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Abstract. We recursively construct a new family of (26d+4,8,26d+4,26d+1) semi-regular relative difference
sets in abelian groupsG relative to an elementary abelian subgroupU . The initial cased = 0 of the recursion
comprises examples of (16,8,16,2) relative difference sets for four distinct pairs (G,U ).

Keywords: relative difference set, recursive, building set, character

1. The square root problem

Let G be a group of ordermuandU a normal subgroup ofG of orderu. If R is ak-subset of
G thenR is a (m,u, k, λ) relative difference set(RDS) in G relative toU provided that the
multiset of differencesrr ′−1 for r, r ′ ∈ R, r 6= r ′, contains every element ofG\U exactly
λ times and contains no element ofU . If k = uλ then the RDS is calledsemi-regular
and the parameters are (uλ,u,uλ, λ). In this paper we consider semi-regular RDSs with
parameters of the form

(2a,2b,2a,2a−b). (1)

Several families of such RDSs have been constructed forb ≤ a/2 [3]. However forb > a/2
the only known existence results for abelian groups are as follows:

THEOREM 1 There is a(2a,2b,2a,2a−b) RDS in the groupZb
4 × Za−b

2 , relative to the
subgroup U∼= Zb

2 contained inZb
4, for each b satisfying a/2< b ≤ a.

THEOREM2 There is a(22b−1,2b,22b−1,2b−1) RDS in any abelian group G of order23b−1

and exponent 4 relative to U∼= Zb
2, where U is contained within a subgroup of G isomorphic

toZb
4, for each odd b≥ 1.

Theorem 1 is due to Jungnickel [6] (taking into account the well-known method of
contraction [7]). Theorem 2 is due to Chen, Ray-Chaudhuri and Xiang [2]. Ganley [5] has
shown that whenb = a the only abelian groupG containing an RDS with parameters (1)
is Za

4, and Schmidt [9] has given further nonexistence results forb > a/2. Nonetheless
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there is a large gap of understanding between the known existence and nonexistence results
whenb > a/2. We refer to this gap as the “square root problem” because it corresponds
to the parameter relationshipu >

√
k. In this section we give new solutions to the square

root problem by exhibiting a(16,8,16,2) RDS for four distinct pairs(G,U ).
Relative difference sets are often studied in the context of a group ringZ[G] and group

characters. The definition of a RDS immediately yields the group ring equationRR(−1) =
k1G+λ(G−U ), where we identifyR, R(−1) andG with the respective group ring elements
R = ∑

r∈R r , R(−1) = ∑
r∈R r−1 andG = ∑

g∈G g. Characters of an abelian groupG
are homomorphisms fromG to the multiplicative group of complex roots of unity, and we
extend this homomorphism to the entire group ring in the natural way. The elementR
of Z[G] then satisfies the definition of a semi-regular RDS if and only if two conditions
hold [7]: first, any character that is nonprincipal (i.e., nontrivial) on the subgroupU has
a character sum overR of modulus

√
uλ and second, any character that is principal (i.e.,

trivial) on the subgroupU but nonprincipal on the groupG has a character sum of 0 over
R.

Davis and Jedwab [3] describe a theoretical framework for constructing RDSs a piece at
a time. We define a(a,m, t) building set (BS) on an abelian groupG relative to a subgroup
U to be a collection oft subsets ofG (called building blocks), each of sizea, such that for
any nonprincipal characterχ of G:

(i) Exactly one building block has a character sum of modulusm and all other building
blocks have character sum 0 ifχ is nonprincipal onU and

(ii) All building blocks have character sum 0 ifχ is principal onU .

THEOREM3 ([3], THEOREM2.2) Suppose there exists a(a,
√

at, t) BS{B1, B2, . . . , Bt } on
an abelian group G relative to a subgroup U of order u, where at> 1. Then∪t

i=1g′i Bi

is a (at,u,at,at/u) semi-regular RDS in G′ relative to U, where G′ is any abelian group
containing G as a subgroup of index t and the g′i lie in distinct cosets of G in G′.

All the new RDSs of this paper arise from the following example.

