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Akin to electric circuits, we construct biocircuits that are manipulated by cutting and assembling channels
through which stochastic information flows. This diagrammatic manipulation allows us to create a method which
constructs networks by joining building blocks selected so that (a) they cover only basic processes; (b) it is
scalable to large networks; (c) the mean and variance-covariance from the Pauli master equation form a closed
system; and (d) given the initial probability distribution, no special boundary conditions are necessary to solve the
master equation. The method aims to help with both designing new synthetic signaling pathways and quantifying
naturally existing regulatory networks.

DOI: 10.1103/PhysRevE.94.052404

I. INTRODUCTION

Networks of biomolecular pathways orchestrate the devel-
opment, progress, and fate of living cells. Currently there is
a struggle to translate the experimental results into pictorial
representations of molecular signaling pathways [1]. These
pictorial representations are necessary for understanding bi-
ological processes at a systems level as used in everything
from drug discovery to classification of biological processes.
As the networks and processes grow more complex, the
need for computation becomes apparent because extensive
textual explanation of pictorial representation of information
flow through pathways containing hundreds of molecules is
inefficient and impractical.

In this paper we use stochastic computation because
signals that propagate through successive molecular events
are stochastic in nature. Genetic regulatory reactions involve
a range of molecule numbers from the thousands down to
singular molecules. The statistical fluctuations at low molecule
numbers are usually higher relative to the mean values
and thus have a strong impact on the cell fate [2]. Some
pathways evolved to use these fluctuations to a cell’s advantage
for driving the cell into diverse phenotypic outcomes [3].
Phenotypic diversity of an isogenic population caused by
stochastic fluctuations is commonly found in microorganisms’
response to stress and virulence factors [4].

Stochastic fluctuations are often studied by simulating a
whole array of stochastic paths for the dynamics of the system.
From these stochastic paths the mean values, the standard
deviations, and the correlation functions are then computed.
This approach quickly becomes impractical for large networks
because they are computationally expensive.

Instead of first generating a whole array of stochastic data,
the method presented in this paper produces means and the
variance-covariance matrix from the Pauli master equation.
Many methods of computation [5–9] based on the Pauli master
equation [10–13] have been used to describe the molecular
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events and their mutual dependence. The master equation is
valid for any range of molecular number, from very large
for some species to very small for others. However, with
the exception of a few simple models, the master equation
is very difficult to solve. The main reason is that it delivers
an infinite system of equations for the moments of the
probability distribution. For the past 60 years, moment closure
methods have been used to tackle the master equation by
reducing the system of equations to make it finite [14–22]. The
approximation which reduces the equations, known as moment
closure, is carried out in a variety of ways. The moment closure
method in Ref. [23] is achieved by matching time derivatives
at an initial time. The resulting Taylor series argument reveals
that the time trajectories remain closed for short time intervals.
Multiplicative, rather than additive, moments are introduced
in Ref. [24] and the approximation is made by setting the
third-order multiplicative moments equal to unity. The model
in Ref. [25] assumes that the central moments of third order
are negligible. The approximation in Ref. [26] is achieved
by entropy maximization under known constraints to avoid
unmotivated bias. In Ref. [27] techniques and benchmark
models are used to compare the different moment closure
techniques such as mean-field, normal closer, min-normal
closure, and log-normal closure.

These methods tend to focus on disentangling the equations
without considering the topology of the biocircuit. By keeping
the topology of the biocircuit in the forefront, the method
presented here uses the diagrams themselves to implement the
moment closure. Because each term in the master equation
has a unique pictorial representation, there is a simple
correspondence between the qualitative interactions depicted
by the biochemical pathway and the mathematical model.
This gives a method that is diagrammatically easy to use
and manipulate by researchers not interested in the numerical
details, but also retains all of the quantitative properties of the
master equation that are useful for extensive computation.

