenging (Lancaster, 
1994; Butler et al., 1998; Liu et al., 1998; Liao et al., 1999).

However, in deoxygenated and acidic conditions 
when the NOS no longer efficiently produces NO, the RBC 
has been shown to play a role in NO production through 
the use of nitrite. Therefore, it is important to determine 
how NO can be produced by nitrite and the RBC and how 
NO or another reactive nitrogen signaling species can 
escape the Hb rich RBC.

Nitrite acquisition
Nitrite concentration in the blood is derived through two 
main mechanisms. First, nitrite is formed from the oxi-
dation of nitric oxide (NO) produced by nitric oxide syn-
thase, found in the RBC itself and in endothelial cells 
(Kleinbongard et  al., 2003, 2006; Cortese-Krott et  al., 
2012; Grau et  al., 2013; Wood et  al., 2013; Bizjak et  al., 
2015). The auto-oxidation of NO to nitrite proceeds slowly 
(k = 2 × 106 m−2 s−1) compared to oxidation of nitric oxide 
to nitrate by hemoglobin (k = 8 × 107 m−1 s−1) (Shiva, 2012). 
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However, ceruloplasmin in the plasma can catalyze the 
conversion of NO to nitrite (Shiva et al., 2006). The oxida-
tion of endothelial derived NO accounts for roughly 70% 
of resting plasma nitrite (Kleinbongard et al., 2003). This 
is an approximation as it is difficult to quantitatively esti-
mate the participation of each source of plasma nitrite as 
there could be interactions between nitrite sources.

Secondly, nitrite is obtained through dietary con-
sumption. Nitrite, found in cured meats and cereal prod-
ucts, is efficiently absorbed by the intestines (Fritsch 
et  al., 1979; Lundberg et  al., 2008). However, the main 
dietary source of plasma nitrite is reduced dietary nitrate. 
Nitrate is found at high levels in root and leaf vegetables 
(Hord et  al., 2009; Machha and Schechter, 2011). In the 
mouth some of the nitrate is converted to nitrite by anaer-
obic bacteria (Tannenbaum et  al., 1976; Duncan et  al., 
1995). The nitrate and nitrite travel to the intestine where 
again part of it is absorbed and makes its way into the 
blood stream (Fritsch et al., 1979) and part passes on to be 
excreted in the urine (Carlsson et al., 2001). At this point 
a spiraling process begins where nitrate in the plasma is 
absorbed, concentrated and excreted in the saliva where 
it then interacts with bacteria in the mouth and is reduced 
to nitrite then travels to the intestine and so on (Lundberg 
et al., 2008). Endothelial and dietary derived nitrite lead 
to total plasma nitrite levels between 50 and 350 nm (Kelm 
et al., 1999; Rassaf et al., 2004; Lundberg et al., 2008).

Nitrite interactions
Nitrite was originally thought to be a biochemically inert 
end product in plasma (Lauer et al., 2001). However, for 
the past few decades this belief has been upturned and 
nitrite is now regarded as a storage pool for NO. Gladwin 
et al. (2000) measured significant arterial-venous plasma 
nitrite gradients indicating the consumption of nitrite 
during it transit to a lower PO2 and studies by Cosby et al. 
showed nitrite infused into human forearms at physiologi-
cal levels leads to vasodilation, a response indicative of 
NO production (Cosby et al., 2003). Multiple studies inves-
tigating the effect of nitrate consumption show increases 
in plasma nitrite are associated with a decrease in blood 
pressure, antiplatelet properties, a decrease in leukocyte 
adhesion, and an increase blood flow; all known signal-
ing effects of NO (Jansson et al., 2008; Webb et al., 2008a; 
Stokes et  al., 2009; Presley et  al., 2011; Srihirun et  al., 
2012; Liu et al., 2015; Wightman et al., 2015).

