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Abstract. We recursively construct a new family ofé4, 8, 26d+4 26d+1) semi-regular relative difference
sets in abelian groups relative to an elementary abelian subgradip The initial cased = 0 of the recursion
comprises examples of (18, 16, 2) relative difference sets for four distinct paiG,U).
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1. The square root problem

Let G be a group of ordenuandU a normal subgroup d& of orderu. If Ris ak-subset of
GthenRisa m, u, k, 1) relative difference s§RD g in G relative toU provided that the
multiset of differencesr’* forr,r’ € R, r # r’, contains every element &\U exactly

A times and contains no elementdf If k = ui then the RDS is calledemi-regular
and the parameters arg)(, u, ui, A). In this paper we consider semi-regular RDSs with
parameters of the form

(22,20, 28, 230y, (1)

Several families of such RDSs have been constructda foa/2 [3]. However fob > a/2
the only known existence results for abelian groups are as follows:

THEOREM 1 There is a(2?, 2°, 22, 22-°) RDS in the groudZl x 73", relative to the
subgroup U= 75 contained inZ?, for each b satisfying 2 < b < a.

THEOREM2 There is a(2%°-1, 2°, 2201 25-1) RDS in any abelian group G of ordgf*—1
and exponent 4 relative to & 75, where U is contained within a subgroup of G isomorphic
to Z8, for each odd > 1.

Theorem 1 is due to Jungnickel [6] (taking into account the well-known method of
contraction [7]). Theorem 2 is due to Chen, Ray-Chaudhuri and Xiang [2]. Ganley [5] has
shown that whelo = a the only abelian grouf containing an RDS with parameters (1)
is Z3, and Schmidt [9] has given further nonexistence resultdfer a/2. Nonetheless
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there is a large gap of understanding between the known existence and nonexistence results
whenb > a/2. We refer to this gap as the “square root problem” because it corresponds
to the parameter relationship> +/k. In this section we give new solutions to the square
root problem by exhibiting €16, 8, 16, 2) RDS for four distinct pairgG, U).

Relative difference sets are often studied in the context of a groufZfigd and group
characters. The definition of a RDS immediately yields the group ring equBtinY =
klg + (G —U), where we identifyR, R andG with the respective group ring elements
R= ) RP =3 grtandG = Y ;9. Characters of an abelian gro@
are homomorphisms fro® to the multiplicative group of complex roots of unity, and we
extend this homomorphism to the entire group ring in the natural way. The eldfent
of Z[G] then satisfies the definition of a semi-regular RDS if and only if two conditions
hold [7]: first, any character that is nonprincipak( nontrivial) on the subgroup has
a character sum ove® of modulusv/ui and second, any character that is principal.(
trivial) on the subgroupy but nonprincipal on the grou@ has a character sum of O over
R.

Davis and Jedwab [3] describe a theoretical framework for constructing RDSs a piece at
atime. We define éa, m, t) building set (BS) on an abelian gro@relative to a subgroup
U to be a collection of subsets of5 (called building blocks), each of size such that for
any nonprincipal character of G:

() Exactly one building block has a character sum of modufuand all other building
blocks have character sum Qyfis nonprincipal orJ and

(i) All building blocks have character sum 0jf is principal onU.

THEOREM3 ([3], THEOREM2.2) Suppose there existga, +/at, t) BS{By, By, ..., B} on
an abelian group G relative to a subgroup U of order u, wheresatl. ThenU!_, g/ B;
is a(at, u, at, at/u) semi-regular RDS in Grelative to U, where Gis any abelian group
containing G as a subgroup of index t and thdig in distinct cosets of G in G

All the new RDSs of this paper arise from the following example.

Example 4. Let G be the groupix, ¥, z, w|x* = y* = 22 = w? = 1) = 72 x Z3 and let
U be the subgrougx?, y?, w) = Z3. The subset8; = 1+ X + Yy + Xyw + z(1 + x> +
y2 + x3y3w) and B, = 1+ xy? + x2yw + x3y2 + y2zw (1 + x3y? 4+ x2y3w + xy) form a
(8, 4, 2) BS onG relative toU.

By Theorem 3 this implies there is(&6, 8, 16, 2) RDS Rin G’ relative toU as follows:
1. G=(xX=y'=Z=uw?=1)=Zgx Zs x Z3;U = (x"*, y%, w); R= B UX'By.
2. G=(x*=y"=2"=uw?=1) =73 x Z;;U = (x% y%, w); R= B UZB,.

