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Abstract. We give two constructions for semi-regular relative difference sets (RDSs) in groups whose order is
not a prime power, where the orderu of the forbidden subgroup is greater than 2. No such RDSs were previously
known. We use examples from the first construction to produce semi-regular RDSs in groups whose order can
contain more than two distinct prime factors. Foru greater than 2 these are the first such RDSs, and foru = 2 we
obtain new examples.

Keywords: relative difference set, difference set, character theory, combinatorics

1. Introduction

A k-element subsetR of a finite multiplicative groupG of ordermu containing a normal
subgroupU of orderu is called a(m, u, k, λ) relative difference set (RDS) in G relative
to U provided that the multiset of “differences”{r1r

−1
2 | r1, r2 ∈ R, r1 6= r2} contains

each element ofG \ U exactlyλ times and contains no element ofU . The subgroupU is
sometimes called theforbiddensubgroup. A(m, u, k, λ)RDS inG, relative to some normal
subgroupU , is equivalent to a square divisible(m, u, k, λ)-design whose automorphism
groupG acts regularly on points and blocks [6]. For a recent survey of RDSs see Pott [11].
The central problem is to determine, for each parameter set(m, u, k, λ), the groupsG of
ordermu and the normal subgroupsU of orderu for which G contains a RDS relative
to U with these parameters. (We have usedU andu to represent the normal subgroup
and its order, rather than the conventional notationN andn, so as to avoid confusion with
the difference set parametern introduced below.) By a counting argument the parameters
(m, u, k, λ) of a RDS are related byk(k − 1) = uλ(m− 1). If k = uλ then the RDS is
calledsemi-regularand the parameters are(uλ, u, uλ, λ).

A k-element subsetD of a finite multiplicative groupG of orderv is called a(v, k, λ,n)-
difference set in Gprovided that the multiset{d1d−1

2 | d1, d2 ∈ D, d1 6= d2} contains each
nonidentity element ofG exactlyλ times; we writen = k − λ. A difference set can be
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considered as a RDS withu = 1. For a recent survey of difference sets see Jungnickel [7];
for many new results on RDSs and difference sets see Davis and Jedwab [4].

In this paper we give two constructions for semi-regular RDSs in groups whose order is
not a prime power. These are the first such examples which haveu > 2 [11]. Using these
RDSs we construct further new types of semi-regular RDS via known methods. One of our
constructions combines the favourable properties of RDSs with those of certain difference
sets to produce new RDSs. This approach is similar to that used in [2] for the construction
of divisible difference sets.

Relative difference sets (and difference sets) are usually studied in the context of the group
ringZ[G] of the groupG over the ring of integersZ. The definition of a(m, u, k, λ) RDS
R in G relative toU is equivalent to the equationRR(−1) = k1G + λ(G − U ) in Z[G],
where by an abuse of notation we identify the setsR, R(−1),G with the respective group
ring elementsR=∑r∈R r , R(−1) =∑r∈R r−1, G =∑g∈G g, and 1G is the identity ofG.
If R is a (m, u, k, λ) RDS in G relative toU andW is a normal subgroup ofU of order
w then thecontraction of R with respect to W(namely, the image ofR under the quotient
mapping fromG to G/W) is a(m, u/w, k, λw) RDS inG/W relative toU/W [11].

Most computations in this paper involve character theory. In the case where the group
G is abelian, acharacterof G is a homomorphism fromG to the multiplicative group
of complex roots of unity. Under pointwise multiplication the setG∗ of characters ofG
forms a group isomorphic toG. The identity of this group is theprincipal characterthat
maps every element ofG to 1. Thecharacter sumof a characterχ over the group ring
elementC is χ(C) =∑c∈C χ(c). It is well-known that the character sumχ(C) is 0 for all
nonprincipal charactersχ of G if and only if C is a multiple ofG (regarded as a group ring
element). Given a characterχ of G and a subgroupH of G, we shall say thatχ is principal
on H (or nonprincipal on H) when the restriction ofχ to H is principal (or nonprincipal)
respectively.

The use of character sums to study difference sets in abelian groups was introduced by
Turyn [12] and subsequently extended to RDSs. The fundamental result is:

LEMMA 1.1

(i) The k-element subset R of an abelian group G of order mu containing a subgroup U
of order u is a(m, u, k, λ) RDS in G relative to U if and only if for every nonprincipal
characterχ of G

|χ(R)| =
{ √

k if χ nonprincipal on U√
k− uλ if χ principal on U.

(ii) The k-element subset D of an abelian group G of orderv is a (v, k, λ,n)-difference
set in G if and only if|χ(D)| = √n for every nonprincipal characterχ of G.

Lemma 1.1 (i) indicates the general strategy adopted here for constructing RDSs, namely
to choose a group subset for which all nonprincipal character sums have the correct modulus.
In these computations, we will require two useful facts about character sums. The first fact
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follows from the character sum property mentioned above. It is that the character sum over
a subgroupH is 0 if the character is nonprincipal onH , and the character sum is the order
of H if the character is principal onH . The second fact is that forp prime, the kernel of a
nonprincipal character of an elementary abelianp-group is an affine hyperplane. (For such
a group, the affine hyperplanes are the subgroups of codimensionp.) This is because the
character is a homomorphism onto thepth roots of unity, so the order of the kernel is the
order of the group divided byp. The character is principal on this subgroup of codimension
p and is nonprincipal on any other subgroup of codimensionp (any other hyperplane).
Therefore a nonprincipal character of an elementary abelianp-group has character sum 0
over every hyperplane but one, over which its character sum is the order of the hyperplane.
We shall use hyperplanes of elementary abelianp-groups as part of our first construction.

2. Two Examples

In this section we introduce the main concepts used in the RDS constructions by means of
two examples. Our strategy is to build the RDS a piece at a time and then show that the
character sums meet the appropriate conditions.

