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Peak-to-mean power control and error 
correction for OFDM transmission using 
Golay sequences and Reed-Muller codes 

J.A. Davis and J. Jedwab 

Indexing terms: Frequency division multiplexing, Golay codes, 
Reed-Muller codes, Power control, Error correction 

A coding scheme for OFDM transmission is proposed, exploiting 
a previously unrecognised connection between pairs of Golay 
complementary sequences and second-order Reed-Muller codes. 
The scheme solves the notorious problem of power control in 
OFDM systems by maintaining a peak-to-mean envelope power 
ratio of at most 3dB while allowing simple encoding and decoding 
at high code rates for binary, quaternary or higher-phase 
signalling together with good error correction. 

Introduction: Orthogonal frequency division multiplexing (OFDM) 
modulation schemes offer many advantages for multicarrier trans­
mission at high data rates over time dispersive channels [I], partic­
ularly in mobile applications. The principal difficulty with such 
schemes is the need to control the peak-to-mean envelope power 
ratio (PMEPR) [2]. Any practical scheme must also allow good 
error correction, ease of encoding and decoding, and a high code 
rate. 

The scheme of [2, 3] uses block coding to transmit across the N 
carriers only those binary sequences with small PMEPR. How­
ever, this entails an exhaustive search to identify the best 
sequences, requires large look-up tables for encoding and decod­
ing, and leaves the problem of error correction unresolved. The 
scheme of [4] instead takes the transmitted codewords from a coset 
of a linear error-correcting code, choosing the coset representative 
or 'mask vector' by computationally intensive search in order to 
reduce the PMEPR. In this way the error correction properties are 
assured but the appropriate choice of linear code and coset repre­
sentative for optimal PMEPR remains an open problem. 

The PMEPR of a binary or polyphase sequence of length N can 
be as large as N, but if the sequence is constrained to be a member 
of a Golay complementary pair then its PMEPR is at most 2, as 
recognised in [5]. (The aperiodic autocorrelation function of a 
se~uence (a:, a2, ... aN) for which a, E {O, I,_ ... , M-1} is C(u) = 
L, i~uexp(21y(a,-a;+u)IM) for u ~ 0, and a pair of sequences 1s a 
Golay complementary pair if the sum of their aperiodic autocorre­
lations is zero for all u > 0.) We shall call any sequence which is a 
member of a Golay complementary pair a Golay sequence. There 
are at least 2mm! binary Golay sequences of length 2m [6, 7]. These 
sequences are potentially suitable for OFDM transmission, as 
mentioned in [3], but hitherto it has not been apparent that they 
possess sufficient intrinsic structure to form a practical coding 

scheme. Indeed most authors have contrasted the analysis of 
aperiodic sequence properties, for which constrained computer 
search is often the best known method [8], with that of periodic 
sequence properties, for which powerful algebraic methods such as 
group theory and character theory are available [9]. 

For background on coding theory, the reader should refer to 
[10, 11]. 

Second-order Reed-Muller codes: We consider 0-1 binary sequences 
of length 2m. Let x0 be the all-ones sequence. For i = I, 2, ... , m let 
x, be 2'-1 concatenated copies of the sequence comprising 2m-i O's 
followed by 2m-i l's. Then x 0 , x1, ••• , xm form the rows of a genera­
tor matrix for the first-order Reed-Muller code RM(!, m), and 
these sequences together with the componentwise products x,x1 for 
I ~ i < j ~ m form the rows of a generator matrix for the second­
order Reed-Muller code RM(2, m). Our central result is: 

Theorem 1: The codeword r,'):;1 x,uJXnu+i) + L.':'..--0c,x, is a binary 
Golay sequence of length 2m for any permutation re of { 1,2, .. ., m} 
and for any coefficients c, E {0,1 }. 

This shows how the 2mm! binary Golay sequences given by 
Golay's recursive and interleaving constructions [6] can be explic­
itly represented as m!/2 distinct cosets ol RM(l, m), each contain­
ing 2m+i codewords. 

The code consisting of all sequences identified in Theorem I is a 
subcode of RM(2, m) and therefore has a minimum distance of at 
least 2m-2, We can encode ltoglm!/2)J data bits as the choice of 
coset representative (for example, using a look-up table), and a 
further m+ I data bits directly as the c,. Received codewords can 
be efficiently decoded using standard hardware or software decod­
ers for RM(2, m) (for example using majority-logic decoding [11]), 
recovering the coset representative from the coefficients of the 
terms x,x1. 

Corollary 1: ltoglm!/2)J+m+ 1 data bits can be encoded as 2m code 
bits such that all codewords have a PMEPR of at most 2, have a 
minimum distance of at least 2m-2, and belong to RM(2, m). 

