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Abstract 
  
 Lymph hearts are pulsatile organs present in lower vertebrates that propel lymph 

throughout the body and into the venous system, assisting in the maintenance of fluid 

homeostasis.  In organisms such as frogs, several pairs of lymph hearts develop amidst the 

somites during the early tadpole stages. Due to the unique structure and function of lymph heart 

musculature—exhibiting characteristics of both skeletal and cardiac muscle—the origin of these 

cells remains highly controversial.  Studies have found that in Xenopus, the engrailed gene is 

expressed explicitly in lymph heart muscle cells throughout development.  Through designing a 

transgenic construct containing the engrailed promoter and a fluorescent reporter gene, this study 

seeks to monitor the growth and development of the lymphatic heart in vivo by incorporating the 

transgene into the genome of Xenopus embryos via transgenesis procedures.   

Introduction 

Lymphatic system in vertebrates  

Among vertebrates, the lymphatic system—composed of lymph nodes, lymph vessels, 

and organs for circulating lymph fluid—serves a crucial role in the maintenance of fluid 

homeostasis (Kampmeier 1969).  Within the vertebrate body, as blood flows through the 

capillaries, plasma filters into interstitial spaces, where it is subsequently absorbed by tissue cells 

or reabsorbed by the blood before it flows out of the tissue (Solomon et al. 2005).  However, a 

small amount of this interstitial fluid is left behind (Solomon et al. 2005).  If left uncollected, the 

pooling of this fluid may result in massive edema, tissue destruction, or even death (Peyrot et al. 

2010).  Such a problem is avoided in vertebrates with the presence of lymph vessels, which act 

as a drainage mechanism to collect the excess fluid and return it to the venous blood before it 

reaches the heart (Sabin 1913).   
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Within mammals, skeletal muscle contractions circulate lymph throughout the body 

(Kampmeier 1969).  However, in lower vertebrates, such as fish, reptiles, birds, and amphibians, 

lymphatic hearts are also present to facilitate lymph circulation (Rumyantsev & Shmantzar 1967; 

Kampmeier 1969).  Lymphatic hearts, which are pulsatile organs located at the junctions of the 

lymphatic and venous systems, serve as a mechanism to propel lymph throughout the lymphatic 

system and into the veins (Kampmeier 1969; Peyrot et al. 2010).   

Lymph hearts in frogs 

In frogs, several pairs of lymphatic hearts develop during embryonic development (Sabin 

1913).  An anterior pair, located dorso-caudal to the pronephroi, arises between the myotomes 

and skin during the tailbud stage (Rumyantsev & Shmantzar 1967; Kampmeier 1969; Peyrot et 

al. 2010).  During the later tadpole stages, four more pairs of posterior lymph hearts develop and 

connect to the dorsal subcutaneous lymph sacks during metamorphosis.  In the adult frog, the 

anterior pair of lymph hearts regresses, leaving the four pairs of posterior lymph hearts 

remaining (Kampmeier 1969).   

Lymph heart structure 

Structurally, the lymph heart is comprised of three tissue layers: the inner tunica intima, 

the middle tunica media, and the outer tunica externa (Satoh & Nitatori 1980).  The inner tissue 

layer consists of an endothelial cell lining with connective tissue, the middle layer contains the 

lymph heart musculature, and the outermost layer is comprised of fibroelastic tissue (Peyrot et al. 

2010).  Within both mammals and frogs (specifically, Xenopus), the endothelium of the 

lymphatic vessels has been shown to be derived from the blood vasculature (Sabin 1913).   

However, the origin of lymph heart musculature, although widely studied, remains controversial.   
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Controversy of lymph heart musculature origin 

The debate over lymph heart origin focuses upon which cell types during embryonic 

development are the progenitor cells for lymph heart musculature. In the developing vertebrate 

embryo, somites are masses of mesoderm which are distributed along the two sides of the neural 

tube (Satoh & Nitatori 1980).  In Xenopus, the pair of anterior bilaterally symmetrical lymph 

hearts, which develop during the tailbud stage, are found adjacent to the trunk somites 3 and 4 

(Sabin 1913; Kampmeier 1969).  During development, the somites will differentiate into three 

tissue layers: the dermatome, myotome, and sclerotome (Satoh & Nitatori 1980).  Since the 

anterior lymph hearts arise in a space nestled between two separate regions (one that forms the 

dermatome, and one that forms skeletal muscle cells—specifically, the ventral body wall limb 

muscle), it is unknown which mechanisms underlie the specification of certain cell types to form 

the lymph heart musculature.    