2.1. Example 1: (392, 8, 392, 49) RDS inZ2
7× Z3

4 relative toZ3
2

We will build this RDS by starting with the groupZ7×Z3
2
∼= 〈u | u7 = 1〉×〈x, y, z | x2 =

y2 = z2 = 1〉. We will view the subgroup〈u〉 as being isomorphic to the multiplicative
group of GF(8), generated by a primitive elementα satisfyingα3 = α+1, and the subgroup
〈x, y, z〉 as being isomorphic to the additive group of GF(8). We define an isomorphism
from the additive group of GF(8) to 〈x, y, z〉 by 1 7→ x, α 7→ y, andα2 7→ z. The
subgroupZ3

2 has seven subgroups isomorphic toZ2
2. These subgroups are hyperplanes of

the affine geometry of dimension 3 over GF(2), and because the characteristic of the field
is 2 we can consider these sets as projective hyperplanes simply by deleting the identity
element. Thus, if{1, x, y, xy} is a typical hyperplane in the affine geometry, then{x, y, xy}
is the corresponding hyperplane in the projective geometry. In multiplicative notation, the
elements of this projective hyperplane are{1, u, u3} (where 1 is now the identity of the
groupZ7 rather than of the groupZ3

2). Viewed in this way, the projective hyperplane is a
(7, 3, 1, 2) Singer difference set inZ7, and every other projective hyperplane is a translate
in Z7 of this one [8]. Thus the list of projective hyperplanes is{1, u, u3}, {u, u2, u4},
{u2, u3, u5}, {u3, u4, u6}, {u4, u5, 1}, {u5, u6, u} and{u6, 1, u2}. Each of these projective
hyperplanes corresponds to exactly one affine hyperplane inZ3

2, as described. We will use
this connection between the affine hyperplanes and the projective hyperplanes later.

We now define the setS= {(1, x), (u, y), (u2, z), (u3, xy), (u4, yz), (u5, xyz), (u6, xz)}
⊂ Z7 × Z3

2. Note that the first component of a member ofS is in 〈u〉 and the second
component is in〈x, y, z〉. For each member ofS, both components represent the same
nonzero element of GF(8) under the given isomorphism from the additive group of GF(8)
to 〈x, y, z〉.
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Let χ be a character ofZ7 × Z3
2, so thatχ(S) = χ(x) + χ(u)χ(y) + χ(u2)χ(z) +

χ(u3)χ(xy) + χ(u4)χ(yz) + χ(u5)χ(xyz) + χ(u6)χ(xz). Consider the effect of the
restriction ofχ to Z3

2, and suppose firstly thatχ is nonprincipal onZ3
2. Then half the

elements ofZ3
2 will be mapped to+1 and the other half will be mapped to−1, since

the character sum onZ3
2 is 0. The four elements that get mapped to+1 form an affine

hyperplane, and after deletion of the identity element we find that the three elements of
the projective hyperplane are mapped to+1 and the other four nonidentity elements of the
group are mapped to−1. Therefore ifχ(u) = 1, then there are three terms equal to+1
and four terms equal to−1, soχ(S) = −1. Furthermore ifχ(u) 6= 1, then each term of
χ(S) is plus or minus a seventh root of unity. The three terms whose character values are
positive seventh roots of unity form a projective hyperplane ofZ7. The sum of the four
terms which are negative seventh roots of unity is equal to the sum of the three terms which
are positive seventh roots of unity (because the total sum of all of the positive seventh roots
of unity is 0). Therefore the character sumχ(S) in this case is twice the sum of the three
terms which correspond to the projective hyperplane. Since this projective hyperplane is a
(7, 3, 1, 2)-difference set, by Lemma 1.1 (ii) we have|χ(S)| = 2

√
2.

Suppose instead thatχ is principal onZ3
2. Then if χ(u) = 1 thenχ(S) = |S| = 7,

whereas ifχ(u) 6= 1 then we have a sum of all the seventh roots of unity, so thatχ(S) = 0.
This completes the character sum calculations onS.

We next embedS in the larger groupZ2
7 × Z3

2
∼= 〈u, v | u7 = v7 = 1〉 × 〈x, y, z |

x2 = y2 = z2 = 1〉 as follows. The groupZ2
7 contains eight distinct subgroups of order 7

(equivalently, eight affine hyperplanes). Call these hyperplanesKj for 1≤ j ≤ 8, and note
that each quotient group(Z2

7/Kj )× Z3
2 is isomorphic toZ7× Z3

2. Therefore each quotient
group contains a subsetSj of the form described above which can be “lifted” to a setS′j =
{g ∈ Z2

7×Z3
2 | gKj ∈ Sj }, the pre-image ofSj under the quotient mapping fromZ2

7×Z3
2 to

to (Z2
7/Kj )× Z3

2. This gives eight subsetsS′j , each containing 49 elements. For example,
if K1 = 〈v〉, thenS′1 = x〈v〉 ∪ uy〈v〉 ∪ u2z〈v〉 ∪ u3xy〈v〉 ∪ u4yz〈v〉 ∪ u5xyz〈v〉 ∪ u6xz〈v〉.

Finally, we embed theS′j in the larger groupZ2
7 × Z3

4
∼= 〈u, v | u7 = v7 = 1〉 ×

〈a, b, c | a4 = b4 = c4 = 1〉 by means of the injective homomorphismφ from Z3
2 to

Z3
4 which mapsx to a2, y to b2, andz to c2. For example,φ(S′1) = a2〈v〉 ∪ ub2〈v〉 ∪

u2c2〈v〉 ∪ u3a2b2〈v〉 ∪ u4b2c2〈v〉 ∪ u5a2b2c2〈v〉 ∪ u6a2c2〈v〉. We know [6] that the
group〈a, b, c〉 contains an(8, 8, 8, 1) RDS relative to〈a2, b2, c2〉, say{r1, r2, . . . , r8} =
{1,a, b, c,ab3c2,a2b3c3,a3b3c,ab2c}. We claim the setR = ∪8

j=1r jφ(S′j ) is a
(392, 8, 392, 49)RDS inZ2

7×Z3
4 relative toZ3

2. We shall prove this by combining the char-
acter computations for the setSgiven above with Lemma 1.1 (i) applied to the(8, 8, 8, 1)
RDS. Letχ be a character ofZ2

7 × Z3
4, and suppose firstly thatχ is nonprincipal onZ2

7.
Thenχ will be principal on one of the affine hyperplanes ofZ2

7 and nonprincipal on all
the other seven hyperplanes. Consequently the character sum over seven of theS′j will be
0. For the remainingS′j , χ induces a characterψ on (Z2

7/Kj )× Z3
4 which is nonprincipal

onZ2
7/Kj

∼= Z7, and the sum ofχ over S′j is seven times the sum ofψ over Sj . If ψ is
principal onZ3

2 (the forbidden subgroup), then the sum overSj will be 0, yielding a total
sum of 0. Ifψ is nonprincipal onZ3

2, then the sum overSj has modulus 2
√

2, and when we
multiply this by 7 we get a character sum of modulus

√
392= 14

√
2.
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Suppose instead thatχ is principal onZ2
7. In this caseχ induces a characterψ on each

quotient group(Z2
7/Kj )× Z3

4, which is principal onZ2
7/Kj . For eachj , the sum ofχ over

S′j is again seven times the sum ofψ overSj . If ψ is nonprincipal onZ3
2 then the sum over

Sj in the quotient group is−1 in each case, so we get a sum of−7 for eachS′j . We now

take the sum over ther j , which has modulus 2
√

2 because ther j form a(8, 8, 8, 1) RDS.
The total sum therefore has modulus 14

√
2, as desired. Ifψ is principal onZ3

2 then the
sum ofχ over S′j is 49 in each case, and since ther j form a RDS we obtain a total sum of
0. Therefore by Lemma 1.1 (i) we have established that this example is a RDS. Note that
the construction uses affine hyperplanes in two different affine spaces as well as projective
hyperplanes.