In what follows we describe the method through which
the channels and nodes are split and later rejoined to create
moments that close at second order by using the ubiquitous
equilibrium reaction, A + B � C (Sec. II). The complex
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FIG. 1. A and B bind together to form C. (a) The control lines
that originate on molecules A and B meet at the node that symbolizes
the product qAqB and end on the box. The box depicts the action
ε = (−1,−1,+1). Two action lines start on the box and end on A

and B, respectively, with the end bar denoting the annihilation (−1
in ε) of those molecules. The third action line ends in an arrow
on C, expressing the creation process (+1 in ε). (b) The open-loop
biocircuit.

formation and its reverse process, the dissociation, are the
most important elementary reactions. For example, irreversible
complex formation is key to DNA error correcting and T-cell
recognition [28,29]. Then we identify a set of three elementary
units, which, together with A + B � C, are used to construct
signaling pathways (Sec. III). We show how our method can
be used for two important types of networks: bistable (Sec. IV)
and ultrasensitive (Sec. V). Finally, we explore the concept of
modularity by splitting nodes and projecting the large circuit
into smaller circuits by using the elementary units (Sec. VI).

II. SPLITTING NODES AND LINKING CHANNELS

Signals processed by a network composed of N -molecule
types consist of stochastic time-dependent levels of molecular
numbers, q = (qk), k = 1, . . . ,N . The environmental inputs
and the way the molecules control themselves is described
by the set of transition probabilities per unit time Tε(q,t).
Molecules can jump from one state q to another q + ε = (qk +
εk), where ε is an N vector given by stoichiometry with εk ∈
{±1,0} representing the jumps that either increase, decrease,
or do not change the molecule number qk . The Pauli master
equation

∂P (q,t)

∂t
=

∑
ε

Tε(q − ε,t)P (q − ε,t) − P (q,t)
∑

ε

Tε(q,t)

(1)
expresses this time evolution of the network.

The first-order moments are generated from F (z,t) =∑∞
q1=0,...,qN =0 z

q1
1 . . . z

qN

N P (q1, . . . ,qN ,t) and the second-order
factorial moments are generated from Fk = ∂zk

F |z=1 and
Fjk = ∂zj ,zk

F |z=1, where z ≡ (z1, . . . ,zN ). For ease we will
refer to factorial moments as moments.

The first basic building block is the irreversible complex
formation, where molecule A binds to molecule B with
T (q,t) = kqAqB to form the complex C, represented in
Fig. 1(a) as a control-action diagram [30,31].

The master equation for F (zA,zB,zC,t) is

∂tF = (
z−1
A z−1

B z+1
C − 1

)
kzAzB∂zAzB

F. (2)

The problem we face is that the time evolution of Fig. 1(a)
never closes at any moment order due to the complex formation
product qAqB which gives the second derivative in Eq. (2). For

FIG. 2. The product node from Fig. 1(b) is split into either (a) six
channels or (b) two channels.

example, applying ∂zAzB
on Eq. (2), the time evolution obtained

for the second-order moment FAB(t) turns out to be dependent
on third-order moments. To obtain a closed stochastic model,
we propose an approach based on the interpretation of the
diagram from Fig. 1(a) as not only a placeholder for the
interactions, but as a more literal flow of information through
the biocircuit. In Fig. 1(a), the information that flows from A

and B is multiplied at the “product” node. Then, after it passes
through the action node (the square-shaped node), it flows into
C and feeds back to A and B. This feedback prevents moment
closure. To obtain a finite system of equations we break the
feedback by duplicating molecules A and B into Ad and Bd ;
Fig. 1(b). The open-loop biocircuit is finite and completely
solvable, but it closes at fourth-order moments [32]. To reduce
it to second-order moments we split the product node and
the action box to let the information flow from A to C on
a different channel than that from B to C. There are many
ways to produce this splitting. For example, in Figs. 2(a) and
2(b) there are six channels and two channels, respectively.
We prefer the option from Fig. 2(b) over that from Fig. 2(a)
because the requirement that the master equation is free from
boundary conditions will be easily enforced on option (b).
After splitting the channels, a transition probability must be
assigned to each one. To guarantee the closing of the evolution
equations at second order, the transition probabilities assigned
to each channel in Fig. 2(b) will be kAqA and kBqB for the
channels starting from A and B, respectively.