3. G=(=y'=Z=w'=1)=ZxZ;U = (x% y% w?; R= B UwB,

4, G ==y = =uw?=0v?=1)=7Z2x7Z3U = (x2,y% w); R= B UvB,.
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The following Mathematica commands can be used to verify that the building blocks of
Example 4 satisfy the definition of@&, 4, 2) BS:

Bl[x,y,z ,\w]:= l+x+y+xyw+2z(1+Xx3+y3
+ X3 y'3 w);
B2[xy ,z W= 1+Xy2+Xx2yw+Xx3y3+

y2zw (1 +x3y2+X2y3w+ xy)
Do[Print]i,j,k,I,B1[I"i,17,(-1)k,(-1)"1],B2[I"i,I],(-1) "k,
(-1)"1]1.{i,0,3},{j,0,3},{k,0,1},{1,0,1}]

The evaluation of B1 and B2 in the Do loop runs through all the possible character values.
The output indicates that exactly one of the two blocks has character sum of modulus 4 for
the appropriate characters, and that they both have character sum 0 for the other characters
(the first character that prints out is the principal character, and that has a sum of 8 for both
characters).

The quotient grou/ (w) in Example 4 is isomorphic t83 x Z, and under this contrac-
tion the building blocksB; and B, are similar to the building blocks of the Arasu-Sehgal
example [1]. In other words, the building blocBs and B, can be viewed as "lifts” of the
Arasu-Sehgal building blocks. This observation, together with a better understanding of
the structure 0B; andB,, might lead to a generalisation to higher order groups that would
give further solutions to the square root problem.

2. A new family of semi-regular RDSs

In this section we use Example 4 as an initial case to construct recursively a new family
of BSs and then, using Theorem 3, to obtain a new family of semi-regular RDSs. (For
a summary of the current state of knowledge for semi-regular RDSs in abelian groups
relative to an elementary abelian subgroup see [3] and [4].) The recursive construction of
BSs follows the method of [3] in making use of tipe 4+ 1 hyperplanes of the grouf?,
regarded as a vector space of dimension 2 oveipGF

THEOREM 5 ([3], THEOREM 4.3) Let G be an abelian group of order?@ containing a
subgroup Q= Zf{,where pis prime. Let & Hy, ..., Hy be the subgroups of G of order

p" corresponding to hyperplanes when viewed as subgroups of Q. Suppose there exists a
(a, +/at, t) BS on G H; relative to H; foreachi= 1,2, ..., p". Then there exists a

(p'a, p"+/at, p't) BS on G relative to i

To apply Theorem 5 effectively we require information about the form of the quotient
groupsG/H; andQ/H;. We know (see Lemma 7 below) thaGfhas rank exactlyr2then
by an appropriate choice of generators exactlirect factors ofs retain the same exponent
in G/H; (these are the direct factors which cont&iH;), whereas have their exponent
reduced by a factor gb. However Example 4 has a feature not previously considered: the
subgroupJ is contained in a subgroup & isomorphic taZ, x Zﬁ but not in a subgroup
isomorphic toZ3. To deal with this feature we begin with a group theoretic lemma.
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LEMMA 6 Let w, Vo, ..., Y be elements of an abelian group G and let H be a subgroup
of G. If (yu) N (y; | j # u) = {1} for each u in the rang& < u < r and no nonidentity
element of the forrrﬂ[j:l yd“ is contained in H, thergy;H, yoH, ..., vy H) = (y1H) x
(Y2H) x -+ x (yr H).

Proof. We prove this by induction on starting with the case = 2. We claim that

(y1H) N (y.H) = {H}. Suppose, for a contradiction, that this is not true. Then there are
integersa and B for which (y1H)® = (y2H)? # H. The equality(y1H)* = (y2H)*?
implies thatyg‘y;ﬂ € H and so by the assumption on nonidentity elements we deduce
thaty = y§. By assumptiony;) N (y2) = {1} and soyy = yf = 1, contradicting the
inequality(y;H)* # H. Therefore the subgroupg; H) and(y,H ) have trivial intersection

as claimed. By Theorem 2.24 of [8], the subgroup generated by any two normal subgroups
which intersect trivially is isomorphic to the (external) direct product of those subgroups,
proving the case = 2.