A useful modification of the construction involves taking the contraction of the setSby a
subgroup, in other words the image ofSunder the mapping from the group to the quotient
group. For example, consider contraction by the subgroup〈y, z〉. The contraction ofSstill
has seven elements but is contained in a group isomorphic toZ7×Z2. The contraction ofS
has the same character sums asS, based on whether the character is principal or nonprincipal
on the Sylow 7-subgroup and the Sylow 2-subgroup. The eight affine hyperplanes ofZ2

7
provide eight quotient groups ofZ2

7×Z2 isomorphic toZ7×Z2 from which we can define
setsS′j based on the contracted setsSj . We can then use any(8, 2, 8, 4) RDS to provide
the coefficients of theS′j , where the forbidden subgroup (isomorphic toZ2) corresponds
to the Sylow 2-subgroup of the group on which the contracted setS is defined. Since
any group of order 16 and exponent at most 8 contains a(8, 2, 8, 4) RDS relative to any
subgroup of order 2, provided the forbidden subgroup is contained in a subgroup isomorphic
toZ4 [9], we can therefore construct a(392, 2, 392, 196) RDS in the groupZ2

7× Z8× Z2

relative to a subgroup isomorphic toZ2, for example. Note that this RDS could not be
constructed directly as a contraction of a(392, 8, 392, 49) RDS inZ2

7 × Z3
4 relative toZ3

2,
which demonstrates the advantage of contracting the setS as described prior to attaching
the RDS{r j }.

2.2. Example 2: (48, 3, 48, 16) RDS inZ2
4× Z2

3 Relative toZ3

We begin this example by listing the six cyclic subgroups of〈x, y | x4 = y4 = 1〉 ∼= Z2
4 of

order 4. These subgroups can be written as〈x〉, 〈xy2〉, 〈y〉, 〈x2y〉, 〈xy〉, and〈x3y〉. Any
character ofZ2

4 of order 4 is principal on one of these subgroups and nonprincipal on the
rest. (These six subgroups are the kernels of the characters of order 4, and are analogous
to affine hyperplanes.) Furthermore, a character of order 2 on〈x, y〉 is principal on two
of the subgroups and nonprincipal on the other four. We therefore form these subgroups
into three pairs depending on their behaviour on the characters of order 2, to give the pairs:
〈x〉, 〈xy2〉; 〈y〉, 〈x2y〉; and〈xy〉, 〈x3y〉. We will also use a(3, 3, 3, 1) RDS in〈g, h〉 ∼= Z2

3
relative to〈h〉 ∼= Z3, for example{h2, g, g2}.

We now demonstrate by means of Lemma 1.1 (i) that the set represented by the group
ring element〈x〉(h+ h2y2)+ 〈xy2〉(h2y+ y3)+ 〈y〉(g+ gh2x2)+ 〈x2y〉(ghx+ gx3)+
〈xy〉(g2+ g2h2x2)+ 〈x3y〉(g2hx+ g2x3) is a (48,3,48,16) RDS in〈x, y, g, h〉 ∼= Z2

4×Z2
3

relative to〈h〉 ∼= Z3. Suppose firstly thatχ is a character of order 4 on〈x, y〉. In this case,
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the character sum is 0 over five of the six terms above, and 4 times the character sum of the
coefficient of the other term. Ifχ is principal on〈h〉 then in each case the character sum
of the coefficient is a multiple of(1− 1) = 0, giving a total character sum of 0. Ifχ is
nonprincipal on〈h〉 then in each case the character sum of the coefficient is the difference
of two distinct third roots of unity, giving a total character sum of modulus 4

√
3.

Next suppose thatχ has order 2 on〈x, y〉. Then the kernel ofχ contains one pair of
subgroups, andχ sums to 0 over the other four subgroups. For the subgroup pair that does
not get eliminated, the character sum is 4 times the character sum of the coefficients. Ifχ

is principal on〈h〉 then in each case the character sum of the coefficient is a multiple of
(2− 2) = 0, giving a total character sum of 0. Ifχ is nonprincipal on〈h〉 then in each
case the character sum of the coefficient is again the difference of two distinct third roots
of unity, giving a total character sum of modulus 4

√
3.

Finally, suppose thatχ is principal on〈x, y〉. If χ is nonprincipal on〈h〉 then the character
sum is equal to four times the sum over the elements{h2, g, g2} (using the fact thatχ(h)
is a primitive third root of unity to remove multiples of{1, h, h2}). Since{h2, g, g2} a
(3, 3, 3, 1) RDS in 〈g, h〉 relative to〈h〉 andχ is nonprincipal on〈h〉, by Lemma 1.1 (i)
the total character sum has modulus 4

√
3. If χ is principal on〈h〉 and nonprincipal on〈g〉

then the character sum is 16 times the character sum over the elements{1, g, g2}, which is
0. We have therefore established that this example is a RDS.

3. Construction 1: u a Power of 2

This construction generalises Example 1. Letd be a positive integer and letα generate the
cyclic multiplicative group of the finite field GF(2d+1). Considering GF(2d+1) as a vector
space of dimensiond+1 over GF(2), there are 2d+1−1 subspaces of dimension 1. These can
be written〈1〉, 〈α〉, 〈α2〉, . . . , 〈α2d+1−2〉. The affine hyperplanes of this vector space, namely
the subspaces of dimensiond, can be written〈1, α, α2, . . . , αd−1〉, 〈α, α2, α3, . . . , αd〉,
. . . , 〈α2d+1−2, 1, α, . . . , αd−2〉. We can view these as projective hyperplanes by deleting the
identity element from each set. Each projective hyperplane is a translate of a(2d+1−1, 2d−
1, 2d−1− 1, 2d−1) Singer difference set inZ2d+1−1 (see Lander [8] for further discussion of
the projective geometry PG(d, 2) and its regular cyclic automorphism group).