Example 4. Let G be the group〈x, y, z, w|x4 = y4 = z2 = w2 = 1〉 ∼= Z2
4 × Z2

2 and let
U be the subgroup〈x2, y2, w〉 ∼= Z3

2. The subsetsB1 = 1+ x + y + xyw + z(1+ x3 +
y3+ x3y3w) andB2 = 1+ xy2+ x2yw+ x3y3+ y2zw(1+ x3y2+ x2y3w+ xy) form a
(8,4,2) BS onG relative toU .

By Theorem 3 this implies there is a(16,8,16,2) RDS R in G′ relative toU as follows:

1. G′ = 〈x′8 = y4 = z2 = w2 = 1〉 ∼= Z8× Z4× Z2
2; U = 〈x′4, y2, w〉; R= B1 ∪ x′B2.

2. G′ = 〈x4 = y4 = z′4 = w2 = 1〉 ∼= Z3
4× Z2; U = 〈x2, y2, w〉; R= B1 ∪ z′B2.

3. G′ = 〈x4 = y4 = z2 = w′4 = 1〉 ∼= Z3
4× Z2; U = 〈x2, y2, w′2〉; R= B1 ∪ w′B2.

4. G′ = 〈x4 = y4 = z2 = w2 = v′2 = 1〉 ∼= Z2
4× Z3

2; U = 〈x2, y2, w〉; R= B1 ∪ v′B2.
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The following Mathematica commands can be used to verify that the building blocks of
Example 4 satisfy the definition of a(8,4,2) BS:

B1[x˙,y˙,z˙,w˙]:= 1 + x + y + x y w + z (1 + xˆ3 + yˆ3
+ xˆ3 yˆ3 w);
B2[x˙,y˙,z˙,w˙]:= 1 + x yˆ2 + xˆ2 y w + xˆ3 yˆ3 +
yˆ2 z w (1 + xˆ3 yˆ2 + xˆ2 yˆ3 w + x y);
Do[Print[i,j,k,l,B1[Iˆi,Iˆj,(-1)ˆk,(-1)ˆ1],B2[Iˆi,Iˆj,(-1)ˆk,
(-1)ˆ1]],{i,0,3},{j,0,3},{k,0,1},{1,0,1}]

The evaluation of B1 and B2 in the Do loop runs through all the possible character values.
The output indicates that exactly one of the two blocks has character sum of modulus 4 for
the appropriate characters, and that they both have character sum 0 for the other characters
(the first character that prints out is the principal character, and that has a sum of 8 for both
characters).

The quotient groupG/〈w〉 in Example 4 is isomorphic toZ2
4×Z2 and under this contrac-

tion the building blocksB1 andB2 are similar to the building blocks of the Arasu-Sehgal
example [1]. In other words, the building blocksB1 andB2 can be viewed as “lifts” of the
Arasu-Sehgal building blocks. This observation, together with a better understanding of
the structure ofB1 andB2, might lead to a generalisation to higher order groups that would
give further solutions to the square root problem.

2. A new family of semi-regular RDSs

In this section we use Example 4 as an initial case to construct recursively a new family
of BSs and then, using Theorem 3, to obtain a new family of semi-regular RDSs. (For
a summary of the current state of knowledge for semi-regular RDSs in abelian groups
relative to an elementary abelian subgroup see [3] and [4].) The recursive construction of
BSs follows the method of [3] in making use of thepr + 1 hyperplanes of the groupZ2r

p ,
regarded as a vector space of dimension 2 over GF(pr ).

THEOREM 5 ([3], THEOREM 4.3) Let G be an abelian group of order p2r a containing a
subgroup Q∼= Z2r

p , where p is prime. Let H0, H1, . . . , Hpr be the subgroups of G of order
pr corresponding to hyperplanes when viewed as subgroups of Q. Suppose there exists a
(a,
√

at, t) BS on G/Hi relative to Q/Hi for each i = 1,2, . . . , pr . Then there exists a
(pr a, pr

√
at, pr t) BS on G relative to H0.