To further complicate matters, lymph heart muscle cells have features characteristic of 

both cardiac and skeletal muscle cells.  Like cardiac muscle cells, lymph heart cells beat at the 

same rate as the circulatory heart, have a thin branched structure, and contract rhythmically 

without nerve cell innervation (Satoh & Nitatori, 1980).  However, besides developing in a 

region that largely forms skeletal muscle, studies have shown that lymph heart muscle cells 

express markers of skeletal muscle fate (such as myoD and 12/101), but not those of cardiac fate 

or differentiation (such as cardiac troponin and GATA genes) (Peyrot et al. 2010).  Thus, lymph 

heart muscle cells have been described as cardiac-like skeletal muscle cells, although this claim 

has not been met without controversy (Peyrot et al. 2010).   

Various researchers have proposed different hypotheses regarding the origin of lymph 

heart musculature.  Knower (1908) described lymph heart muscle cells as arising from adjacent 
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mytomes.  Kampmeier (1969), however, contested this hypothesis, instead describing them as 

mesenchymal cells that lie lateral to the myotomes (Peyrot et al. 2010).  Other studies on lymph 

heart development in chicks suggest that the endothelium and musculature of the lymph heart 

arise from the somites (Wilting et al. 2006; Valesek et al. 2007).  A more recent study conducted 

by Peyrot et al. (2010) proposes that lymph heart muscle cells are under developmental control 

from the lymphatic endothelium.  Thus, the origin of lymph heart muscle cells remains widely 

controversial as an array of hypotheses is further investigated.  Oftentimes, the model organism 

used to test these hypotheses is the South-African clawed frog, Xenopus laevis. 

Xenopus laevis as a model organism 

There are various advantages to using the organism Xenopus laevis for the transgenesis 

procedure in this study.  Largely used as a model system for vertebrate development, Xenopus 

are easily housed in the lab, have a short generation time (ranging from 3-24 months depending 

on the species), and exhibit a rapid rate of development, thus enabling experimental results to be 

obtained relatively quickly (Kroll & Amaya 1996; Hirsch et al. 2002; Ishibashi et al. 2009).  In 

addition, adult females may be induced to ovulate large quantities of eggs year-round (Pan et al. 

2006).  The embryos develop outside of the mother, and the eggs are relatively large 

(approximately 1 mm in diameter in Xenopus laevis) and easy to manipulate, making them well 

suited for manipulations of gene activity via microinjection (Sparrow et al. 2000; Ogino et al. 

2006; Sinzelle et al. 2006).  Microinjected eggs have been demonstrated to heal extremely well 

after microsurgery (Ogino 2007).  Furthermore, Xenopus tadpoles have transparent skin, 

allowing internal structures to be easily visualized in live embryos (Offield et at. 2000). This 

particular feature of Xenopus is especially useful in this study, as it will allow fluorescently-
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labeled lymph heart muscle cells to be visualized within live embryos throughout the 

developmental stages.     

Engrailed promoter 

 In order to visualize the developing lymph heart in live tadpoles, it was critical to find a 

gene—expressed explicitly within only lymph heart muscle cells—that could be labeled with a 

fluorescent probe for the transgenesis procedure.  Studies have suggested that the engrailed gene 

found in Xenopus is required for the development of lymph heart musculature, but not lymph 

heart endothelium (McGrew et al. 1999; Peyrot et al. 2010).   In an in situ hybridization study 

conducted by Peyrot and colleagues (2010), weak expression of the engrailed gene was first 

visualized in the clefts of the anterior trunk somites 3 and 4 at stage 28 in cross sections of fixed 

tapdoles (Figure 1).  At later developmental stages, engrailed expression intensified and then 

condensed in a small region ventral to the notochord, where the lymph heart would later develop 