Let Sbe the subset{(αi , αi ) | i = 0, 1, . . . ,2d+1−2} ofZ2d+1−1×Zd+1
2 , where we regard

the first component of a member ofS as an element of the cyclic multiplicative group of
GF(2d+1) and the second component as an element of the additive group of GF(2d+1). We
get the following character sums overS.

LEMMA 3.1 Let S be the subset of G= Z2d+1−1 × Zd+1
2 defined above and letχ be a

character of G. Then

χ(S) =
 −1 if χ is principal onZ2d+1−1 and nonprincipal onZd+1

2
0 if χ is nonprincipal onZ2d+1−1 and principal onZd+1

2
2d+1− 1 if χ is principal on G

and|χ(S)| =
√

2d+1 if χ is nonprincipal onZ2d+1−1 and nonprincipal onZd+1
2 .
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Proof. The value ofχ applied to an ordered pair belonging toS is the product of the
character values of the components. Consider the restriction ofχ to the groupZd+1

2 , which
maps each element ofZd+1

2 either to+1 or−1. Suppose firstlyχ is nonprincipal onZd+1
2 .

The kernel of the restriction ofχ to this group is an affine hyperplaneH . The character sum
overS therefore contains a+1 contribution from each element of the projective hyperplane
H \{0} and a−1 contribution from each element ofZ2d+1−1\(H \{0}). Since the projective
hyperplaneH \ {0} can be viewed as a translategD of a(2d+1−1, 2d−1, 2d−1−1, 2d−1)-
difference setD in Z2d+1−1, we have

χ(S) = (+1)χ(gD)+ (−1)χ(Z2d+1−1 \ gD).

If χ is principal onZ2d+1−1 thenχ(gD) = 2d−1 andχ(Z2d+1−1\gD) = 2d, so thatχ(S) =
−1. Ifχ is nonprincipal onZ2d+1−1 thenχ(S) = (+1)χ(gD)+(−1)(−χ(gD)) = 2χ(gD).
SinceD is a difference set, Lemma 1.1 (ii) then implies that|χ(S)| = 2

√
2d−1 =

√
2d+1.

Suppose instead thatχ is principal onZd+1
2 . If χ is principal onZ2d+1−1 thenχ(S) = |S| =

2d+1−1, whereas ifχ is nonprincipal onZ2d+1−1 thenχ(S) =∑2d+1−2
i=0 χ(αi ) = χ(〈α〉) = 0

(since〈α〉 ∼= Z2d+1−1).

The setS satisfies the group ring equationSS(−1) = 2d+11G + G − Z2d+1−1 − Zd+1
2 in

Z[G], whereG = Z2d+1−1 × Zd+1
2 , and so is an example of adirect product difference

setas introduced by Ganley [5]. Pott [10] used direct product difference sets to show that
the order of a projective plane must be a prime power if the plane has a certain type of
quasiregular collineation group and the order is not a square.

Let J be any subgroup ofG of order 2i . A characterψ of G/J defines a characterχ of
G viaχ(g) = ψ(gJ). If S is the image ofS in the quotient groupG/J thenχ(S) = ψ(S).
The next result then follows directly from Lemma 3.1.

LEMMA 3.2 Let S be the image of the subset S under any quotient mapping fromZ2d+1−1×
Zd+1

2 to G∼= Z2d+1−1× Zd+1−i
2 , where0≤ i ≤ d. Letψ be a character of G. Then

ψ(S) =
 −1 if ψ is principal onZ2d+1−1 and nonprincipal onZd+1−i

2
0 if ψ is nonprincipal onZ2d+1−1 and principal onZd+1−i

2
2d+1− 1 if ψ is principal on G

and|ψ(S)| =
√

2d+1 if ψ is nonprincipal onZ2d+1−1 and nonprincipal onZd+1−i
2 .

Suppose now that 2d+1 − 1 is prime (and therefore a Mersenne prime). This implies
that d + 1 is prime, so we will use the notationp for the primed + 1. Since 2p − 1 is
prime,Z2

2p−1 contains 2p subgroups of order 2p − 1 (these are the affine hyperplanes of
Z2

2p−1, and they correspond to the kernels of the nonprincipal characters ofZ2
2p−1); call

these subgroupsK1, . . . , K2p . Let U be isomorphic toZp−i
2 , so that the quotient group

(Z2
2p−1/Kj ) × U is isomorphic toZ2p−1 × Zp−i

2 . We define the setSj to be the subset

of (Z2
2p−1/Kj ) × U which corresponds toS in the groupZ2p−1 × Zp−i

2 (as specified in
Lemma 3.2), forj = 1, . . . ,2p. We then define the setS′j = {g ∈ Z2

2p−1×U | gKj ∈ Sj }.
Note that|S′j | = |Kj ||S| = (2p − 1)2.



138 DAVIS, JEDWAB AND MOWBRAY

We wish to combine cosets of theS′j in the groupZ2
2p−1 × A, whereA is any abelian

group of order 22p−i containing a(2p, 2p−i , 2p, 2i ) RDS relative to an elementary abelian
subgroupU . There are many constructions of such RDSs; see Pott [11] and Davis and
Jedwab [4]. Write the RDS inA relative toU as{r1, r2, . . . , r2p}. Since, by the definition
of RDS, no two distinct elementsr j belong to the same coset ofU , the set∪2p

j=1r j S′j contains
2p(2p − 1)2 distinct elements. We now show that this set is a RDS inZ2

2p−1 × A relative
to U .

THEOREM3.3 Let2p−1 be prime and let i satisfy0≤ i ≤ p−1. Suppose that the abelian
group A contains a(2p, 2p−i , 2p, 2i ) semi-regular RDS{r j } relative to an elementary
abelian subgroup U. Let S′j be as defined above, for j= 1, 2, . . . ,2p. Then the set

∪2p

j=1r j S′j is a(2p(2p−1)2, 2p−i , 2p(2p−1)2, 2i (2p−1)2) semi-regular RDS inZ2
2p−1× A

relative to U.

Proof. Let χ be a character onZ2
2p−1 × A and setE = ∪2p

j=1r j S′j . We break the proof up
into four cases.

Case 1. Suppose thatχ is nonprincipal onZ2
2p−1 and is nonprincipal onU . Thenχ is

principal on one of theKj and nonprincipal on all the others, soχ sums to 0 on all of the
S′j except one, sayS′k. This implies that|χ(E)| = |χ(rkS′k)| = |χ(S′k)| = (2p− 1)|ψ(Sk)|,
whereψ is the character induced byχ on (Z2

2p−1/Kk) × U . Sinceψ is nonprincipal on
Z2

2p−1/Kk
∼= Z2p−1 and is nonprincipal onU , we have that|ψ(Sk)| =

√
2p from Lemma 3.2.