To apply Theorem 5 effectively we require information about the form of the quotient
groupsG/Hi andQ/Hi . We know (see Lemma 7 below) that ifG has rank exactly 2r then
by an appropriate choice of generators exactlyr direct factors ofG retain the same exponent
in G/Hi (these are the direct factors which containQ/Hi ), whereasr have their exponent
reduced by a factor ofp. However Example 4 has a feature not previously considered: the
subgroupU is contained in a subgroup ofG isomorphic toZ2 × Z2

4 but not in a subgroup
isomorphic toZ3

4. To deal with this feature we begin with a group theoretic lemma.



308 DAVIS AND JEDWAB

LEMMA 6 Let y1, y2, . . . , yr be elements of an abelian group G and let H be a subgroup
of G. If 〈yu〉 ∩ 〈yj | j 6= u〉 = {1} for each u in the range1 ≤ u ≤ r and no nonidentity
element of the form

∏r
u=1 y ju

u is contained in H, then〈y1H, y2H, . . . , yr H〉 ∼= 〈y1H〉 ×
〈y2H〉 × · · · × 〈yr H〉.
Proof. We prove this by induction onr starting with the caser = 2. We claim that
〈y1H〉 ∩ 〈y2H〉 = {H}. Suppose, for a contradiction, that this is not true. Then there are
integersα andβ for which (y1H)α = (y2H)β 6= H . The equality(y1H)α = (y2H)β

implies thatyα1 y−β2 ∈ H and so by the assumption on nonidentity elements we deduce
that yα1 = yβ2 . By assumption〈y1〉 ∩ 〈y2〉 = {1} and soyα1 = yβ2 = 1, contradicting the
inequality(y1H)α 6= H . Therefore the subgroups〈y1H〉and〈y2H〉have trivial intersection
as claimed. By Theorem 2.24 of [8], the subgroup generated by any two normal subgroups
which intersect trivially is isomorphic to the (external) direct product of those subgroups,
proving the caser = 2.

In the inductive step, we use the same argument to show that the groups〈y1H〉 and
〈y2H, y3H, . . . , yr H〉 have trivial intersection and therefore that〈y1H, y2H, . . . , yr H〉 ∼=
〈y1H〉×〈y2H, y3H, . . . , yr H〉. The inductive hypothesis applied to the elementsy2, y3, . . . ,

yr then proves the Lemma.

We can now characterise the form of the quotient groupsG/Hi andQ/Hi as discussed.
We write

∏r
u=1Zαu for the direct productZα1 × Zα2 × · · · × Zαr .

LEMMA 7 Let G be the group
∏2r

u=1Zp1+αu containing a subgroup Q∼= Z2r
p , where p is

prime andαu ≥ 0. Let H0, H1, . . . , Hpr be the subgroups of G of order pr corresponding
to hyperplanes when viewed as subgroups of Q. Then for each Hi there exists a r-element
subset S of{1,2, . . . ,2r } such that G/Hi

∼=∏u/∈SZp1+αu ×∏u∈SZpαu . Moreover, for each
Hi a suitable choice of generators of G ensures that Q/Hi

∼= Zr
p is contained in the first

r direct factors of G/Hi as specified. Furthermore if H0 is contained in a subgroup of G
isomorphic toZp × Zr−1

p2 then, for each Hi 6= H0, Q/Hi is contained in a subgroup of

G/Hi isomorphic toZp × Zr−1
p2 .

Proof. This result is given as Lemma 4.4 of [3], except for the final sentence in the case
when Ho is not contained in a subgroup ofG isomorphic toZr

p2. To prove this case, let
α1 = 0 andαu ≥ 1 for 2 ≤ u ≤ r and let{xu | 1 ≤ u ≤ 2r } be a set of generators of

G such thatG = 〈xu | xp1+αu

u = 1〉 andH0 = 〈x1, xpα2

2 , . . . , xpαr

r 〉. Fix Hi 6= Ho and put
y1 = x1 andyu = xpαu

u for 2 ≤ u ≤ r . Clearly〈yu〉 ∩ 〈yj | j 6= u, j ≤ r 〉 = {1} for each
u in the range 1≤ u ≤ r . Since the hyperplanesH0, H1, . . . , Hpr partition the nonidentity
elements ofQ and by assumptionH0 = 〈y1, y2, . . . , yr 〉, no nonidentity element of the
form

∏r
u=1 y ju

u (where 0≤ ju < p) is contained inHi . Applying Lemma 6 and then
substituting for theyu in terms of thexu we find thatT = 〈x1Hi , xpα2

2 Hi , . . . , xpαr

r Hi 〉 ∼=
〈x1Hi 〉 × 〈xpα2

2 Hi 〉 × · · · × 〈xpαr

r Hi 〉 ∼= Zr
p. SinceT is a subgroup ofQ/Hi and has the

same orderpr , it follows thatT = Q/Hi .