(Figure 1) (Peyrot et al. 2010).  Researchers concluded that engrailed marks lymph heart 

myoblasts (Peyrot et al. 2010).   Due to the selective nature of engrailed expression within lymph 

heart cells, the promoter region for the engrailed gene was selected for this transgenesis 

procedure.  In addition, the oligonucleotide sequences flanking the region of the engrailed-2 

promoter have been identified (McGrew et al. 1999).  Thus, the transgenic construct used in this 

study consists of the 2.7 kb engrailed-2 promoter region inserted upstream of the fluorescent 

reporter gene for Green Fluorescent Protein (GFP), which will enable the real-time monitoring of 

transgene expression within live transgenic embryos.   
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Figure 1. Image reprinted from Peyrot et al. (2010) of in situ hybdridization with the engrailed 
gene in Xenopus laevis tadpoles throughout various stages of development.  The engrailed gene 
labels the developing lymph heart musculature, and expression is localized to the mid-hindbrain 
boundary, spinal interneurons, and anterior somites.  Somatic expression is initiated at stage 28 
(A) in a superficial region on a horizontal plane with the notochord (E, arrowhead, middle of 
notochord is indicated by red line).  Lateral views indicate early expression in anterior somites 
(A-B, arrowheads), which intensifies and then moves ventrally to occupy the final position of the 
lymph heart (C-D, G). The transverse cross section of a Xenopus tadpole at stage 33 (F) reveals 
that the intensity of engrailed expression is increasing (Peyrot et al. 2010).  

 

Transgenesis procedure 

 A critical advancement for Xenopus studies has been the development of a simple and 

efficient transgenesis procedure (Warkman & Krieg 2006).  The original procedure, designed by 

Kroll and Amaya (1996), involves the transplantation of sperm nuclei (containing the transgenic 

construct) within an unfertilized egg (Kroll & Amaya 1996; Warkman & Krieg 2006).  Various 

modifications to this transgenic procedure have since been developed, including those employing 

the use of ΦC31 integrase, the I-SceI meganuclease, the Sleeping Beauty transposon system, and 

restriction enzyme mediated insertion (REMI) (Sparrow et al. 2000; Ivics et al. 2004; Allen & 
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Weeks 2005; Ogino et al. 2006; Pan et al. 2006; Sinzelle et al. 2006).  While the changes to the 

original transgenesis were designed to optimize the procedure in general, they also served to 

enhance the long-term viability of the transgenic embryos, resulting in a higher rate of survival to 

reproductive adulthood rather than the production of the maximum numbers of transgenic 

embryos (Hirsch et al. 2002).  Due to the size of the transgenic construct utilized in this study, as 

well as the relative ease and efficiency of the procedure, the specific transgenesis procedure 

utilized in this study is a modified version of REMI (Ogino 2007).  Although the procedure has 

an overall efficiency of only 10%, the relative ease of experimental duplication after the initial 

sperm and ooctye extract preparations will enable large quantities of transgenic embryos to be 

produced relatively quickly in future studies.   

Objectives 

The main objectives of this research focus upon investigating the controversial nature of 

the lymph heart musculature development.  Which genes are specific to lymph heart 

development, as well as which cells form the precursors to lymph heart musculature, are pivotal 

questions this study seeks to address.  The main approach utilized is a modified restriction 

enzyme mediated insertion transgenesis procedure in Xenopus laevis tadpoles.  Specifically, 

through fluorescently labeling the promoter of a gene found only in lymph heart muscle cells 

(engrailed), the development of the lymph heart musculature may be visualized in live embryos 

throughout tadpole maturation.   

Materials and Methods 

Plasmid construct 

 The plasmid construct used in this study was M23 pEnP1 (7.5 kb, obtained from 

Addgene, Inc.), containing the engrailed-2 promoter (2.7 kb) from X. laevis, flanked by 5’ XhoI 
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and 3’ HindIII cloning sites, with a luciferase tag adjacent to the 3’ HindIII site (Figure 2) 

(McGrew et al. 1999).  Due to the lower levels of fluorescence typically associated with the 

luciferase fluorescent probe compared to the GFP reporter gene, it was decided that the 

engrailed-2 promoter should be cloned into a vector containing GFP to enable better 

visualization of the fluorescent transgene in live embryos (McGrew et al. 1999; Hirsch et al. 

2002; Sobkow et al. 2005).   

 

Figure 2. Schematic of the M23 pEnP1 plasmid (7.5 kb) containing the engrailed-2 promoter 
region (2.7 kb) and luciferase reporter gene (Addgene). Image reprinted from McGrew et al. 
(1999).       