Dietary studies add additional complexities such as 
the effect of the acidic reduction of nitrite in the stomach 

which can be enhanced by the consumption of polyphe-
nol and/or ascorbic acid (Moriya et al., 2002;  Takahama 
et  al., 2002; Peri et  al., 2005; Gago et  al., 2007). For 
example, Medina-Remón et  al. measured the influence 
of the Mediterranean diet, which is high in polyphenols, 
on plasma nitrite, plasma nitrate and blood pressure. 
They found that eating the Mediterranean high in poly-
phenols decreased blood pressure and increased plasma 
nitrite and nitrate and they attributed these effects to the 
catalyzed reduction of nitrite in the gut by polyphenols. 
However, the study did not measure the total intake of 
nitrite and nitrate and therefore it is not certain whether 
the measured effects are due to acidic reduction in the gut 
or increased nitrite in the blood stream due to consump-
tion of nitrite and nitrate (Medina-Remón et al., 2015).

The above in vivo studies clearly point to a mechanism 
involving nitrite that leads to vasodilation. To identify the 
mechanism responsible for nitrite reduction, studies have 
investigated nitrite reduction by deoxygenated hemo-
globin, xanthine oxidoreductase, carbonic anhydrase and 
deoxygenated myoglobin in the blood vessel, acid in the 
stomach, and bacteria in the oral cavity (Duncan et  al., 
1995; McKnight et  al., 1997; Huang et  al., 2005b; Webb 
et al., 2008b; Aamand et al., 2009; Totzeck et al., 2012; Tiso 
and Schechter, 2015). Additionally, studies have examined 
increased ATP production by red blood cells (RBCs) in the 
presence of nitrite and subsequent ATP release by red blood 
cells followed by stimulation of endothelial nitric oxide 
synthase (Dietrich et  al., 2000; Cao et  al., 2009). Each of 
these mechanisms are capable of producing NO and may 
contribute to the overall bioavailability of NO (see Figure 1).

Support for the deoxyRBC and 
nitrite pathway
The role of deoxygenated RBCs in nitrite bio-activation is 
evident from in vitro and in vivo studies where the addi-
tion of deoxygenated RBCs and nitrite lead to vasodilation 
(Cosby et al., 2003; Jensen and Agnisola, 2005; Crawford 
et al., 2006). In these studies, vasodilation was diminished 
when nitrite or RBCs were infused alone (Cosby et  al., 
2003; Jensen and Agnisola, 2005; Crawford et al., 2006). 
One explanation for increased NO production following 
RBC and nitrite exposure is the increased synthesis of RBC 
ATP in the presences of nitrite (Cao et al., 2009) followed 
by the hypoxic release of ATP from RBCs which then stim-
ulates NOS (McMahon et al., 2002; Crawford et al., 2006). 
However, a response indicative of NO production is often 
seen in the presence of NOS inhibitors L-NAME or LMMA, 
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suggesting ATP release by RBCs cannot be the sole mecha-
nism responsible for vasodilation (Crawford et al., 2006; 
Liu et al., 2015). Others have shown an intrinsic vasodila-
tion of vessels exposed to nitrite under hypoxic conditions 
in the absence of RBCs (Dalsgaard et al., 2007; Isbell et al., 
2007), however, the timescale of this response does not 
match the timescale of transit from arteries to veins and 
the response to nitrite is increased in the presence of RBC 
(Crawford et al., 2006; Allen et al., 2009). Together these 
data points to a RBC mechanism that reduces nitrite to NO 
under deoxygenated conditions.

Very strong support for the role of RBCs in bioactiva-
tion of nitrite comes from studies of platelet activation 
and aggregation (Srihirun et  al., 2012; Park et  al., 2014; 
Liu et al., 2015; Wajih et al., 2016). When nitrite is added 
to platelet rich plasma after platelet activation is induced 
by ADP or another agent, there is no effect unless deoxy-
RBCs are present (Srihirun et al., 2012). When deoxyRBCs 
are present, the nitrite leads to inhibition of platelet acti-
vation and aggregation and this inhibition is potentiated 
by hypoxia but abrogated when a NO scavenger is added 
 (Srihirun et  al., 2012; Wajih et  al., 2016). These affects 
are also observed in slowing down clot formation and 
maximum strength (Park et al., 2014). Importantly, effects 

are seen at physiological levels of nitrite (Srihirun et al., 
2012; Park et al., 2014; Liu et al., 2015; Wajih et al., 2016).