Thus,|χ(E)| = (2p − 1)
√

2p.

Case 2. Suppose thatχ is nonprincipal onZ2
2p−1 and is principal onU . As in Case 1,

|χ(E)| = (2p−1)|ψ(Sk)| for somek, whereψ is again nonprincipal onZ2
2p−1/Kk

∼= Z2p−1

but is now principal onU . By Lemma 3.2,ψ(Sk) = 0, soχ(E) = 0.

Case 3. Suppose thatχ is principal onZ2
2p−1 and is nonprincipal onU . Then, for eachj ,

χ(S′j ) = (2p−1)ψ(Sj ), whereψ is the character induced byχ on(Z2
2p−1/Kj )×U . Since

ψ is principal onZ2
2p−1/Kj

∼= Z2p−1 and nonprincipal onU , by Lemma 3.2ψ(Sj ) = −1.

Thereforeχ(E) = −(2p−1)
∑2p

j=1 χ(r j ). Since the{r j } form a RDS andχ is nonprincipal

onU , by Lemma 1.1 (i) we obtain|χ(E)| = (2p − 1)
√

2p.

Case 4. Suppose thatχ is principal onZ2
2p−1 and is principal onU but is nonprincipal on

A. As in Case 3, for eachj we haveχ(S′j ) = (2p−1)ψ(Sj ), whereψ is again principal on
Z2

2p−1/Kj
∼= Z2p−1 but is now principal onU . Then Lemma 3.2 givesχ(S′j ) = (2p − 1)2

and Lemma 1.1 (i) givesχ(E) = (2p − 1)2
∑2p

j=1 χ(r j ) = 0.

The result follows from Lemma 1.1 (i).

As well as making use of the affine hyperplanes ofZ2
2p−1, the construction of Theo-
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rem 3.3 combines two objects with simple character properties, namely a(2p − 1, 2p−1 −
1, 2p−2 − 1, 2p−2) Singer difference set (used to construct the setS in Lemma 3.1) and a
(2p, 2p−i , 2p, 2i )RDS. A similar construction was given by Davis and Jedwab [2], in which
the favourable character properties of two difference sets were combined to form divisible
difference sets.

Note that the RDSs of Theorem 3.3 occur in groups whose order is not a prime power,
and that the forbidden subgroupU has order 2p−i . By the proof of Lemma 7.4 of [4], when
p is odd it is necessary that the subgroupU be contained in a subgroup ofA isomorphic to
Zp−i

4 . There are many suitable groupsA andU for use in Theorem 3.3. In particular, there
exists a(2p, 2p, 2p, 1) semi-regular RDS inZp

4 for all p [6], which under contraction itself
yields a(2p, 2p−i , 2p, 2i ) semi-regular RDS inZp−i

4 ×Zi
2 relative to the subgroupZp−i

2 of
Zp−i

4 , where 0≤ i ≤ p− 1:

COROLLARY 3.4 Let 2p − 1 be prime. For each i satisfying0 ≤ i ≤ p− 1, there exists
a (2p(2p − 1)2, 2p−i , 2p(2p − 1)2, 2i (2p − 1)2) semi-regular RDS inZ2

2p−1 × Zp−i
4 × Zi

2

relative to the subgroupZp−i
2 ofZp−i

4 .

In the uncontracted casei = 0, Corollary 3.4 provides the following small examples:
a (4 · 32, 4, 4 · 32, 32) RDS in Z2

3 × Z2
4 relative toZ2

2, a (8 · 72, 8, 8 · 72, 72) RDS in
Z2

7×Z3
4 relative toZ3

2, a(32 · 312, 32, 32 · 312, 312) RDS inZ2
31×Z5

4 relative toZ5
2, and a

(128· 1272, 128, 128· 1272, 1272) RDS inZ2
127× Z7

4 relative toZ7
2.

In the contracted casei > 0, Corollary 3.4 provides further examples such as a(8 ·
72, 2, 8 · 72, 4 · 72) RDS inZ2

7 × Z4 × Z2
2 relative to the subgroupZ2 of Z4 (using p = 3,

i = 2). However by direct reference to Theorem 3.3, and using examples for the RDS
{r j } found in [4], we obtain RDSs which do not arise from Corollary 3.4, including: a
(8 · 72, 2, 8 · 72, 4 · 72) RDS inZ2

7 × Z8 × Z2 relative toZ2 (using p = 3, i = 2), a
(32 · 312, 2, 32 · 312, 16 · 312) RDS inZ2

31× Z16× Z4 relative toZ2 (usingp = 5, i = 4),
and a(128 · 1272, 4, 128 · 1272, 32 · 1272) RDS inZ2

127× Z16× Z2
4 × Z2 relative toZ2

2

(using p = 7, i = 5). (In each of these examples, the forbidden subgroupU ∼= Zp−i
2 must

be contained within a subgroup ofA isomorphic toZp−i
4 .)

We can extend Theorem 3.3 by using the recursive construction for RDSs found in [4].
Following [4], define abuilding block in an abelian group G with modulus mto be a subset
of G such that all nonprincipal character sums over the subset have modulus either 0 orm.
A (a,m, t) building set (BS) on an abelian group G relative to a subgroup Uis defined as
a collection oft building blocks inG with modulusm, each containinga elements, such
that for every nonprincipal characterχ of G

(i) exactly one building block has nonzero character sum ifχ is nonprincipal onU and

(ii) no building block has nonzero character sum ifχ is principal onU .

For a > 1, a(a,
√

a, 1) BS on a groupG relative to a subgroupU of orderu is equivalent
to a (a, u,a,a/u) semi-regular RDS inG relative toU . If the groupG has a subgroup
isomorphic toZ2r

2 , then we can associate that subgroup with the additive structure of
GF(2r )2. Once this association is established, we can make the additional link between the
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affine hyperplanes of GF(2r )2 and subgroups ofZ2r
2 of order 2r . One of the hyperplanes

(sayH0) will be the forbidden subgroup, and we consider the quotient groupsG/Hi , where
Hi are the other hyperplanes. If there exists a(a,

√
at, t) BS on each quotient groupG/Hi

relative toZ2r
2 /Hi then there exists a(2r a, 2r

√
at, 2r t) BS onG relative toH0 (see [4] for

full details). Thus, given an example of a BS relative to an elementary abelian subgroup,
we can recursively construct a family of BSs in larger groups, and these new BSs can be
used to construct RDSs using the following result [4]:

THEOREM 3.5 Suppose there exists a(a,
√

at, t) BS on an abelian group G relative to a
subgroup U of order u, where at> 1. Then there exists a(at, u,at,at/u) semi-regular
RDS in G′ relative to U, where G′ is any abelian group containing G as a subgroup of
index t.

