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Abstract 

 The process of spicule formation in L. virgulata results in a drop in pH, which, if left 

unregulated, could lead to demineralization and subsequent animal death. Carbonic anhydrase 

has been suggested as a possible pH regulatory mechanism in L. virgulata tissues. This study 

focuses on an additional hypothetical mechanism of pH regulation involving the production of 

urease by endosymbiotic bacteria living within L. virgulata tissue. PCR and DGGE are used as 

culture-independent methods to characterize facets of microbial community structure on L. 

virgulata in order to identify one or many urease-producing endosymbionts. DGGE analysis 

shows high diversity among the microbial community within L. virgulata and varying 

community structure on different tissue types. Future sequencing of bacterial 16S rDNA 

fragments will yield significant clues about the possible bacterial relationship involved in L. 

virgulata spicule development. 

Introduction 

Leptogorgia virgulata is a member of a group of organisms in the phylum Cnidaria called 

octocorals. Commonly found in sub-tidal waters of the mid-Atlantic United States, L. virgulata is 

significantly involved in shallow water ecosystem inter-organismal interactions. L. virgulata 

contains an internal central axis, a coenenchyme, and polyps that extend into the environment 

which take in and expel nutrients and other material. Within the coenenchyme are small 

polycrystalline aggregates of calcite spicules (Ruppert and Fox, 1988). Spicules function as 

skeletal structures that support and protect the colonial structure of the animal polyps, and are 

therefore essential to the survival of the animal (Bayer, et al., 1983). In summary, spicule 

formation is initiated within the spicule-forming vacuole of a scleroblast. During spicule 
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production, the vacuole enlarges due to the incorporation of proteinaceous matrix and calcium 

carbonate crystals. The vacuole then fuses with the scleroblast membrane, releasing to the 

extracellular environment a fully-developed spicule (Kingsley and Watabe, 1984).   

All organisms that calcify, including L. virgulata, experience mineral formation and a 

subsequent drop in pH due to acid production (equation 1). If the acid is not removed, 

demineralization occurs, resulting in malformation or destruction of spicules. The enzyme 

carbonic anhydrase as well as proton pumps within coenenchyme cell cytoplasm and membranes, 

have been shown to aid in the regulation of cellular pH during the calcification process in 

octocorals (Kingsley and Watabe, 1987). It is thought that other mechanisms, such as the 

function of an enzyme, facilitate pH balance during L. virgulata development (Kingsley and 

Watabe, 1987).  

 

CO2 + H2O  HCO3
-
 + H

+ 

Ca2
+
 + HCO3

-
  CaCO3 + H

+
 

 

The enzyme urease is known to directly control pH through the protonation of produced 

ammonia (Stingl et al., 2002). Bacterial production of urease has been shown to aid in pH 

regulation within eukaryotic cell systems (Stingl, et al., 2002). When urease interacts with its 

substrate (i.e., urea), ammonia is produced. Ammonia is then able to bind to free-floating H+ 

ions created during spicule formation. Several species of bacteria and some species of plants are 

known to produce urease (Sumner, 1926 and Mobely, et al., 1995); it would be very unusual for 

L. virgulata, an animal, to independently produce this enzyme. Therefore, it is hypothesized that 

a bacterial symbiont residing within L. vurgulata is producing sufficient quantities of urease to 

aid in spicule development. Identification of a urease-producing bacterial endosymbiont of L. 

virgulata would be the first documented for the animal.  

(1) 
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Figure 1: Scanning electron micrograph of 

bacteria in the gastroventricular cavity of L. 

virgulata (Roni J. Kingsley, unpublished) 

 

Bacteria are known to reside within L. 

virgulata tissue (Fig. 1). In fact, it has been shown that 

L. virgulata produce homarine as an antimicrobial 

compound (Shapo, 2007), most likely to evade 

bacterial disease. This suggests that L. virgulata 

developed an evolutionary response through long-term 

interaction with one or more parasitic microbes. Similarly, 

it is entirely possible that L. virgulata’s continuing 

interaction with surrounding microbes has fostered one or 

many commensal or mutualistic symbiotic relationships—relationships that could involve urease 

exchange. A number of symbiotic relationships with eucaryotes are well known in L virgulata. 