Additional in vitro studies exclude other mechanisms 
from playing a large role in nitrite reduction by deoxygen-
ated red blood cells. We recently showed that xanthine 
oxidoreductase does not play a large role in RBC mediated 
bio-activation of nitrite. In fact, the inhibition of xanthine 
oxidoreductase by allopurinol did not significantly change 
the production of NO (Liu et al., 2015). Additionally, inhi-
bition of carbonic anhydrase did not affect the production 
of NO in the presence of nitrite and RBC when measured 
by EPR and chemiluminescence and only affected platelet 
activation at nonphysiological carbon dioxide concentra-
tion (Liu et al., 2015), suggesting that carbonic anhydrase 
is not the major source of nitrite reduction by RBCs. These 
data support the hypothesis that hemoglobin plays a 
prominent role in nitrite reduction by RBCs.

Nitrite interactions with Hb
Nitrite reacts with oxyHb, deoxyHb and methemoglobin 
(metHb). Nitrite reacts with oxyHb to form metHb and 
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Figure 1: Mechanism of nitrite reduction.
We comprised a non-extensive collection of molecules and bacteria that reduce nitrite to NO and indicate where they are most commonly 
found.
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nitrate. The oxyHb/nitrite reaction is autocatalytic at 
high ratios of nitrite to hemoglobin and involves H2O2 and 
NO2. However, the autocatalytic character is lost at lower 
nitrite:oxyHb ratios and as the oxysaturation of hemo-
globin decreases (Grubina et al., 2007; Keszler et al., 2008). 
Keszler et al. argued that in vivo the nitrite oxyHb reaction 
will never become autocatalytic due to low nitrite:oxyHb 
ratios and the presences of antioxidants such as catalase 
and ascorbate (Keszler et al., 2008).

The reaction between nitrite and deoxyHb, given 
in equation 1, was first studied by Brooks in 1937 and 
extended by Doyle in 1981 (Brooks, 1937; Doyle et al., 1981). 
The reaction leads to the formation of metHb and NO.

 2 3
2NO HbFe H HbFe NO OH− + + + −+ + → + +  (1)

The reaction rate of nitrite with deoxyHb is dependent on 
the conformation state of Hb. Therefore, under partial oxy-
genation or in the presence of metHb or HbNO the reac-
tion rate increases (Huang et al., 2005a,b). NO produced 
through the reduction of nitrite by deoxyHb rapidly reacts 
with any unreacted deoxyHb. Therefore, the reaction of 
nitrite with deoxyHb lead to a 1:1 production of metHb and 
HbNO (Brooks, 1937; Huang et al., 2005b).

The reaction between deoxyHb/nitrite and oxyHb/
nitrite proceed in parallel with similar maximum reaction 
rates at 50% saturation (Grubina et al., 2007). The reaction 
of nitrite with deoxyHb provides a mechanism for produc-
tion of NO. Data supports the formation and escape of NO 
from the deoxyRBC. The Gladwin group has shown that 
NO can be detected by chemiluminescence after reacting 
Hb and nitrite (Huang et al., 2005b). Crawford et al. meas-
ured NO by chemiluminescence in the head space of deox-
yRBCs reacted with nitrite (Crawford et al., 2006). Other 
groups have also observed NO detected by chemilumi-
nescence after reacting NO with RBCs (Ghosh et al., 2013; 
Liu et  al., 2015). Crawford et  al. also measured stimula-
tion of NO dependent processes such as cyclic guanosine 
monophosphate production, inhibition of mitochondrial 
respiration, and vasodilation which were sensitive to NO 
scavenger C-PTIO (Crawford et  al., 2006). Additionally, 
work by Wajih et  al. showed diminished platelet activa-
tion in the presence of nitrite and deoxygenated RBCs that 
was inhibited by NO scavenger C-PTIO (Wajih et al., 2016).