To illustrate the use of the recursive construction, we shall restrict attention to the RDSs
of Corollary 3.4. More general results can be obtained from the larger set of RDSs available
directly from Theorem 3.3. Now Corollary 7.9 of [4] demonstrates the recursive construc-
tion of BSs, starting from a(2r+i , 2r , 2r+i , 2i ) RDS inZr

4 × Zi
2 relative to the subgroup

Zr
2 of Zr

4. A similar method can be used to construct the BSs of the following corollary,
starting from the(2r+i (2r+i − 1)2, 2r , 2r+i (2r+i − 1)2, 2i (2r+i − 1)2) semi-regular RDS
in Z2

2r+i−1 × Zr
4 × Zi

2, relative to the subgroupZr
2 of Zr

4, given by Corollary 3.4 (setting
p = r + i ). As indicated by Theorem 7.11 of [4], the recursion will affect only the Sylow
2-subgroup of the group to give an analogous result to Corollary 7.9 of [4]:

COROLLARY 3.6 Let2r+i − 1 be prime, where r≥ 1 and i ≥ 0 are integer. For each d and
c satisfying2≤ c ≤ d, there exists a

(2(d+c−2)r+i (2r+i − 1)2, 2((2d−1)r+i )/2(2r+i − 1), 2(d−c+1)r )

BS onZ2
2r+i−1 × Gd,c, where Gd,c is any abelian group of order2(d+c−1)r+i and exponent

at most2c, relative to any subgroup Ud,c ∼= Zr
2, where Ud,c is contained in a subgroup of

Gd,c isomorphic toZr
4 and where all of the following hold:

(i) For c = d, Gd,c/Ud,c contains a subgroup of index2min{r,i } and exponent at most2d−1.

(ii) For i < r and d> 2 and c= d− 1, Gd,c/Ud,c contains a subgroup of index2r+i and
exponent at most2d−2.

(iii) For i > r and c in the rangemax{1, (d−2)r+i
i } < c ≤ d, rank(Gd,c/Ud,c) ≥ r + i .

Using Theorem 3.5 we can deduce the existence of many RDSs from Corollary 3.6 (in
a similar manner to Theorem 8.4 of [4]). We shall give two such examples, based on the
extreme casesi = 0 andi = p− 1 of Corollary 3.6, where we considerr + i = p to be a
fixed prime.

COROLLARY 3.7 Let2p − 1 be prime. For each d≥ 3, there exists a

(2(2d−1)p(2p − 1)2, 2p, 2(2d−1)p(2p − 1)2, 2(2d−2)p(2p − 1)2)
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semi-regular RDS inZ2
2p−1× Z2p

2d relative to any subgroup isomorphic toZp
2 .

Proof. Takec = d − 1, i = 0 andGd,c = Z2r
2d−1 in Corollary 3.6 and setr = p. Apply

Theorem 3.5.

Corollary 3.7 demonstrates that the group order can grow without bound while the rank
of the Sylow 2-subgroup remains fixed at 2p.

COROLLARY 3.8 Let2p − 1 be prime. For each d≥ 2, there exists a

(22d+p−2(2p − 1)2, 2, 22d+p−2(2p − 1)2, 22d+p−3(2p − 1)2)

semi-regular RDS inZ2
2p−1×Z2d+1×Z2d ×Zp−2

2 relative to U∼= Z2, where U is contained
within either of the direct factorsZ2d+1 andZ2d .

Proof. Takec = d, r = 1 andGd,c = Z2
2d × Zi−1

2 in Corollary 3.6, withUd,c
∼= Z2 a

subgroup ofZ2
2d , and seti + 1= p. Apply Theorem 3.5.

Corollary 3.8 provides new values ofλ for which(2λ, 2, 2λ, λ) semi-regular RDSs exist.
All previously known examples hadλ = v or λ = 2v, wherev = 4N2 is the order
of an abelian group known to contain a Hadamard difference set with parameterN (see
Corollaries 6.7 and 8.1 of [4]). For example, takingp = 3, there exists a(22d+1·49, 2, 22d+1·
49, 22d ·49) semi-regular RDS inZ2

7×Z2d+1×Z2d×Z2 for eachd ≥ 2, whereas no Hadamard
difference set with parameterN = 2d−1 · 7 is known to exist.

Finally, we show how the following product construction for RDSs [11] can be applied to
allow the combination of two or more of the examples above to provide further new RDSs.

THEOREM 3.9 Let G be a group of order uaa′ containing a normal subgroup U of order
u. Let H and H′ be subgroups of G of order ua and ua′ satisfying H∩ H ′ = U. If H
contains a(a, u,a,a/u)RDS relative to U and H′ contains a(a′, u,a′,a′/u)RDS relative
to U, then G contains a(aa′, u,aa′,aa′/u) RDS relative to U.

For example, takep = 2, i = 0 in Corollary 3.4 to provide a(4 · 9, 4, 4 · 9, 9) RDS in
H = 〈w1, w2, x1, x2 | w3

1 = w3
2 = x4

1 = x4
2 = 1〉 ∼= Z2

3×Z2
4 relative toU = 〈x2

1, x2
2〉 ∼= Z2

2.
Then takep = 3, i = 1 in Corollary 3.4 to provide a(8 · 49, 4, 8 · 49, 2 · 49) RDS in
H ′ = 〈v1, v2, x1t1, x2t2, t3 | v7

1 = v7
2 = x4

1 = x4
2 = t2

1 = t2
2 = t2

3 = 1〉 ∼= Z2
7 × Z2

4 × Z2

relative toU = 〈x2
1, x2

2〉 ∼= Z2
2. The groupG = 〈w1, w2, v1, v2, x1, x2, t1, t2, t3 | w3

1 =
w3

2 = v7
1 = v7

2 = x4
1 = x4

2 = t2
1 = t2

2 = t2
3 = 1〉 ∼= Z2

3× Z2
7× Z2

4× Z3
2 containsH andH ′

as subgroups of order 4· 4 · 9 and 4· 8 · 49 respectively, andH ∩ H ′ = U . Therefore by
Theorem 3.9,G contains a(32· 9 · 49, 4, 32· 9 · 49, 8 · 9 · 49) RDS relative toU . Note that
the order ofG is divisible by three distinct primes.