Although the  octocoral produces prostaglandin-like toxins to protect itself from predators such 

as the mollusc Simnialena uniplacata, (Gerhart, 1991), the sea whip barnacle Conopea galeata 

and the Atlantic pearl oyster Pteria colymbs, organisms are still able to attach to L. virgulata 

individuals (DeVictor, 2009). Additionally, several species of bryozoans, including Alcyonidium 

hauffi and Membranipora arborescens, have been observed to use the L. virgulata epidermal 

layer as a substrate for colonization (DeVictor, 2009). In general, little is known about the 

specific benefits or drawbacks that are obtained from L. virgulata attachment (Fox and Ruppert, 

1985). However, the very presence of other organisms on L. virgulata tissue suggests that the 

animal has the potential to engage in commensal or mutualistic relationships with other intertidal 

organisms 

This study aims to characterize the microbial community structure within L. virgulata 

tissue in order to identify possible urease-producing endosymbionts. In the past, the description 
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of marine microbial diversity has presented challenge. Obtaining pure cultures of bacterial 

communities present in oligotrophic marine environments is often hindered by unknown nutrient 

requirements needed for the bacteria to grow in vitro. As a result, phenotypic characterization of 

many marine bacteria remains unknown (Schut, 1997). To overcome this limitation, we used a 

culture-independent polymerase chain reaction (PCR) and denaturing gradient gel 

electrophoresis (DGGE) method in an attempt to describe L. virgulata microbial community 

structure. The amplification and analysis of 16S rDNA fragments has proven to be invaluable in 

the attempts to completely characterize microbial communities (Woese, 1987). DGGE is a 

method used to separate bands of DNA based on their guanine and cytosine content, not 

fragment size (unlike traditional polyacrylomide gel electrophoresis methods). DGGE is known 

to have a high sensitivity for separating sequence differences, which gives it the ability to 

illustrate genetic diversity within a microbial community (Muyzer, et al., 1993). A distinct band 

on a DGGE theoretically represents the genetic material of one colony of bacteria (Muyzer and 

Smalla, 1998). A pattern of bands obtained from bacteria on L. virgulata tissue indicates the 

microbial diversity and general community structure within L. virgulata. Subsequent sequencing 

of the genetic fragments in specific bands can lead to genomic and phenotypic characterization 

of bacterial community members.  

Genotypic data obtained from this method was supported through a urease test, which 

detects the urease-producing phenotype among culturable isolates. Detection of urease 

production among culturable strains could aid in the process of matching phenotypic urease-

produceing traits to genotypic characteristics of bacterial strains unable to be obtained in culture. 

Additionally, finding urease production among bacterial strains would strongly support the 

hypothesis that L. virgulata utilize bacterial-supported pH regulation during spicule development. 
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The characterization of the microbial community structure within L. virgulata tissue can 

yield significant clues about possible undescribed pH regulation mechanisms that L. virugulata 

use during spicule development. Such a discovery would greatly contribute to the known 

anatomical and physiological features of L. virugulata and other species of octocoral. 

Additionally, description of the microbial ecosystem within L. virgulata could facilitate general 

hypotheses concerning the specific ecological roles of intertidal marine bacteria.    

 

Methods 

Specimen Collection 

 Individual colonies of Leptogorgia virgulata were collected from shores off of Beaufort, 

and Moorehead City, North Carolina. Individual octocorals were identified based on 

characteristic size, color (orange and yellow), and polypoid structures. The octocorals were 

transported in aerated seawater collected from the collection site. A few octocoral tissue samples 

were placed in 2% gluteraldehyde fixative and stored at -20°C. The remaining octocoral 

individuals were placed in a marine tank at the University of Richmond animal facility.  