However, when one considers the end product of the 
nitrite deoxyHb reaction, NO, and its rapid interaction 
with deoxyHb, or oxyHb which are abundant in the RBC, 
the question of how NO escapes the RBC arises. Com-
partmentalization of NO or reaction intermediates could 
reduce scavenging as well as the production of an alter-
native reactive nitrogen species. A metabolon has been 

suggested where compartmentalization at the RBC mem-
brane serves to concentrate NO in the membrane itself 
(Gladwin et al., 2004).

N2O3

One possible reactive nitrogen signaling species that 
may escape the RBC is N2O3. N2O3 does not react with the 
ferrous heme and is freely diffusible. Basu and colleagues 
detected the intermediate metHb-nitrite during the reac-
tion of nitrite with deoxyHb and proposed that this 
intermediate may react rapidly with NO to form N2O3, a 
nitrosylating species (Basu et al., 2007; Roche et al., 2013). 
One caveat of this reaction is that metHb-nitrite must out-
compete any surrounding Hb for NO, therefore, compart-
mentalization of this reaction may be necessary for it to 
play a physiological role. Friedman and coworkers have 
suggested that a N2O3 bound Hb species forms during the 
reaction of metHb and nitrite. They detected the formation 
of an intermediate capable of S-nitrosation and GSNO for-
mation under multiple conditions when metHb, NO, and 
nitrite were mixed (Roche et al., 2013). Also, the addition 
of reducing agent L-cysteine to metHb and nitrite reduced 
a small population of metHb to deoxyHb. This deoxyHb 
was then able to react with nitrite to form NO thus ena-
bling the formation of the intermediate species (Roche 
et al., 2015). However, studies have provided experimen-
tal or theoretical arguments against N2O3 formation (Tu 
et al., 2008; Koppenol, 2012). On the other hand, if N2O3 
does form it could potentially diffuse out of the RBC and 
then form NO and NO2˙.

S-nitrosothiols
Another pool of NO derivatives that may escape or trans-
port NO signaling within the RBC are S-nitrosothiols. 
S-nitrosothiols react slowly with heme proteins (Spencer 
et al., 2000), therefore, once an S-nitrosothiol is formed 
the signal could be passed from S-nitrosothiol to S-nitros-
othiol without reacting with deoxyHb.

One example of S-nitrosation (also referred to as 
S-nitrosylation emphasizing its role in signaling) is the for-
mation of SNO-Hb. Stamler et al. demonstrated the ability 
of SNO-Hb to relax vessels through the hypoxic release of 
NO activity from the β-93 cysteine of Hb (Stamler et  al., 
1997; McMahon et al., 2002) and hypothesized the mecha-
nism for this release was a decreased stability of SNO-Hb 
in the deoxygenated T-state compared to the oxygenated 
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R-state. In vitro research by Doctor and co-workers sup-
ported this theory by demonstrating SNO-Hb content 
is coupled to Hb oxygen saturation (Doctor et  al., 2005) 
and Diesen et  al. used blood vessel assays to show that 
decreased RBC SNO-Hb content abolished vessel relaxa-
tion by hypoxic RBCs (Diesen et al., 2008). However, there 
are many questions surrounding the SNO-Hb mechanism 
of hypoxic vasodilation and its physiological relevance. 
For more information on the hypoxic release of NO from 
SNO-Hb we refer you to reviews by Allen et al. and Singel 
et  al. (Singel and Stamler, 2005; Allen and Piantadosi, 
2006), but also suggest contrary literature (Gladwin et al., 
2002, 2003; Xu et al., 2003; Huang et al., 2006).

The above work does not consider the role of nitrite in 
hypoxic vasodilation and raises the question of how SNO-Hb 
is formed. In circulation SNO-Hb must be replenished fol-
lowing release in order for it to play a continuous role in 
hypoxic vasodilation. Experiments into the formation of 
SNO-Hb have ruled out the transfer of NO from HbNO to the 
β-93 cysteine (Xu et al., 2003; Huang et al., 2006). Nagababu 
et  al. and Angelo et  al. suggest a semi-stable metHb-NO 
intermediate may form during nitrite reduction by deoxyHb 
and would be capable of SNO-Hb formation, thereby linking 
S-nitrosothiol formation with hypoxia and nitrite (Angelo 
et al., 2006; Nagababu et al., 2006). But, Basu et al. were 
unable to detect a stable metHb-NO intermediate and dem-
onstrated metHb-nitrite is a major intermediate during 
nitrite reduction by deoxyHb (Basu et al., 2007).