More generally, let 2pj − 1 be prime for 0≤ j ≤ t , wherepj ≥ p0 for each j . For
each j , substitution ofi = pj − p0 in Corollary 3.4 gives a(2pj (2pj − 1)2, 2p0, 2pj (2pj −
1)2, 2pj−p0(2pj − 1)2) semi-regular RDS inGj = Z2

2pj −1 × Z
p0
4 × Zpj−p0

2 relative to the
subgroupZp0

2 of Zp0
4 . Following the above example, we can identify each groupGj with a

subgroup of a larger group and apply Theorem 3.9 inductively to obtain:
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COROLLARY 3.10 Let 2pj − 1 be prime for0 ≤ j ≤ t , where pj ≥ p0 for each j, and set
T =∑t

j=1 pj . There exists a(
2p0+T

t∏
j=0

(2pj − 1)2, 2p0, 2p0+T
t∏

j=0

(2pj − 1)2, 2T
t∏

j=0

(2pj − 1)2
)

semi-regular RDS inZ2
2p0−1 × Z2

2p1−1 · · · × Z2
2pt−1 × Zp0

4 × ZT
2 relative to the subgroup

U ∼= Zp0
2 contained within the direct factorZp0

4 .

There are many other ways in which we can generate further families of RDSs based
on Theorem 3.3 by combinations of the three techniques illustrated here: contraction of
the forbidden subgroup, recursion on the Sylow 2-subgroup, and the use of the product
construction. In particular, note that by contraction of the forbidden subgroup for the RDSs
of Corollary 3.10 we can obtain further examples of(2λ, 2, 2λ, λ) RDSs for new values
of λ.

4. Construction 2: u = 3

In this section we construct RDSs in the groupG = 〈x, y, g, h | x2a = y2a = g3 = h3 =
1〉 ∼= Z2

2a×Z2
3 relative to〈h〉 ∼= Z3. We will make use of cosets of all of the cyclic subgroups

of order 2a. There are 2a + 2a−1 such distinct cyclic subgroups, which can be written in
the form〈xy2 j 〉, 〈x2 j y〉 and〈x2 j+1y〉, where 0≤ j ≤ 2a−1 − 1. These cyclic subgroups
are precisely the kernels of the characters of order 2a on the Sylow 2-subgroup ofG. Each
such character is therefore principal on one of these subgroups and is nonprincipal on any
other. Furthermore, for any character of order less than 2a on the Sylow 2-subgroup ofG,
the cyclic subgroups of order 2a contained in the kernel of the character all have only one
of the three forms given above. We remark that the construction presented here is similar
to the construction of Hadamard difference sets in [1] which used the cyclic subgroups of
Z2

3a . In this paper the roles of the primes 2 and 3 are the reverse of that in [1].

THEOREM4.1 Let G= 〈x, y, g, h | x2a = y2a = g3 = h3 = 1〉 ∼= Z2
2a × Z2

3, where a≥ 1.
The set represented by the group ring element

F =
2a−1−1∑

j=0

[〈xy2 j 〉(h j+1y j + h j+2y2a−1+ j )

+〈x2 j y〉(ghj x j + ghj+2x2a−1+ j )

+〈x2 j+1y〉(g2h j x j + g2h j+2x2a−1+ j )]

is a (22a3, 3, 22a3, 22a) RDS in G relative to〈h〉 ∼= Z3.

Proof. We break the proof up into the following six cases, then apply Lemma 1.1 (i).

Case 1. Suppose thatχ is nonprincipal on〈x2a−1
, y2a−1〉 and nonprincipal on〈h〉. In this

case, the kernel ofχ restricted to〈x, y〉 is one of the cyclic subgroups of order 2a used to
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defineF , andχ will sum to 0 over all of the other cyclic subgroups of order 2a. Thus,
if the kernel is of the form〈xy2 j 〉, then |χ(F)| = 2a|χ(h j+1y j ) + χ(h j+2y2a−1+ j )| =
2a|χ(h j+1) − χ(h j+2)| = 2a

√
3. If the kernel has one of the other two forms〈x2 j y〉 or

〈x2 j+1y〉, a similar computation gives a character sum with the same modulus.

Case 2. Suppose thatχ is nonprincipal on〈x2a−1
, y2a−1〉 and principal on〈h〉. As in Case

1, if the kernel is of the form〈xy2 j 〉 then|χ(F)| = 2a|χ(h j+1y j ) + χ(h j+2y2a−1+ j )| and
sinceχ is now principal on〈h〉, |χ(F)| = 2a|χ(y j ) − χ(y j )| = 0. The other two forms
for the kernel give the same result.

Case 3. Suppose thatχ is principal on〈x2a−1
, y2a−1〉, nonprincipal on〈x, y〉, and nonprin-

cipal on〈h〉. Suppose that the cyclic subgroups of order 2a contained in the kernel ofχ
are all of the form〈xy2 j 〉; the cases when they are all of the form〈x2 j y〉 or all of the form
〈x2 j+1y〉 are similar. LetJ = { j | χ(xy2 j ) = 1, 0 ≤ j ≤ 2a−1 − 1} be the set which
indexes the subgroups on whichχ is principal. Letj0 be the least element ofJ and let 2b be
the order ofχ(y). Then we haveJ = { j0+ 2b−1k | 0≤ k ≤ 2a−b− 1}. Nowχ(xy2 j ) = 1
for some j andχ is nonprincipal on〈x, y〉, sob > 0. Alsoχ is principal on〈x2a−1

, y2a−1〉
and sob < a. Therefore

χ(F) = 2a
∑
j∈J

(χ(h j+1y j )+ χ(h j+2y2a−1+ j ))

= 2a(χ(h)+ χ(h2))
∑
j∈J

χ(y j )χ(h j )

= −2aχ(y j0)χ(h j0)

2a−b−1∑
k=0

χ(y2b−1k)χ(h2b−1k),

so that|χ(F)| = 2a|∑2a−b−1
k=0 (−1)kχ(h2b−1k)|. Sinceχ is nonprincipal on〈h〉, χ(h) is a

primitive third root of unity and soχ(h2b−1
) is also a primitive third root of unity, sayη. Then

|χ(F)| = 2a|∑2a−b−1
k=0 (−1)kηk| = 2a|1− η||∑2a−b−1−1

k=0 (η2)k|. Now |∑2a−b−1−1
k=0 (η2)k| = 1

sinceη2 is a primitive third root of unity and 3 does not divide 2a−b−1. Therefore|χ(F)| =
2a
√

3.

Case 4. Suppose thatχ is principal on〈x2a−1
, y2a−1〉, nonprincipal on〈x, y〉, and principal

on 〈h〉. As in Case 3, using the example of subgroups of the form〈xy2 j 〉, we find|χ(F)|
is a multiple of|∑2a−b−1

k=0 (−1)kχ(h2b−1k)|. Sinceχ is now principal on〈h〉, |χ(F)| = 0.