Since Ad and Bd are copies of A and B, a specific time
evolution must be imposed on the biocircuit from Fig. 2(b). To
specify this evolution we start by dividing the time into small
equal intervals �t . The initial conditions Fi(0) and Fij (0) at
t = 0 are known for Fig. 1(a). These initial conditions are
transferred to the molecules from Fig. 2(b) in such a way
that the duplicate molecules Ad and Bd have the same initial
conditions as A and B. During the time interval [0,�t] the
values for the molecules Ad and Bd change but A and B did
not evolve in time because there is no process that changes
their molecule number in Fig. 2(b). Because Ad and Bd are
duplicates of A and B, the final values Fi(�t) and Fij (�t) for
Ad and Bd are passed to A and B as initial conditions for the
next time interval [�t,2�t]. The process is then iterated, A

and B drive Ad and Bd which in turn produces the updated
values for A and B for each time interval. Through this updated
iterative procedure, Fig. 2(b) is closed and, taking the limit
�t → 0, we get Fig. 3(a). To determine kA and kB we start
with

∂tH =(
z−1
Ad

z−1
Bd

z+1
C − 1

)
kAzA∂zA

H

+ (
z−1
Ad

z−1
Bd

z+1
C − 1

)
kBzB∂zB

H, (3)
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FIG. 3. (a) The closed-loop biocircuit of Fig. 2(b). The duplicated
molecules Ad and Bd are glued back to A and B, respectively.
(b) The LC master equation for splitting the product node. The driving
parameter λ is associated with A and 1 − λ with B.

where H is the generating function of Fig. 2(b). From the same
figure we read that (qA,qB,qAd

,qBd
,qC) → (qA,qB,qAd

−
1,qBd

− 1,qC + 1), thus ε = (0,0,−1,−1,1) for both action
nodes. This gives the term (z−1

Ad
z−1
Bd

z+1
C − 1). The transi-

tion probabilities, kAqA and kBqB , give us kAzA∂zA
H and

kBzB∂zB
H , respectively.

From Eqs. (2) and (3) we get dFA/dt = dFB/dt =
−dFC/dt = −kFAB and dHAd

/dt = −kAHA − kBHB . The
equal evolution condition HAd

= FA is fulfilled if kAHA +
kBHB = kFAB . The updating process HA = HAd

implies
HA = FA, which gives

kAFA + kBFB = kFAB. (4)

A simple solution to Eq. (4) would be an equal split drive
between A and B so that kAFA = kBFB = kFAB . However,
an equal split drive is not necessarily obvious especially given
that the molecule numbers A and B may be very different.
The unequal split solution kAFA = λkFAB and kBFB = (1 −
λ)kFAB confers more freedom to the model. For convenience
we call the entire procedure the loop-closing (LC) method.

The LC master equation for F (zA,zB,zC,t) is presented in
Fig. 3(b), which describes the time evolution of Fig. 3(a). The
transition probabilities, which are the ratios of the correlation
over the mean values, are not constant; they change together
with the stochastic evolution of the molecule numbers. In
general, the LC method is composed of the following steps:
(i) duplicate molecules by breaking selected feedback loops;
(ii) split nonlinear nodes; (iii) assign transition probabilities to
the new channels; (iv) close the loops by updating the initial
values between the duplicate and the original molecules. We
note that the equivalence between Figs. 1(a) and 3(a) is based
on the equalities HAd

= FA, HBd
= FB . Because FA and FB

are driven by the second moment FAB , the procedure explicitly
involves the second moments; Fig. 3(b). However, it does not
explicitly involve the third and higher moments which are
compressed into the λ parameters. The relevance of the λ

parameters is further discussed in Sec. IV.
Now that we have reduced the irreversible complex

formation to second order, we can use it to study the
equilibrium complex formation since the master equation term
for disassociation of the complex contains only a first-order
partial derivative (zAzBz−1

C − 1)kn zC∂zC
F . The LC approx-

imation of the irreversible process, along with the linearity
of the disassociation, allows us to explore how close the LC
procedure comes to reproducing the stochastically simulated
data of the equilibrium process. The LC differential equations
were computed with Mathematica [33] and the time variation

of each moment was compared with the corresponding data
simulated with the Gillespie algorithm [34].