Now T = Q/Hi is contained in the subgroupV = 〈x1Hi , xpα2−1

2 Hi , . . . , xpαr −1

r Hi 〉. Put

z1 = x1 andzu = xpαu−1

u for 2 ≤ u ≤ r . We wish to apply Lemma 6 toz1, z2, . . . , zr to
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conclude thatV ∼= 〈x1Hi 〉 × 〈xpα2−1

2 Hi 〉 × · · · × 〈xpαr −1

r Hi 〉 ∼= Zp × Zr−1
p2 as required. We

can do so by showing that ifz = ∏r
u=1 zju

u ∈ Hi (where 0≤ j1 < p and 0≤ ju < p2 for
2 ≤ u ≤ r ) thenz= 1. Now Hi is isomorphic toZr

p and sozp = 1. Writing this equation

in terms of theyu defined above we get
∏r

u=2 y ju
u = 1, which implies thatju = pj ′u for each

u in the range 2≤ u ≤ r (where 0≤ j ′u < p). Thereforez = zj1
1

∏r
u=2(z

p
u )

j ′u , and since
H0 = 〈z1, z

p
2 , . . . , z

p
r 〉 we have shown thatz ∈ H0 ∩ Hi = {1}. This completes the proof.

We shall apply Lemma 7 withp = 2 andr = 3 to reduce that inductive step of the proof
of our main result to two possibilities, depending on whether the quotient groupQ/Hi is
contained in a subgroup isomorphic toZ3

4 or not (in which case it must be contained in
a subgroup isomorphic toZ2 × Z2

4). WhenQ/Hi is contained in a subgroup isomorphic
to Z3

4 we shall make use of BSs whose existence is given by the following special case
(r = 3, i = 1) of Corollary 7.9 of [3]:

THEOREM8 For each d and c satisfying2≤ c ≤ d, there exists a(23(d+c)−5,23d−1,23(d−c)+3)

BS on any abelian group Gd,c of order23(d+c)−2 and exponents at most2c relative to any
subgroup Ud,c

∼= Z3
2, where Ud,c is contained in a subgroup of Gd,c isomorphic toZ3

4 and
where both of the following hold:

(i) For c = d, Gd,c/Ud,c contains a subgroup of index 2 and exponent at most2d−1.

(ii) For d > 2 and c= d− 1. Gd,c/Ud,c contains a subgroup of index24 and exponent at
most2d−2.

Finally we require the following result on transferring BSs from a smaller group to a
larger group, given as Lemma 2.1 in [3]:

LEMMA 9 Suppose there exists a(a,
√

at, t)BS on an abelian group G relative to a subgroup
U. Then there exists a(as,

√
at, t/s) BS on G′ relative to U, where s divides t and G′ is

any abelian group containing G as a subgroup of index s.

We are now ready to state and prove the main result of the paper, namely the construction
of a new family of BSs which leads to a new family of RDSs.

THEOREM10 There exists a(8,4,2)BS on the groupZ2×Z2
4×Z2 relative to the subgroup

Z3
2 contained in the first three direct factors. There exists a(26,25,24) BS on the group
Z2 × Z2

4 × Z4
2 relative to the subgroupZ3

2 contained in the first three direct factors. For
each d and c satisfying2 ≤ c ≤ d, there exists a(3(d + c) − 2,23d+2,23(d−c)+6) BS on
any abelian group Gd,c of order23(d+c)+1 and exponent at most2c relative to any subgroup
Ud,c
∼= Z3

2, where Ud,c is contained in a subgroup of Gd,c isomorphic toZ2 × Z2
4 but not

in a subgroup isomorphic toZ3
4 and where, for c= d, Gd,c/Ud,c contains a subgroup of

index24 and exponent at most2d−1.