In the inductive step, we use the same argument to show that the ghpups and
(y2H, ysH, ..., y: H) have trivial intersection and therefore tHgtH, yoH, ..., yyH) =
(yaH)x(y2H, y3H, ..., y; H). Theinductive hypothesis appliedto the elemepiys, . . .,

Yy then proves the Lemma. [ |

We can now characterise the form of the quotient graBpbl; and Q/H; as discussed.
We write[T{,_; Za, for the direct producZ,, x Zg, x -+ X Zg, .

LEMMA 7 Let G be the grouf [, Zp containing a subgroup G 73, where p is
prime andey > 0. Let Hy, Hy, ..., Hy be the subgroups of G of ordef porresponding
to hyperplanes when viewed as subgroups of Q. Then for eatieke exists a r-element
subset S ofl, 2, ..., 2r} suchthat GHj = [],,5Zptau X [[,c5Zpw. Moreover, for each
Hi a suitable choice of generators of G ensures thatHQ= Zj, is contained in the first
r direct factors of G H; as specified. Furthermore if Hs contained in a subgroup of G
isomorphic toZp x ergl then, for each H# Hp, Q/H; is contained in a subgroup of

G/H; isomorphic taZ; x ZL;l.
Proof. This result is given as Lemma 4.4 of [3], except for the final sentence in the case

when H, is not contained in a subgroup & isomorphic toZ%z. To prove this case, let
a1 = 0andgy, > 1for2<u <randlet{x, | 1 < u < 2r} be a set of generators of

G such thaiG = (x, | x{ " = 1) andHo = (x1. x¥,....xP"). Fix H; # H, and put
y1 = X andyy = x for2a<u<r. Clearly(ys) N (yj | ] #u, ] <r) = {1} for each
uin the range 1< u <r. Since the hyperplanddg, Hy, ..., Hy partition the nonidentity

elements ofQ and by assumptiotdy = (y1, Y2, ..., ¥¢), no nonidentity element of the
form [T}_, y&" (where 0< j, < p) is contained inH;. Applying Lemma 6 and then
substituting for they,, in terms of thex, we find thatT = (xyHi, x)“Hi, ..., x”" H;) =

(X Hi) x O H) x -ox (P H) = Z5,. SinceT is a subgroup oRQ/H; and has the
same ordep', it follows thatT = Q/H;.
ao—1 or —1
Now T = Q/H; is contained in the subgroip = (x;Hi, x5~ Hi,...,x” "H). Put
7z, = X1 andz, = xlﬁ’aufl for 2 < u <r. We wish to apply Lemma 6 tay, 7, ...,z to

2
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~ p"’z*l pm—l
conclude thaV = (xqHi) x (X3 =~ Hi) x -+ x (X

can do so by showing thatif= [],_, z\' € H; (where 0< j; < pand 0< j, < p? for
2 <u <r)thenz = 1. Now Hj is isomorphic tdZ, and sozP = 1. Writing this equation
in terms of they, defined above we géT _, yo' = 1, which implies thaj, = pj; for each
u in the range 2< u < r (where 0< j; < p). Thereforez = z;! []|_,(z})!, and since
Ho = (z1, 25, ..., z) we have shown tha € Ho N H; = {1}. This completes the proof.
[ ]

Hi) = Zp x erzl as required. We

We shall apply Lemma 7 witlp = 2 andr = 3 to reduce that inductive step of the proof
of our main result to two possibilities, depending on whether the quotient g@oih is
contained in a subgroup isomorphicZ§ or not (in which case it must be contained in
a subgroup isomorphic @, x Z2). WhenQ/H; is contained in a subgroup isomorphic
to Z3 we shall make use of BSs whose existence is given by the following special case
(r =3,i =1) of Corollary 7.9 of [3]:

THEOREM8 Foreachd and ¢ satisfyirgy< ¢ < d, there exists g3(@+9-5 23d-1 23(d—0)+3)
BS on any abelian group & of order23@+9-2 and exponents at mogt relative to any
subgroup W ¢ = Z3, where U, is contained in a subgroup of &G isomorphic toZ3 and
where both of the following hold:

(i) Forc =d, Gyc/Uq, contains a subgroup of index 2 and exponent at rast.