Additionally, a study by Isbell et al. in mice with a β-93 
substitution of alanine for cysteine indicate SNO-Hb is not 
essential for nitrite associated vasodilation (Isbell et  al., 
2007). These findings provide strong evidence that mili-
tates against the role SNO-Hb in nitrite mediated hypoxic 
vasodilation. However, a role for S-nitrosothiols is not ruled 
out. Possible S-nitrosothiol mechanisms are nitrosation of 
glutathione directly by metHb-NO, expected as a transient 
intermediate in the reduction of nitrite by deoxyHb, or the 
formation of SNO via N2O3. The formation of S-nitrosothi-
ols that utilizes nitrite, provides a mechanism for hypoxic 
nitrite reduction that produces NO bio-activity that avoids 
scavenging by oxyHb o deoxyHb. However, the mechanism 
of S-nitrosothiol formation requires further research and 
reproducible detection of GSNO or other S-nitrosothiols 
exported from the RBC have not been reported.

Role of the RBC membrane
Band 3, also known as AE1, is an abundant ion trans-
porter in the RBC membrane and has also been proposed 

as a mechanism for SNO transport. Pawloski et  al. pro-
posed that SNO-Hb formed in the RBC would S-nitrosate 
a cysteine on the cytosolic domain of Band 3 forming 
SNO-AE1 (Pawloski et  al., 2001). However, the subse-
quent export of NO bio-activity is still unclear but could 
involve low molecular weight thiols. In the nitrite medi-
ated vasodilation work of Isbell et al., using mice with β-93 
cysteine substituted with alanine, argued against SNO-Hb 
playing an important role in nitrite related vasodilation, 
however, they did not rule out the role of S-nitrosothiol 
formation all together (Isbell et  al., 2007). Therefore, 
low molecular weight SNO formed via nitrite reduction 
could transnitrosylate AE1 and eventually escape the RBC 
through and AE1 mechanism as proposed by Pawloski and 
coworkers (Pawloski et al., 2001), although lack of S-nitro-
sothiol detection outside of the RBCs argues against this 
hypothesis.

Kallakunta et  al. investigated a role for protein 
disulfide isomerase (PDI) in nitrite derived S-nitrosothiol 
export from the RBC (Kallakunta et al., 2013). Their work 
supports a process where under oxygenated conditions 
in the presence of nitrite, PDI forms a complex with Hb, 
is S-nitrosylated and then attaches to the surface of the 
RBC. Upon deoxygenation SNO-PDI is released from the 
membrane (Sliskovic et  al., 2005). Past research has 
shown a role for PDI in the import of NO derivatives into 
various cell types (Zai et al., 1998; Ramachandran et al., 
2001; Bell et  al., 2006). This new proposal puts forward 
its importance as an exporter of vasodilatory activity. One 
challenge to this hypothesis is that RBCs are not likely 
to contain much PDI, so that only a small fraction of Hb 
would be associated with PDI and nitrite-mediated PDI 
S-nitrosylation would be inefficient.