For example, for m = 3 there are three choices of coset repre­
sentative, namely x1x2+x2x1 = 00010010, x,x3+x2x3 = 00010100 
and x 1x2+x1x3 = 00000110. We select one of two coset representa­
tives (say the first two) according to the value of one data bit and 
add this coset representative to the encoded value L.,c,x, of four 
further data bits (ci,c2,c3,c4) to produce an 8-bit transmitted code­
word. 

Although certain aspects of theorem 1 might, with hindsight 
and after careful consideration, be recognised in examples given in 
[7, 12], the connection with Reed-Muller codes and the consequent 
advantages for a practical coding scheme have not previously been 
noted. 

The coding scheme of corollary 1 uses only Golay sequences to 
ensure the PMEPR is at most 2. We can improve the code rate 
without unduly increasing the PMEPR by instead ordering the 
2mtm-ll/2 coset representatives of RM(l, m) within RM(2, m), in 
increasing order of maximum PMEPR over the coset, and then 
selecting coset representatives from the ordered list. For example, 
by allowing any coset representative from the first half of the 
ordered list we can encode up to m(m+ 1)/2 data bits while retain­
ing a minimum distance of 2m-2• In the case of length 16 code­
words, this increases the number of data bits from 8 to 10 while 
retaining a mimmum distance of 4 by using 32 rather than 8 coset 
representatives, and yet the maximum PMEPR only increases 
from 2 to 4 (whereas it would be 16 if any transmitted sequence 
were allowed). 

Alternatively, we can increase the minimum distance in corol­
lary 1 in exchange for a small reduction in code rate by choosing a 
subset of the m!/2 coset representatives for Golay sequences identi­
fied in theorem 1. All such coding schemes retain a PMEPR of at 
most 2. The extreme version is to use just one coset representative 
so that the code is a single coset ofRM(l, m) with a minimum dis­
tance of 2'"-1, encoding m+ 1 data bits (and taking advantage of 
special decoding algorithms for RM(l, m) [11]). Intermediate ver­
sions can also be found. For example, in the case of length 16 
codewords we can increase the minimum distance from 4 to 6 by 
reducing the number of data bits from 8 to 7. 
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Polyphase sequences: Theorem 1 generalises naturally to polyphase 
sequences: 

Theorem 2: The codeword 21-1 LT:i1 x,0l+x, 0+n+ L%o c, x, is a 21-
phase Golay sequence of length 2m for any permutation n of {I, 2, 
... , m} and for any coefficients c, E {O, 1, ... , 21-l}. 

This explicitly determines 211m+IJ.m!/2 21-phase Golay sequences 
and so provides a polyphase coding scheme analogous to Corol­
lary 1. In the quaternary case 21 = 4 these sequences occur as m!/2 
cosets of ZRM(l,m) in ZRM(2,m), each containing 4m+1 code­
words (see [13] for the definition of the quaternary Reed-Muller 
code ZRM(r, m)). Received quaternary codewords can be effi­
ciently decoded in the binary domain by applying the Gray map, 
under which ZRM(2, m) maps to RM(2,m+ 1) [13]. For higher 
phases 21 = 8, 16, ... , Theorem 2 indicates an appropriate defini­
tion for the corresponding first-order and second-order Reed­
Muller code. For all values of 21, theorem 2 provides a coding 
scheme in which Llog21(m!/2)J+m+1 data symbols can be encoded 
as 2m code symbols such that all codewords have a PMEPR of at 
most 2 and have a minimum Hamming distance of at least 2m-2• 

We can find similar variations on this scheme as described for the 
binary case, for example the code rate can be increased while 
maintaining the minimum Hamming distance. 

A very recent paper [14] reports the independent investigation 
of the use of Golay sequences in OFDM schemes. Translated into 
the language of the present paper, [14] essentially identifies a sub­
set of the polyphase Golay sequences of theorem 2 involving m of 
the m!/2 coset representatives and arbitrary c,, noting that when 
only one coset representative is used the minimum Hamming dis­
tance between codewords is 2m-1

• However, [14] does not make the 
connection with first- or second-order Reed-Muller codes and in 
particular does not propose the use of efficient decoding tech­
niques for Reed-Muller codes. [14] also does not determine the 
minimum Hamming distance when more than one coset represent­
ative is used (except in the case m = 3). 

Conclusion: We have outlined a coding scheme in which the main 
criteria for a practical OFDM transmission system are simultane­
ously satisfied. Details of the results announced here will be pro­
vided in a forthcoming paper, including proofs of the claimed 
theorems 1 and 2, how to combine the identified Golay sequences 
into Golay complementary pairs, details of the decoding algo­
rithms, and comparison of implementation options according to 
choice of code rate, PMEPR, minimum Hamming distance and 
number of phases. 
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