All errors between two functions of time were com-
puted as the average of the relative error on a se-
quence of sampled times. The initial probability distribution
was taken to be concentrated at fixed molecule numbers
qA0, qB0, qC0, F (zA,zB,zC,t = 0) = z

qA0
A z

qB0
B z

qC0
C . The error

covered the range 10−5 to 10−1, the most common being 10−3

[Appendix A]. We rescaled the unit of time so that complex
formation transition probability is unity kp = 1. Then we
varied the other parameter kn between 10−4 and 104. The initial
molecule numbers for each molecule were varied between 0
and 103 in different combinations.

We found that, in order to obtain low errors, the parameter
λ should be either 0 or 1. If the initial molecule numbers qA0

is less than qB0 then λ = 1, otherwise λ = 0. This means, in
view of Fig. 3(b), that the driver is the low-number molecule.
If the initial molecule number is equal then the error is λ

independent and so we used an equal drive λ = 0.5. For the
complex formation equilibrium process the initial order qA0 ≶
qB0 is preserved during time evolution so that either A or B

is the driver, but not both. When a network is built on many
interconnected complex formation processes, molecules do
not stay in a fixed order at all times. For these networks the λ

parameters need not be equal to 0 or 1 and can take intermediate
values between 0 and 1.

The error calculated for the equilibrium process reflected
the time evolution from the initial state to the equilibrium state.
For some combinations of kn and initial molecule numbers qA

and qB the transition regime to equilibrium is very short so
the error is more reflective of the equilibrium state. At the end
of Sec. III we study the LC method applied to a dynamical
system that is out of equilibrium.

III. ELEMENTARY UNITS

The list of elementary processes contains three more

elements besides the complex association, A + B
kp−→ C and

the complex dissociation C
kn−→ A + B. Figure 4(a) represents

an accumulation process controlled either by the environment
or through coupling with another network, both represented
by Tε(qA,t) = g+(t). Another accumulation, Fig. 4(b) with
Tε(qA,t) = p(t)qA, is driven by the molecule itself. The

FIG. 4. Building blocks with one molecule, qA. The degradation
represented in panel (c) will not be used as an elementary process
whereas the other three processes will be used. The transitions for
panels (a) and (b) increase the number of molecules from qA to qA + 1
whereas for panels (c) and (d) decrease it to qA − 1. The terms in
the master equation that correspond to the one-molecule processes
for panels (a), (b), and (d) are g+(t)(z − 1)F , p(t)(z − 1)z∂zF , and
n(t)(z−1 − 1)z∂zF , respectively.
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FIG. 5. (a) A fourth-order moment completely solvable network.
(b) The product node is split and the driving parameter λ is associated
with q1 and 1 − λ with q2. (c) The LC-mean value F33 coincides
within the exact solution with a mean error of 1.2 × 10−1 over the
time interval [0,3.5]. The driving molecule is q1 which starts at t = 0
from zero. The other parameters are q2 = 1, q3 = 0 at t = 0, g1(t) =
t, g2(t) = 1, and f (t) = sin(2πt)2. The arbitrary unit of time is set
by g2(t).

externally controlled degradation from Fig. 4(c) requires a
special boundary condition for P (q,t) because the transition
probability T (qA,t) = g−(t) does not automatically become
zero when qA = 0. The form of the master equation thus needs
to be changed for the special case qA = 0, so we will not use
Fig. 4(c) as an elementary unit because the boundary condition
makes the model hard to solve for large networks.