Obtaining culturable bacterial isolates 

 A 1.0 g sample was cut from both orange and yellow octocoral individuals. Samples were 

then cut in a into 1.0 cm pieces and placed into individual 1.5 mL microcentrifuge tubes 

containing 1.0 mL filtered seawater (labeled “mucus tube 1”). Tissue samples were shaken (to 

remove bacteria on epidermal layer) and again transferred into individual microcentrifuge tubes 

containing 1.0 mL filtered seawater (labeled “mucus tube 2”). After shaking the tissue samples in 

mucus tube 2, samples were dipped in 70% EtOH for 10s (to remove remaining epidermal 

bacteria and polypoid bacteria) and placed into microcentrifuge tubes containing 500 µL filtered 
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seawater (labeled “mucus tube 3). Using a sterile pestle, the tissue in each mucus tube 3 was 

smashed until the axis layers were exposed, freeing bacteria in the gastroventricular cavity and 

on the axis. After each mucus tube was centrifuged for 1min at 14,000 rcf, approximately 200 µL 

of supernatant was removed, and the the pellet was re-suspended. To isolate bacterial strains in 

culture, 100 µL of inoculated fluid from each mucus tube was spread in a lawn on Petri dishes 

containing 5.5% BD Dilfco Marine Agar 2116. Cultures were allowed to incubate for 48 h at 

37°C. Morphological characteristics of isolates were observed.  

Urease test 

 Twenty-four bacterial isolates were inoculated into individual microcentrifuge tubes 

containing 1 mL of deionized water. One K650 Urease Tablet (obtained from Key Scientific 

Products, Inc.) was added to each inoculated test tube, and tubes were allowed to incubate for 8 h. 

Positive urease production from the bacterial isolate was determined through the appearance of 

pink media after 8 h incubation.  

DNA extraction for culturable and unculturable strains 

 Mechanical lysis was performed to extract intracellular contents, including genomic 

material, of cultured isolates. Remaining supernatants from the different mucus tubes underwent 

DNA purification through the UltraClean
®
 Soil DNA Isolation Kit (MoBio). DNA isolation from 

mucus tube supernatants allowed for the extraction of DNA from unculturable strains residing on 

various L. virgulata tissues.   

16s rDNA amplification 

 DNA from cultured isolates was mixed with 10µM concentrations of Universal Primer 

518 , EUB341 GC,  and GoTaq Green in order to prime for the amplification of a variable region 

of the 16S rDNA.  The samples were then placed in thermocycler and run through the following 
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program (designated LM2): 95°C= 5min, (94°C=1 min, 60°C= 1 min, 72°C=1 min) x 35 cycles, 

72°C= 1 min, 4°C= ∞). Amplified samples were stored at -20°C. DNA obtained through 

UltraClean
®
 Soil DNA Isolation directly from the various mucus tubes was added to 10 µM 

concentrations 27f primer, 1792r primer, and Takara (obtained from Fisher Scientific). Samples 

were placed in the thermocycler and run through the following program (designated LM): 

95°C=3 min, (95°C=45s, 56°C=45s, 72°C=1 min) x 35 cycles, 72°C=5 min, 4°C= ∞. Aplified 

samples were stored at -20°C. The amplification of 16S rDNA was verified using 0.8% 

polyacrylomide gels run on 130V for 25min.  

DGGE Method 

 A 65% denaturing solution (20mL 40% acrylomide/bis, 2mL 50XTAE, 26mL formanide, 

27.3g urea) and 35% denaturing solution (20mL 40% acrylomide/bis, 2mL 50X TAE, 14mL 

formanide, 14.7g urea) were used to cast the gradient gel using a gradient former (Bio-Rad).  

Amplified 16S rDNA samples, stained with 10X DGGE loading dye, were loaded into individual 

DGGE wells. The core assembly was set in a tank of 1X TAE buffer for 24 h at 70V. The gel 

was removed from the cast and stained with EtBr so that bands could be detected using 

KodakImaging software.  

Preparation for genome sequencing 

 Bands of interest were excised from DGGE gels and placed in 20µL nuclease-free water 

in order to elute 16S rDNA fragments. Samples were then amplified using Universal 518, 

EUB341 GC, GoTaq Green and the LM2 temperature cycle. Amplification was verified with 0.8% 

polyacrylomide gel electrophoresis. Amplified samples were then run through the Wizard
®
PCR 

Preps DNA Purification System and stored at -20°C. The concentration of purified samples was 



9 
 

0

2

4

6

8

10

12

14

16

18

20

Yes No Other

N
u

m
b

e
r 

o
f 

is
o

la
te

s
Is urease present?