Proof. The required(8,4,2) BS is given by Example 4. The required(26,25,24) BS is
given by Theorem 5 and Lemma 7. Then by Lemma 9 withs= 2, there exists a(27,25,23)
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BS on both of the groupsZ2 × Z3
4 × Z3

2 andZ2 × Z2
4 × Z5

2 relative to the subgroupZ3
2

contained in the first three direct factors.
We next establish the cased = c = 2 by showing there exists a(210,28,26) BS on any

groupG2,2 of order 213 and exponent 4 relative toU2,2
∼= Z3

2, whereU2,2 is contained in a
subgroup ofG2,2 isomorphic toZ2× Z2

4 but not in a subgroup isomorphic toZ3
4. We shall

apply Theorem 5, choosing the subgroupQ2,2
∼= Z6

2 of G2,2 to containU2,2 and to contain
direct factorsZ4 to G2,2 in preference to direct factorsZ2, and choosing the subgroupsHi

of G2,2 corresponding to hyperplanes ofQ2,2 so thatH0 = U2,2. The required(210,28,26)

BS exists provided that, for each hyperplaneHi 6= H0, there exists a(27,25,23) BS on
G2,2/Hi relative toQ2,2/Hi . Now by Lemma 7,G2,2/Hi is isomorphic to one of the groups
Z2×Z3

4×Z3
2,Z2×Z2

4×Z5
2,Z4

4×Z2
2 andZ3

4×Z4
2, with Q2,2/Hi contained in the first three

direct factors of the group. For the first two groups the required(27,25,23) BS is given in
the preceding paragraph; for the second two groups it is given by the cased = c = 2 of
Theorem 8.

The remainder of the proof is by induction ond. Assume the cased − 1 to be true (for
each value ofc in the range 2≤ c ≤ d − 1). Let Ud,c be contained in the first three direct
factors ofGd,c and order the remaining direct factors ofGd,c in non-increasing order of
their exponent. ChooseQd,c

∼= Z6
2 to be contained in the first six direct factors ofGd,c and

choose the subgroupsHi as above so thatH0 = Ud,c. By Theorem 5 it is sufficient to show,
for eachHi 6= H0, that there exists a(23(d+c)−5,23d−1,23(d−c)+3) BS onGd,c/Hi relative
to Qd,c/Hi . We distinguish two cases.

Case1: Q/Hi is contained in a subgroup isomorphic toZ3
4. In this case Theorem 8, using

the same values ford andc, gives the required BS provided the associated conditions (i)
and (ii) are met.

Condition (i) is that(Gd,d/Hi )/(Qd,d/Hi ) ∼= Gd,d/Qd,d contains a subgroup of index 2
and exponent at most 2d−1. Suppose, for a contradiction, that this is not the case. Since
Gd,d has exponent at most 2d it follows that Gd,d/Qd,d contains a subgroup isomorphic
to Z2

2d . By the ordering of exponents of all but the first three direct factors ofGd,d this
implies thatGd,d contains a subgroup isomorphic toZ2 × Z2

4 × Z5
2d . This contradicts the

assumption thatGd,d contains a subgroup of index 24 and exponent at most 2d−1.
Condition (ii) is that, ford > 2,Gd,d−1/Qd,d−1 contains a subgroup of index 24 and expo-

nent at most 2d−2. Supposing this not to be the case, it follows similarly thatGd,d−1/Qd,d−1

contains a subgroup isomorphic toZ5
2d−1 and therefore thatGd,d−1 contains a subgroup iso-

morphic toZ2×Z2
4×Z8

2d−1. But then the order ofGd,d−1 would exceed the stipulated value
of 26d−2, giving a contradiction.

Case2: Q/Hi is not contained in a subgroup isomorphic toZ3
4. By Lemma 7,Q/Hi is

therefore contained in a subgroup isomorphic toZ2× Z2
4.