However, a boundary-condition-free externally controlled
degradation of a molecule can be achieved through the
complex formation process Fig. 3(a). Consider that B rep-
resents the entrance port through which the environment
controls the degradation of A. The external control may
be delivered either through a time-variable coupling k(t) or
through the time-variation of FB(t) and FBB(t) modulated by
the environment or another biocircuit that couples into B. For
this application the complex C is of no importance. The last
elementary process, also free of boundary conditions, is the
autodegradation Fig. 4(d) with T (qA,t) = n(t)qA.

An immediate application of the generators is to build a
system that does not settle at an equilibrium state; Fig. 5(a).
The generators g1(t) and g2(t) continually increase the number
of molecules q1 and q2 which, in turn, produce more complex
q3. The complex formation transition probability per unit time,
T (q,t) = f (t)q1q2, is time dependent through f (t) in addition
to its dependance on the stochastic time-dependent variables q1

and q2. The network from Fig. 5(a) is an example for which the
moment equations close in the fourth order and there is no need
for a stochastic simulation to estimate them [32]. Because it is
solvable, this gives us a chance to study the accuracy of its LC
approximation, Fig. 5(b). For this example the generators g1(t)
and g2(t) depend on time and the system can be driven into a
variety of trajectories. In Fig. 5(c) we choose f (t) = sin(2πt)2

to model a coupling on q3 that oscillates between a maximum
strength and zero. The error for the mean value F3(t) is on the
order of 10−7. Maximum errors on the order of 10−1 appear for
the second-order moments; Fig. 5(c). In general, the maximum
error cover a range from 10−3 to 10−1 [Appendix C].

Other, more complicated processes are expressed in terms
of the elementary ones. For example, a simultaneous collision
of three molecules would produce a transition probability
proportional with kq1q2q3 that can be split, but the LC master
equation will involve third-order moments. Instead, the triple
product kq1q2q3 can be expressed as a more likely process
of sequential collisions in which two molecules collide to
form a complex and then this complex collides with a third
molecule. This approach will close the LC equations at second
order. Common types of transition probabilities are built out
of rational functions. An example is [1 + (qA)4]−1 which
represents a gate that closes for large qA. This is not an elemen-
tary process because rational-function transition probabilities
describe the phenomenological behavior of subnetworks built
on elementary reactions. One of these networks responsible for
ultrasensitivity will be studied in Sec. V. The advantage of all
selected building processes is that the second-order moments
evolve in time independently of higher-order moments, thus
the time evolution closes at second order. Because elementary
units closely represent biochemical processes, the selection of
the network’s topology becomes intuitive.

To exemplify the method described above, in the next two
sections we build two networks out of the elementary units and
use the LC procedure to split each complex formation control
node. The first biocircuit has four nodes and thus it needs
four splittings. Each splitting introduces a λ parameter. The
second one requires ten splittings. The reason for choosing
these specific examples is explained below.

IV. NETWORKS WITH MULTIPLE EQUILIBRIUM STATES

The first biocircuit is a bistable network. In multistable
regulatory networks noise elicits a phenotypical binary re-
sponse by driving transitions between distinct locally stable
states. The transition can adapt the organism to a change in
environment, switching back once the change elapsed [35–37].
Other bistable networks use noise to generate an irreversible
cell-fate decision such as hematopoietic cell differentiation.
Besides being important as a biological system, we are
particularly interested in bistable circuits because they give
the opportunity to reveal the use of the λ parameters that
appear after splitting the nodes. To this end, consider a bistable
network that starts from a given initial state. When analyzed
with the deterministic mass-action method it is attracted to
one of the two states, but not both. The same bistable network
that starts from the identical initial state as above but is
now analyzed by stochastic simulations shows trajectories
that transition between two distinct locally stable states due
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FIG. 6. (a) The control-action diagram for the bistable noncom-
petitive inhibition system. The driving parameters are associated as
follows: (E,λ1), (I,λ2), (ES,λ3), and (S,λ4). (b)–(e) Four simulated
stochastic paths for S. All four paths start from S = 400 molecules
but evolve into different trajectories. In panel (b) the S runs between
0 and 1 even if the generator on S is continuously pumping. Contrary
to panel (b), panel (e) shows a paths that reaches high number of
molecules. The arbitrary unit of time is set by the degradation rate of
S (Appendix D).