 

Using the oligonucleotide primers 5’-ULX, 5’-GGCTCGAGAGATCTCTGGAAGTCTCCATA-

3’ and S/B-3’, 5’-CACACACACACTCTCTCCAAGCTTGGG-3’, the engrailed-2 (2.7 kb) 

promoter region of pEnP1 was PCR amplified using the Advantage 2 10X DNA Polymerase mix 

(Clontech), in a PTC200 gradient cycler with the conditions listed below (Table 1) (McGrew et 

al. 1999). 
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Process Temperature (°C) Time Cycles 

Initial Denaturization 95 2 min 1 

Denaturization 95 30 sec 30 

Annealing 55 30 sec 30 

Extension 72 2 min 30 

Final Extension 72 

4 

10 min 

-- 

1 

1 

 
Table 1. PTC200 gradient cycler conditions used in the PCR amplification of the engrailed-2 
promoter region (2.7 kb) of pENP1, using Advantage 2 10X DNA Polymerase mix (Clontech) 
and primers 5’-ULX and S/B-3’. 
 

PCR products were verified on a 0.8% agarose gel (Figure 3), followed by gel purification of the 

2.7 kb bands using the Roche Applied Science Agarose DNA Gel Extraction Kit.  

 

 

 

 

 

 

Figure 3. DNA gel electrophoresis image (0.8% agarose gel) of products obtained from the PCR 
amplification of the engrailed-2 promoter region in pEnP1 using Advantage 2 10X DNA 
Polymerase mix and primers 5’-ULX and S/B-3’.  Lanes 1 and 12 contain New England 
BioLab’s 1 kb DNA ladder; Lanes 2 and 11 contain dH2O; and Lanes 3-10 contain the products 
of the PCR amplification.  As noted by the row marked with the two black arrows, a 2.7 kb 
fragment was successfully amplified in each pEnP1 sample.  Light blue bars adjacent to the 3.0 
kb and 2.5 kb labels on the DNA ladders indicate that complete separation of all the bands within 
the ladder was not visualized.  Other bands of varying lengths which were amplified in the 
pEnP1 samples were not identified, and assumed to be due to binding of the primers to 
unforeseen regions of the plasmid.  Image processing involved inversion of the look-up table. 
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DNA concentration of the products was measured using the NanoDrop 1000 

Spectrophotometer.  The DNA products were stored at -20°C until further use in the design of 

the transgene construct.  

Transgenesis 

 All Xenopus laevis frogs were bred and raised in the laboratory.  Oocyte extract was 

prepared by the method of Ogino (2007).  The remainder of the transgenesis procedure will be 

completed according to the method of Ogino (2007) at a later date.     

Discussion and Future Work 

The utilization of transgenesis procedures within the research lab can provide powerful 

insight into the regulation of both when and where a transgene is expressed in a developing 

embryo (Warkman & Krieg 2006).  Transgenic studies within Xenopus laevis, a model organism 

for vertebrate embryological development, can provide a wealth of insight into the genetic 

mechanisms underlying the partitioning of certain cell types throughout the stages of 

development.   

 Currently in this study, there are various steps which must be completed before the 

powerful tool of transgenesis may be utilized to monitor the development of the lymph heart 

musculature in live embryos via the visualization of localized fluorescence within the lymph 

heart region.  First, designing the transgenic construct must be completed.  Since the engrailed-2 

promoter region has been successfully amplified and isolated via PCR and Agarose DNA Gel 

Extraction, it will next need to be cloned into a vector containing the GFP reporter gene.  

Afterwards, for use in the transgenesis procedure, the engrailed-2 promoter/GFP transgene 

construct will be linearized via restriction enzyme digestion (from the vector containing the 

transgene construct).  This linearized DNA fragment, along with the prepared sperm nuclei and 
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oocyte extracts, will be microinjected into single-cell X. laevis embryos via the modified REMI 

methods of Ogino (2007).  Through this procedure, it is expected that the transgene construct 

will be incorporated into the genomes of some of the X. laevis embryos, which will hopefully 

survive to reproductive adulthood.   

As the transgenic tadpoles develop, it is expected that the cells which will form the lymph 

heart musculature will be visible in vivo via fluorescence.  The expression of this transgene, and 

the migration of progenitor cells to the lymph heart region, may therefore be monitored 

throughout the developmental stages.  Ideally, experimental data suggesting which specific areas 

(of the undifferentiated somites, connective tissue cells, etc.) are associated with the emergence 

and development of lymph heart muscle cells would provide valuable insight into the origin of 

lymph heart musculature.  Since the most recent studies suggest the lymph heart muscle cells are 

under developmental control from the lymphatic endothelium, any experimental data obtained 

from this transgenic study would likely be valuable in either supporting or refuting this 

hypothesis (Peyrot et al. 2010).  Other future work will focus upon establishing a homozygous 

line of transgenic X. laevis for in-depth analysis and investigation into the controversial origin of 

the lymph heart musculature cells.     
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