(i) Ford >2andc=d — 1. Gy ¢/Uq contains a subgroup of inde¢ and exponent at
most29-2,

Finally we require the following result on transferring BSs from a smaller group to a
larger group, given as Lemma 2.1 in [3]:

LEMMA 9 Suppose there existga, +/at, t) BS onanabelian group G relative to a subgroup
U. Then there exists @s, +/at, t/s) BS on G relative to U, where s divides t and' &
any abelian group containing G as a subgroup of index s.

We are now ready to state and prove the main result of the paper, namely the construction
of a new family of BSs which leads to a new family of RDSs.

THEOREM10 There exists &8, 4, 2) BS on the groufd, x Zﬁ x Z relative to the subgroup
Z3 contained in the first three direct factors. There exist®% 25, 24) BS on the group
Zp x 72 x 73 relative to the subgrouf3 contained in the first three direct factors. For
each d and c satisfying < ¢ < d, there exists &3(d + c) — 2, 234+2 23(d-0+6y Bg on
any abelian group G of order23@+9+1 and exponent at mogt relative to any subgroup
Uge = Zg, where U, ¢ is contained in a subgroup of §& isomorphic toZ, x Zﬁ but not
in a subgroup isomorphic t@3 and where, for c= d, Gq c/Uq,c contains a subgroup of
index2* and exponent at mog&f 1.

Proof. The required8, 4, 2) BS is given by Example 4. The requir¢gf, 2°, 2%) BS is
given by Theorem 5 and Lemma 7. Then by Lemma 9 with 2, there exists &7, 25, 2°)
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BS on both of the group&, x Z3 x Z3 andZ, x Z3 x Zj relative to the subgrou@3
contained in the first three direct factors.

We next establish the case= ¢ = 2 by showing there exists @°, 28, 26) BS on any
groupG,, of order 23 and exponent 4 relative 10,, = zg, whereU, » is contained in a
subgroup ofG, , isomorphic taZ, x Z3 but not in a subgroup isomorphic %§. We shall
apply Theorem 5, choosing the subgra@p, = Z$ of G, » to containU, , and to contain
direct factorsZ4 to G, in preference to direct factofs,, and choosing the subgroupk
of G, corresponding to hyperplanes @b » so thatHy = Uy ». The required21°, 28, 25)
BS exists provided that, for each hyperplade# Ho, there exists 27, 2°, 2%) BS on
G2/ Hi relative toQ, 2/ Hi. Now by Lemma 7G, 2/ H; is isomorphic to one of the groups
Lo x T3 x 73, Ly x 72 x 73, 73 x 75 andZ3 x Z3, with Q2 »/H; contained in the first three
direct factors of the group. For the first two groups the requig2d2®, 2%) BS is given in
the preceding paragraph; for the second two groups it is given by thelcase = 2 of
Theorem 8.

The remainder of the proof is by induction dn Assume the casg — 1 to be true (for
each value ot in the range < ¢ < d — 1). LetUq . be contained in the first three direct
factors of G4 ¢ and order the remaining direct factors ®f ¢ in non-increasing order of
their exponent. Choo8y ¢ = Zg to be contained in the first six direct factors@§ . and
choose the subgroup$ as above so thady = Ug .. By Theorem 5 it is sufficient to show,
for eachH; # Ho, that there exists g3(@+0-5, 23d-1 23-0+3) BS onGy ./ H; relative
to Qq.c/Hi. We distinguish two cases.

Casel: Q/H; is contained in a subgroup isomorphictg In this case Theorem 8, using
the same values fat andc, gives the required BS provided the associated conditions (i)
and (ii) are met.

Condition (i) is that(Gy.q/Hi)/(Qa.4/Hi) = Gg.4/Qq.4 CcONtains a subgroup of index 2
and exponent at most2t. Suppose, for a contradiction, that this is not the case. Since
Gq.q has exponent at most 2t follows that G4 4/ Qq.q contains a subgroup isomorphic
to Z3,. By the ordering of exponents of all but the first three direct factor&o§ this
implies thatGq 4 contains a subgroup isomorphicg x Z2 x Zg’d. This contradicts the
assumption thaBy 4 contains a subgroup of indef and exponent at most2'.

Condition (i) is that, ford > 2, Gg.4_1/Qq.4—1 contains a subgroup of indef and expo-
nent at most% 2. Supposing this not to be the case, it follows similarly Bat_1/Qq.d—1
contains a subgroup isomorphicZ’éd,1 and therefore thaby 41 contains a subgroup iso-
morphic toZ; x Z3 x Z5, ,. Butthen the order dB4 41 Would exceed the stipulated value
of 264-2 giving a contradiction.