Figure 2: Results of the urease 

test performed on bacteria 

isolated from L. virgulata tissue 

on July 7, 2008.  

determined using a NanoDrop instrument (Thermo Scientific). Samples were diluted to 10 ng 

µL
-1

 and sent to MCV-VCU Nucleic Acids Research Facilities (Richmond, VA) for sequencing.  

 

Results and Discussion 

 The urease test of 24 isolated bacterial strains 

showed definite urease production in culture (Fig. 2), 

strongly suggesting a possible bacterial-induced pH 

regulation mechanism in L. virgulata tissue. This data 

served as a springboard for further investigation into and 

genetic characterization of members of the bacterial 

community within L. virgulata.  In hindsight, DNA 

sequencing of 16S rDNA of these urease-producing strains 

would have proven invaluable for the future genotypic 

comparison of urease-producing bacteria obtained from 

various collection dates. Furthermore, 16S rDNA sequences from unculturable bacteria could 

have been compared to those of urease-producing bacteria in culture in order to make possible 

phenotypic associations with genotypic similarity. Future study will most definitely accompany 

genetic sequencing with the urease test. 

 DGGE analysis of nearly 100 gels from various specimen collection and 16S rDNA 

isolation dates (not shown) revealed high diversity within the microbial community structure of 

L. virgulata. Moreover, DGGE analysis detected the presence of over 25 distinct bacterial 

species present within L. virgulata tissue. Additionally, DGGE showed that various parts of the L. 

virgulata animal, such as the epidermis, polyps, and the gastroventricular cavity contained 
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variable microbial community structure (Fig. 3), suggesting that different tissue parts fulfill 

distinct ecological niches for resident bacteria. General consistency in band patterns among L. 

virgulata organisms collected at different times suggests the presence of a stable microbial 

community found within L. virgulata in the long-term. This data supports the hypothesis that 

resident bacteria are involved in a distinct ecological interaction with L. virgulata.  

The 16S rDNA of bacterial strains not obtained in culture (through direct DNA 

amplification from mucus tubes) were successfully represented in DGGE (Figure 3d.). Genetic 

identification of the unculturable strains could yield significant information about the bacteria’s 

ecological role. Additionally, it is possible that the 16S rDNA belongs to a previously 

undescribed marine bacterial species.   

Most of the bands represented in Figure 3 were successfully amplified (Fig. 4). However, 

NanoDrop data following the purification of the samples showed nucleotide concentrations 

lower than 10 ng µL
-1

, which is too low for successful sequencing. This suggests a possible 

defect in the Wizard
®
PCR Preps DNA Purification System used in this study. Time proved to be 

a limiting factor in the re-amplification and re-purification of 16s rDNA. Future amplification 

and purification of the 16S rDNA present in the bands in Fig. 3 will lead to the identity of 

bacterial species comprising the microbial community within various parts of the L. virgulata 

tissue.  

 Future study could attempt to transform species-specific 16S rDNA fragments into a 

plasmid that can be cloned in a culturable bacterial strain so that species can be identified 

through DNA sequencing.  Further characterization of the bacterial community structure could 

be accomplished through fluorescence in situ hybridization, which could detect the presence of a 

urease-encoding gene present in unculturable strains of bacteria found on L. virgulata tissue. 
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Figure 3: a.), b.), c.) DGGE gel of 16S rDNA fragments of culturable bacteria from epidermal 

(NCO1), polyp (NCO2), and gastroventricular (NCO3) tissue of individual orange L. virgulata 

collected from Beaufort, and Moorehead City, NC. The 16S rDNA  fragments from bands have 

been purified for sequencing. d.) 16S rDNA from unculturable bacteria residing on L. virgulata 

tissue.  

Additionally, urease genes present among bacterial community members could be detected 

through the creation of a primer specific to the urease gene and subsequent amplification. Also, 

stable isotope analysis could provide data proving energy exchange (and subsequent symbiosis) 

between L. virgulata and resident bacteria. Overall, data presented in this study provide a solid 

ground for further research into the possible bacteria-facilitated mechanism of pH regulation 

used by L. virgulata during spicule development. 
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