Case 5. Suppose thatχ is principal on〈x, y〉 and nonprincipal on〈h〉. Thenχ(F) =
2a
∑2a−1−1

j=0 (χ(h j+1) + χ(h j+2) + χ(ghj ) + χ(ghj+2) + χ(g2h j ) + χ(g2h j+2)), and
sinceχ(h) is a primitive third root of unity we haveχ(F) = −2a(χ(h2) + χ(g) +
χ(g2))

∑2a−1−1
j=0 χ(h j+1). Now {h2, g, g2} is a (3, 3, 3, 1) RDS in 〈g, h〉 relative to〈h〉,

so by Lemma 1.1 (i),|χ(h2) + χ(g) + χ(g2)| = √3. Also |∑2a−1−1
j=0 χ(h j+1)| = 1 since

χ(h) is a primitive third root of unity and 3 does not divide 2a−1. Therefore|χ(F)| = 2a
√

3.
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Case 6. Suppose thatχ is principal on〈x, y〉, principal on〈h〉, and nonprincipal on〈g〉.
In this caseχ(F) = 2a

∑2a−1−1
j=0 (χ(1) + χ(1) + χ(g) + χ(g) + χ(g2) + χ(g2)) = 0.

The construction of Theorem 4.1 combines the cyclic subgroups ofZ2
2a of order 2a with

a (3, 3, 3, 1) RDS inZ2
3 relative toZ3. The smallest examples, all relative toZ3, are: a

(4·3, 3, 4·3, 4)RDS inZ2
2×Z2

3, a(16·3, 3, 16·3, 16)RDS inZ2
4×Z2

3, a(64·3, 3, 64·3, 64)
RDS inZ2

8× Z2
3, and a(256· 3, 3, 256· 3, 256) RDS inZ2

16× Z2
3.

As in Section 3 we can extend Theorem 4.1 by means of the recursive construction for
RDSs given in [4]. Corollary 7.8 of [4] shows how to construct a family of BSs starting
from a(3, 3, 3, 1) RDS inZ2

3 relative toZ3. Following the casec = d of this method for
the RDSs of Theorem 4.1 we obtain:

COROLLARY 4.2 For each d≥ 1 and each a≥ 1, there exists a(22a32d, 2a3(2d+1)/2, 3) BS
onZ2

2a×Sd, where Sd is any abelian group of order32d+1 and exponent at most3d, relative
to any subgroup Ud ∼= Z3, except possibly when d> 1 and Sd

∼= Ud × Z2
3d .

Application of Theorem 3.5 then gives:

COROLLARY 4.3 For each d≥ 1and eacha≥ 1, there exists a(22a32d+1, 3, 22a32d+1, 22a32d)

semi-regular RDS inZ2
2a ×Gd, where Gd is any abelian group of order32d+2 and exponent

at most3d+1, relative to any subgroup Ud of order3, except possibly when Gd ∼= Z2
3d+1 or

when d> 1 and Gd
∼= Ud × Z3d+1 × Z3d .

We can also use the RDS product construction (Theorem 3.9) to yield further families of
RDSs based on Theorem 4.1. In particular, the Sylow 2-subgroup can have a more general
form thanZ2

2a . For example, by Corollary 8.2 of [4] there exists a(3w, 3, 3w, 3w−1)RDS in
Z3× G, whereG is any abelian group of order 3w and exponent at most 31+bw/2c, relative
to the direct factorZ3, except possibly whenw > 3 is odd andG ∼= Z3(w+1)/2 × Z3(w−1)/2.
Furthermore, by Theorem 4.1 there exists a(22aj 3, 3, 22aj 3, 22aj ) RDS inZ2

2aj ×Z2
3 relative

toZ3, whereaj ≥ 1 for eachj . Recursive application of Theorem 3.9 then gives:

COROLLARY 4.4 Let aj ≥ 1 for 1≤ j ≤ t and set T=∑t
j=1 aj . Let G be any abelian group

of order3w and exponent at most31+bw/2c except, in the casew > 3odd,Z3(w+1)/2×Z3(w−1)/2.
There exists a(22T3w+t , 3, 22T3w+t , 22T3w+t−1) semi-regular RDS in

Z2
2a1 × Z2

2a2 × · · · × Z2
2at × Zt+1

3 × G

relative to a subgroupZ3 contained within the direct factorZt+1
3 .

5. Future Directions

The results of this paper show that the existence pattern for semi-regular RDSs is much richer
than was previously apparent. As mentioned, we have indicated only some of the parameter
sets and groups for which such RDSs can now be obtained by means of contraction, the
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recursive construction, and the product constructions. There are also generalisations to
certain nonabelian groups, as outlined in [4]. We close with some possible future research
directions suggested by our results.

1. Can the two RDS constructions of this paper be unified?

2. Which other classes of groups contain semi-regular RDSs whose order is not a prime
power?

3. Can these or other RDS examples be used to construct new difference sets? We know
[4] that certain BSs can be used to construct difference sets, and that if the parameters
of a resulting difference set do not belong to a known family then the BS involved must
be defined on a group whose order is not a prime power. This paper contains the first
examples of BSs on groups whose order is not a prime power, relative to a subgroup of
order greater than 2.

4. Can the RDSs of Corollary 3.8, or similar examples with a forbidden subgroup of order
2, be used in the construction of new Hadamard difference sets according to the methods
of [4]? These RDSs are the first examples with parameters(2λ, 2, 2λ, λ) for whichλ is
neither the order nor twice the order of an abelian group known to contain a Hadamard
difference set. For example, is there a Hadamard difference set inZ2

7 × A for some
abelian 2-groupA (which, from [3], must have order at least 256 if exp(A) ≤ 8)?

5. Are there other ways to combine difference sets, relative difference sets, direct product
difference sets, or divisible difference sets to construct new examples of any of these?

Note Added in Proof

K. T. Arasu reports [private communication, 1996] that he recently presented (K. T. Arasu
and W. de Launey, “Complex Hadamard matrices and relative difference sets”, presentation
at Bose Memorial Conference, Fort Collins, Colorado, June 1995) a construction for a
(2p(2p − 1)2, 2, 2p(2p − 1)2, 2p−1(2p − 1)2) semi-regular RDS inZ2

2p−1 × Z4 × Zp−1
2

relative to the subgroupZ2 of Z4, where 2p − 1 is prime. This corresponds to the case
i = p− 1 of Corollary 3.4, in which the forbidden subgroup has order 2.
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