to stochastic fluctuations. The mass-action method cannot
reveal this stochastic passage between the equilibrium states;
however, the LC method can show the bistability using the λ

parameters.
To demonstrate the LC method applied to bistability we use

the bistable system from Fig. 6, which illustrates the stochastic
noncompetitive inhibition reactions E + S � ES → E + P ,
E + I � EI , and ES + I � ESI � EI + S [38]. We are
interested in the behavior of S but not of P and so the reaction
ES → E + P is not represented in Fig. 6(a). Both S and I

are coupled to the environment. The bistability shows itself in
the profiles of the S-molecule stochastic paths. In Fig. 6(b),
the molecule S starts from the initial value FS(0) = 400 and
drops quickly to zero. The environment does not pump enough
S molecules into the system to avoid S depletion over the time
horizon (0,4). In Fig. 6 the effect of bistability is visible on
three paths. One path starts to rise before t = 1 and reaches
a value of S = 1200 at t = 4; Fig. 6(e). The paths from
Figs. 6(c) and 6(d) transit between the two states: depletion

FIG. 7. In panel (a), by varying λ1, we obtain different transition
times for the low to the high state. The rise of S is not much greater
than the initial value which mimics Figs. 6(c) and 6(d). In panel (b),
two parameters are varied: λ1 and λ3. The accumulation of S reaches
higher levels than the initial value as in Fig. 6(e). All other λ are set
to 0.5 except those that we varied above. The arbitrary unit of time is
set by the degradation rate of S (Appendix D).

and high values of S. A mass-action deterministic equation
using the same numerical parameters and the initial state is
unable to reveal the bistability; it only shows the depletion
state; Fig. 6(b).

The reason is that the mass action decouples the mean
value equation from the second-order moments and the λ

parameters are lost. Nevertheless, the λ parameters show the
bistable nature for the mean value of S; Fig. 7. The average
value of S computed from LC ordinary differential equations
[33] shows both the low- and the high-accumulation states.
Different shapes for the mean value of S can be obtained by
varying the λ parameters; Fig. 7. These shapes correspond
to the average of different subgroups of stochastic paths that
are produced by the bistable phenomenon. The deterministic
mass-action result is obtained for λ1 = 0.5 in Fig. 7(a).

It may seem that this results from the presence of λ in
the mean value equations; however, this is not the case. The
mean value equations do not depend explicitly on λ. Their
dependence on the λ is through the correlation moments that
drive the mean values. The λ explicitly drive only the second
moments. The necessity of the second moments to reveal the
bistability for this network is emphasized by the fact that
this example was taken from Ref. [38], where a theorem is
provided to help select networks with bistable states. Although
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FIG. 8. The driving parameters are associated as follows:
(E1,λ1), (E3,λ3), (E2,λ5), (E3,λ7), (E3,λ9) for the downstream
cascade and (w3,λ10), (γ̃ ,λ8), (E3,λ6), (β̃,λ4), (E2,λ2) for the
upstream cascade. The same molecule may drive more than one
complex formation. The cascade is assembled by linking the module
from the inset, which describes the reaction z1 + z2 � z3 → z4 + z5.
Here z stands for the corresponding molecule.

the theorem is devised on classical mass action, it distinguishes
between some networks that can support bistable behavior and
others that cannot. However, for the example from Fig. 6(a),
the theorem cannot say if it is bistable or not. On the other
hand, the LC method is capable of showing the bistability of
Fig. 6(a).