Case2: Q/H; is not contained in a subgroup isomorphicﬂi) By Lemma 7,Q/H; is
therefore contained in a subgroup isomorphiésox Z3.

Forc < d — 1 we apply the inductive hypothesis, with the same value, ¢d give the
required BS provided the associated condition is met.cFord — 2 there is no condition
to check; forc = d — 1 the condition is thatGq g—1/Hi)/(Qd.d-1/Hi) = Gq.d-1/ Qd.d-1
contains a subgroup of index and exponent at mosf22. The proof of this condition is
identical to that given in Case 1 above.

For ¢ = d there is no inductive hypothesis with the valado provide the required
(280-5 23d-1 23) BS onGq 4/ H; relative toQq 4/H;. Instead we shall use the inductive
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hypothesis with the value = d — 1, together with Lemma 9, in the following way.
Firstly we claim thatGq 4/ Qq.¢ contains a subgroup of indexX 2nd exponent at most
29-2, To show this, note thaB 4 has exponent at mosf 2nd by assumption contains
a subgroup of index“2and exponent at most'2!, so thatGq 4 contains at most four
direct factorsZ,:. By the ordering of exponents of all but the first three direct factors of
Gyq.q this implies thaiGq 4/ Qq.q4 CONtains at most one direct factdg«. Therefore, if the
claim were falseGq.4/Qd.q4 Would contain a subgroup isomorphic to eitt#s x ng,l
or Z8,_ , and in either case the order & 4/Qq.q4 Would exceed its stipulated value of
26"*5; this establishes the claim. Now it can be verified that the claim impliesxhay Hi
contains a subgrouf/H; (containing Qqg.q/Hi in a subgroup isomorphic td, x 73
but not in a subgroup isomorphic &) of index 8 and exponent at most2 such that
(S/Hi)/(Qq.q/Hi) = S/Qq.q4 contains a subgroup of index and exponent at mosf 2.
(This is achieved by choosing a suitable subgr&/4.4 of Gqg.4/Qq.q Of index 8 for
which the pre-imag&/H; of (S/H;)/(Qd.4/Hi), under the quotient mapping froBy 4/ Hi
to (Gq.d/Hi)/(Qa.4/Hi), has exponent at mosfZ. For a detailed justification of a
similar implication see the proof of Theorem 7.5 of [3].) Then the inductive hypothesis
with the valuec = d — 1 gives a(2%-8 23d-1 26) BS on S/H; relative to Qg 4/H;,
and the required259-5, 234-1 23) BS is obtained by applying Lemma 9 with= 8.

]

Although each value of in Theorem 10 gives rise, under Theorem 3, to semi-regular
RDSs not occurring for any other value @fwe consider the small rank case= d to be
of most interest and so state the resulting RDSs explicitly. (For clarity we have not stated
the result of applying Theorem 3 to tii& 4, 2) and (2%, 2°, 2*) BSs of Theorem 10.)

COROLLARY 11 Foreach d> 2, there exists 260+4, 8, 264+4 26d+1y semj-regular RDS in
any abelian group G of order2%4+7 relative to any subgroup Y= 73, where G contains
a subgroup $of index 64 and exponent at m@tsuch that |4 is contained in a subgroup
of § isomorphic taZ, x Z2 but is not contained in a subgroup of Bomorphic taZ3 and
such that $/Ug contains a subgroup of index 16 and exponent at rabst.

The best previously known results for semi-regular RDSs of small rank having these
parameters are those given by putting- 3 andj = 4 in Corollary 8.4 of [3]. However
Corollary 8.4 (ii) of [3] requires the rank @by to be at least 8 and Corollary 8.4 (v) of [3]
requiresUq to be contained in a subgroup Gf; isomorphic taZ3. Corollary 11 improves
on both of these results, for example by establishing for ehch 2 the existence of a
(280+4, g, 26d+4 280+1) semi-regular RDS ity = Z, x Z5,.; (having rank 7) relative to
the subgroupJy = Z3 contained in the first three direct factors.

This section illustrates that the discovery of a single new example of a semi-regular RDS
can be used to construct recursively an infinite family of such RDSs using Theorems 5 and
3 (although the only new solutions to the square root problem in this paper are those given
in the previous section).
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