In addition to its role in SNO export, the RBC mem-
brane, specifically AE1, plays a role in nitrite transport. 
For nitrite to react with hemoglobin and lead to NO bio-
activation it must first enter the RBC. The transport of 
nitrite across the RBC membrane is affected by the oxygen 
saturation of hemoglobin (Vitturi et  al., 2009). Early 
studies showed that hemoglobin binds to the RBC mem-
brane through an interaction with AE1 (Shaklai et  al., 
1997;  Galtieri et al., 2002; Chu et al., 2008). The binding of 
hemoglobin to AE1controls its transport activity ( Galtieri 
et al., 2002; Drew et al., 2004). In the case of nitrite trans-
port, oxygen saturation has no effect on the import of 
nitrite by AE1 however, deoxygenation of the RBC reduces 
nitrite export by AE-1 (Vitturi et al., 2009). This change in 
nitrite export leads to a steady state level of nitrite in the 
RBC. This steady state is maintained through the combi-
nation of faster scavenging of nitrite by deoxyHb balanced 
with the decreased export of nitrite by deoxyHb bound 
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AE1 (Vitturi et al., 2009). It should be noted however, that 
substantial nitrite traverses the membrane directly as 
nitrous acid.

The affinity of hemoglobin for the RBC membrane 
is dependent upon its adduct. It has been suggested 
that nitrite reacted Hb, which may lead to metHb-NO or 
Hb-NO+, has a greater affinity for the RBC membrane than 
deoxyHb and deoxyHb has a greater affinity for the RBC 
membrane than oxyHb (Salgado et  al., 2015). Salgado 
argues that this greater affinity allows the lower concen-
trations of nitrite reacted Hb to compete with deoxyHb 
and oxyHb for the AE1 binding sites. Additionally, the 
binding of the nitrite reacted Hb to AE1 when nitrite is in 
its reduced form [Hb(II)NO+ or Hb(III)NO] facilitates the 
release of NO (Salgado et al., 2015); however, the lifetime 
of this intermediate is debated (Nagababu et  al., 2003; 
Angelo et al., 2006; Basu et al., 2007). When nitrite reacted 
Hb is bound to AE1, NO release occurs near the RBC mem-
brane decreasing the distance NO would need to diffuse 
to escape scavenging by Hb in the RBC, but escape is still 
a great challenge. Therefore, Hb binding to the RBC mem-
brane leads to yet another potential mechanism through 
which the RBC membrane may facilitate NO bio-activity 
from hypoxic nitrite reduction.

Protein AE1 was also suggested to be part of a metabo-
lon involved in NO export from the RBC (Gladwin et al., 
2004). In this hypothesis, the metabolon (possibly on 
a RBC lipid raft) includes carbonic anhydrase which 
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Figure 2: Nitrite consumption by RBCs treated or not treated with 
DTNB.
For RBC treated with DTNB, we incubated RBCs at 50% Hct with 2.5 
mm DTNB in the dark for 1 h at room temperature. Next, we washed 
the RBCs three times by centrifugation to remove extra DTNB and 
deoxygenated them with nitrogen. Nitrite (0.1 mm) was added to 
deoxyRBCs at 15% Hct and nitrite remaining in the solution was 
determined at 15 and 30 min intervals by ozone chemiluminescence. 
There was no difference in the consumption of nitrite by RBCs 
exposed or not exposed to DTNB.

NO2¯
NO2¯ NO2¯

NO2¯NO2¯

NO2¯

Deoxygenation

Low nutrients

NO

NO

NO

Figure 3: Physiological application of nitrite reduction by the RBC.
Nitrite and the deoxygenated RBC produce NO and other reactive 
nitrogen signaling species in deoxygenated conditions as shown 
through vessel assays and platelet activation studies, tending to 
increase blood flow into areas of low oxygen. Recent data using 
platelet activation to measure NO bioavailability show that NO bio-
availability is greatest when nutrients such as leucine and glucose 
are low, suggesting that blood flow may also be directed to areas of 
low nutrients.

provides protons for the nitrite reaction (see equation 1) 
and AE1 which binds to Hb that reduces nitrite to NO. NO 
itself is them exported (Gladwin et al., 2004).