V. ULTRASENSITIVITY

An ultrasensitive network delivers a binary (on-off) output
which is useful for decision-making processes. The output
switches from on to off if the input crosses a threshold value.
The ultrasensitive network acts to filter out small stimuli below
the threshold, so understanding its stochastic properties is im-
portant for designing switches that avoid accidental triggering
events. In Ref. [39] an ultrasensitive synthetic transcriptional
cascade was constructed where it was noted that a proper
matching of the kinetic rates of the cascade’s elements is
crucial for a clear separation between the on and off states. The
design and the construction of a noise-tolerant ultrasensitive
biocircuit was reported in Ref. [40]. Ultrasensitivity can be
achieved by more than one network topology. Here we study
one possibility: Fig. 8 based on Ref. [41], for two reasons. First,
to test the LC method on a network that needs hundreds of
differential equations for its time evolution. For this example,
a total of 275 moments are needed, of which 22 are mean
values, and 231 are correlations. Second, given that the number
of correlations increases quadratically with the number of
molecules, we discuss procedures that project out molecules
in order to reduce a network to a simpler one.

The equation for the inset in Fig. 8 is

∂tF = λ
(
z−1

1 z−1
2 z3 − 1

)F12(t)

F1(t)
az1∂z1F

+ (1 − λ)
(
z−1

1 z−1
2 z3 − 1

)F12(t)

F2(t)
az2∂z2F

+ (
z1z2z

−1
3 − 1

)
dz3∂z3F

+ (
z4z5z

−1
3 − 1

)
kz3∂z3F. (5)

FIG. 9. The molecule δ represents the output of the ultrasensitive
network. (a) The variability in the response time of the molecule δ.
(b) The variability in the sigmoidal dependence of the number of
molecules δ at equilibrium, t → ∞, on the initial value of the input
molecule E1.

The equation for the entire network is obtained by summing
ten terms, each being similar to Eq. (5). The stochastic time
evolution will thus include ten λ parameters.

The response time T1/2 of the ultrasensitive switch is
one of many specific time-evolution properties which can
be retrieved from the 275 moments. T1/2, which depends on
each stochastic path, represents the time for the molecule
δ to reach 1/2 of its equilibrium level. It plays a central
role in network communication. For example, if δ controls
a subsequent pulse-generating network, the duration of the
generated pulse depends on the controlling δ’s T1/2. The
pulse may even be absent if the response time is too small
and so the range of values for T1/2 is relevant to signaling.
Besides T1/2, which is computed from the mean value Fδ(t),
two other response times T ±

1/2 are important to represent the
stochastic nature of the ultrasensitive network. T +

1/2 is the
response time of the average evolution of δ plus one standard
deviation, Fδ(t) + [Fδδ(t) + Fδ(t) − Fδ(t)2]1/2. The response
time of the average evolution minus one standard deviation
is T −

1/2. The range T −
1/2 − T +

1/2 is computable with the LC
method; Fig. 9(a). The maximum relative range in Fig. 9(a)
occurs for the input E1 = 7. Below E1 = 7 the switch is
not opened and the response time T1/2 is meaningless. At
E1 = 7 the switch is just about to open, as can be seen
in Fig. 9(b), which illustrates the sigmoidal dependance of
the equilibrium output mean value Fδ(∞) in terms of the
initial input FE1(0). Flanking the mean value response are
the equilibrium responses Fδ(∞) ± σ (∞), which highlight the
stochastic nature of the sigmoidal response. A local maximum
in Fig. 9(a) appears for E1 between nine and eleven when the
ultrasensitive system is just about to be fully opened.
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FIG. 10. (a) The dotted line encircles a subnetwork that drives
the downstream network and is driven by the upstream subnetwork.
(b) Two-molecule equivalent system. The input molecules, 1 and
2, have identical time evolution. They start with the same initial
conditions and are driven by the same G, n, and p external actions.
The output molecule 3 is controlled by G3, n3, and p3. Here, λ = 0.5
because the molecules 1 and 2 have identical evolution.

VI. REDUCING A NETWORK BY SPLITTING
AND PROJECTION

Recall from Sec. II that the LC method relies on the
equivalence of Figs. 1(a) and 3(a) up to second order. The broad
idea of splitting biocircuits to create equivalent systems can be
applied further to large networks such as the one seen in Sec. V.
A subnetwork can be disconnected from a larger network and
subsequently simplified to create a smaller, simpler equivalent
system. We use the encircled subnetwork in Fig. 10(a) as an
example.