For c ≤ d − 1 we apply the inductive hypothesis, with the same value ofc, to give the
required BS provided the associated condition is met. Forc ≤ d − 2 there is no condition
to check; forc = d − 1 the condition is that(Gd,d−1/Hi )/(Qd,d−1/Hi ) ∼= Gd,d−1/Qd,d−1

contains a subgroup of index 24 and exponent at most 2d−2. The proof of this condition is
identical to that given in Case 1 above.

For c = d there is no inductive hypothesis with the valuec to provide the required
(26d−5,23d−1,23) BS onGd,d/Hi relative toQd,d/Hi . Instead we shall use the inductive
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hypothesis with the valuec = d − 1, together with Lemma 9, in the following way.
Firstly we claim thatGd,d/Qd,d contains a subgroup of index 27 and exponent at most
2d−2. To show this, note thatGd,d has exponent at most 2d and by assumption contains
a subgroup of index 24 and exponent at most 2d−1, so thatGd,d contains at most four
direct factorsZ2d . By the ordering of exponents of all but the first three direct factors of
Gd,d this implies thatGd,d/Qd,d contains at most one direct factorZ2d . Therefore, if the
claim were false,Gd,d/Qd,d would contain a subgroup isomorphic to eitherZ2d × Z6

2d−1

or Z8
2d−1 and in either case the order ofGd,d/Qd,d would exceed its stipulated value of

26d−5; this establishes the claim. Now it can be verified that the claim implies thatGd,d/Hi

contains a subgroupS/Hi (containing Qd,d/Hi in a subgroup isomorphic toZ2 × Z2
4

but not in a subgroup isomorphic toZ3
4) of index 8 and exponent at most 2d−1 such that

(S/Hi )/(Qd,d/Hi ) ∼= S/Qd,d contains a subgroup of index 24 and exponent at most 2d−2.
(This is achieved by choosing a suitable subgroupS/Qd,d of Gd,d/Qd,d of index 8 for
which the pre-imageS/Hi of (S/Hi )/(Qd,d/Hi ), under the quotient mapping fromGd,d/Hi

to (Gd,d/Hi )/(Qd,d/Hi ), has exponent at most 2d−1. For a detailed justification of a
similar implication see the proof of Theorem 7.5 of [3].) Then the inductive hypothesis
with the valuec = d − 1 gives a(26d−8,23d−1,26) BS on S/Hi relative to Qd,d/Hi ,
and the required(26d−5,23d−1,23) BS is obtained by applying Lemma 9 withs = 8.

Although each value ofc in Theorem 10 gives rise, under Theorem 3, to semi-regular
RDSs not occurring for any other value ofc, we consider the small rank casec = d to be
of most interest and so state the resulting RDSs explicitly. (For clarity we have not stated
the result of applying Theorem 3 to the(8,4,2) and(26,25,24) BSs of Theorem 10.)

COROLLARY 11 For each d≥ 2, there exists a(26d+4,8,26d+4,26d+1) semi-regular RDS in
any abelian group Gd of order26d+7 relative to any subgroup Ud ∼= Z3

2, where Gd contains
a subgroup Sd of index 64 and exponent at most2d such that Ud is contained in a subgroup
of Sd isomorphic toZ2×Z2

4 but is not contained in a subgroup of Sd isomorphic toZ3
4 and

such that Sd/Ud contains a subgroup of index 16 and exponent at most2d−1.

The best previously known results for semi-regular RDSs of small rank having these
parameters are those given by puttingr = 3 and j = 4 in Corollary 8.4 of [3]. However
Corollary 8.4 (ii) of [3] requires the rank ofGd to be at least 8 and Corollary 8.4 (v) of [3]
requiresUd to be contained in a subgroup ofGd isomorphic toZ3

4. Corollary 11 improves
on both of these results, for example by establishing for eachd ≥ 2 the existence of a
(26d+4,8,26d+4,26d+1) semi-regular RDS inGd = Z2 × Z6

2d+1 (having rank 7) relative to
the subgroupUd

∼= Z3
2 contained in the first three direct factors.

This section illustrates that the discovery of a single new example of a semi-regular RDS
can be used to construct recursively an infinite family of such RDSs using Theorems 5 and
3 (although the only new solutions to the square root problem in this paper are those given
in the previous section).
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