Lastly, recent work by our lab has shown a poten-
tial role for RBC membrane S-nitrosylation in nitrite 
bioactivation (Wajih et  al., 2016). We showed nitrite 
inhibits platelet activation when in the presence of 
deoxyRBCs. The addition of SNAP, a membrane imper-
meable nitrosating agent, to RBCs had a similar effect on 
platelet activation, suggesting a role for RBC membrane 
S-nitrosylation. The addition of N-ethylmaleimide and 
5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), thiol block-
ing agents, eliminated the abrogation of platelet activa-
tion by nitrite and deoxyRBCs (Wajih et al., 2016). These 
data suggest a role for S-nitrosylation of the external 
RBC membrane in the pathway of nitrite bioactivation. 
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To further support this hypothesis and exclude an effect 
of DTNB on nitrite uptake we measured nitrite uptake by 
the RBC in the presence of DTNB. Nitrite uptake by RBCs 
was not altered by the addition of DTNB (Figure 2). Thus, 
RBC surface nitrosation appears to play a part in nitrite 
bioactivation by the RBC as measured by inhibition of 
platelet activation.

Further complexities 
and  physiological action
As stated above, a new paradigm has been proposed 
whereby RBCs, upon sensing hypoxia and acidosis, reduce 
nitrite to NO thereby increasing blood flow to where it is 
needed.

Recent research by our lab found that physiological 
levels of leucine and glucose inhibit nitrite bioactivation 
by RBCs through a mechanism that is not related to SNO 
export by L-type amino acid transporter 1 (Wajih et  al., 
2016). This adds further complexity to the mechanism 
of nitrite bioactivation. Although this novel work needs 
further exploration, it suggests that nitrite bioactivation 
by RBCs not only increases blood flow to areas of low 
oxygen, but also to areas of low nutrients (Figure 3).

Conclusions
The reaction between nitrite and deoxygenated hemo-
globin in the RBCs leads to the production of NO or another 
reactive nitrogen signaling species capable of dilating 
blood vessels and inhibiting platelet activation. The in vitro 
reaction between deoxyHb and nitrite produces metHb and 
NO. However, in the RBC NO would be quickly scavenged 
by the surrounding Hb. Therefore, researchers have pro-
posed and tested many hypotheses involving NO or related 
reactive nitrogen signaling species that avoid scavenging 
(Figure 4). A dominant element in many hypotheses is the 
formation of S-nitrosothiols however, the mechanism for 
their formation and transport remains elusive.

Currently, research has suggested (1) the infusion of 
nitrite and deoxyRBCs produces vasodilation, (2) there is 
an arterial to venous nitrite gradient, (3) nitrite transport 
through the RBC membrane is partially controlled by AE-1, 
(4) Hb interacts preferentially with AE1 on the RBC mem-
brane according to its adduct, (5) PDI, nitrite and hemo-
globin lead to PDI-S-nitrosylation, (6) leucine and glucose 
diminish the production of a species that abrogates 
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Figure 4: Potential players in the escape of NO and other reactive 
nitrogen signaling species from the RBC.
In the center of the RBC is the reaction between nitrite and deoxyHb 
which leads to NO production. However, NO produced inside the 
RBC is quickly scavenged by Hb leading to the question of how NO 
escapes the RBC. Starting at the top and moving clockwise: We 
showed S-nitrosylation of the RBC membrane is necessary for plate-
let inhibition. Salgado et al. showed preferential binding of nitrite 
reacted Hb to AE1 and suggested this binding would place NO pro-
duction at the membrane making it more likely to escape scaveng-
ing. Stamler et al. suggested AE1 may become S-nitrosylated through 
transnitrosation reactions and facilitate transport of S-nitrosothiols. 
Gladwin et al. hypothesized a membrane metabolon consisting of 
AE1, carbonic anhydrase, deoxyHb and nitrite that would compart-
mentalize NO production by the metabolon to the membrane thereby 
facilitating NO escape. Kallakunta et al. showed a reaction between 
oxyHb, nitrite and PDI leading to PDI S-nitrosylation and argued in 
vivo SNO-PDI may embed in the membrane and be release during 
deoxygenation of the RBC. Lastly, we showed the reaction between 
metHb, nitrite and NO can produce N2O3 which could escape through 
the RBC membrane or form S-nitrosothiols which could escape 
through transnitrosylation, as previously proposed.

platelet activation and (6) S-nitrosylation of the RBC mem-
brane produces a species capable of decreasing platelet 
activation.
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