Consider that two molecules from the ultrasensitive cas-
cade, E3 and δ, drive a downstream network which does
not influence the dynamics of the ultrasensitive cascade
through any feedback; Fig. 10(a). Moreover, the subnetwork
encircled by the dotted line in Fig. 10(a) only influences
the downstream network without influencing the upstream
network. Ideally, the information that flows from E3 and δ into
the downstream network would be confined exclusively to the
five moments M5 = (FE3, Fδ, FE3δ, FE3E3, Fδδ). If that would
happen, the time evolution of the downstream network could
be easily decoupled from the ultrasensitive network. However,
the differential equations that describe the evolution of the
downstream network contain moments of the ultrasensitive
network other than those aforementioned. Many correlations
internal to the upstream network will couple through E3 and δ

into the downstream network. Thus, we will set up a simplified
model for the encircled subnetwork and then fit this model to
the data given by known M5. The moments M5 are known
from solving the ultrasensitive network from Sec. V.

To simplify the input into the downstream network we
disconnect the encircled subnetwork and reduce it to the
simpler topology from Fig. 10(b). The simpler topology is
not unique. There are many ways to make the reduction. For
the specific reduction presented in Fig. 10(b) our reasoning
is as follows: If only one molecule is used in the reduced
system it would produce two variables F1 and F11 and be
driven by a maximum of three elementary units; Fig. 4. This
topology is too small to fit this model to the five moments
of the driving molecules M5. If we were to use two distinct
molecules we get five moments and six elementary units,
three per molecule, which is enough to fit the model to the
five moments. Using three or more molecules would be even

easier to accommodate five moments, but we start to lose the
simplicity of the equivalent network.

In Fig. 10(b) we settled on using two molecules 1 and 2,
which are identical, and the complex, 3, which is a dimer
formed from 1 and 2. Usually the complex formation has
three distinct molecules; however, we have set 1 and 2 as
identical to ensure we have the least number of different
types of molecules possible while having enough elementary
units for optimization. We chose this topology because
complex formation is a repeated pattern in the ultrasensitive
network. The complex formation introduces two unknowns,
the association and dissociation coefficients k+ and k−. The au-
todegradation function here is written as n(t) + p(t) instead of
n(t) because, together with the autoaccumulation p(t), it drives
the time evolution as (z − 1)zp(t)∂zF + (z−1 − 1)zp(t)∂zF +
(z−1 − 1)zn(t)∂zF . Thus, p(t) acts as a diffusion process
(z − 1)zp(t)∂zF + (z−1 − 1)zp(t)∂zF . The advantage of using
a diffusion plus a negative autoregulation instead of a positive
and a negative autoregulation is that the diffusion p(t) does not
affect the mean value; it changes only the standard deviation.
The same logic is used for p3(t). In this way the diffusion
terms p(t) and p3(t) act mainly either around the initial time
or when the system leaves the transitory regime and enters into
the equilibrium state; Fig. 15 in Appendix F. Once the topology
is defined, the unknowns, k+, k−, G(t), p(t), n(t), G3(t), p3(t),
and n3(t), shown in Fig. 10(b), are found through fitting the
model to the given five moments M5. We used Mathematica
[33] to minimize the error subject to the evolution constraints
FE3(t) = F1(t), Fδ(t) = F3(t), FE3δ(t) = F13(t), FE3E3(t) =
F11(t), and Fδδ(t) = F33(t), (Appendix F). Molecule 2 is not
part of the minimization constraints because it is identical
with molecule 1. With this strategy, we project out seven of
nine molecules that are between (E3,λ7) and δ in the original
ultrasensitive network.

VII. CONCLUSIONS

We have shown that the mathematics and the diagrams
of biocircuits are in fact interdependent and can be used to
give an accessible method that produces quantitative results
from qualitative pictures. By modeling larger interactions as
combinations of the elementary units, networks that span to
hundreds of interactions can be built. Importantly, the results
maintain their stochastic nature because all of the equations
come from the Pauli master equation. This saves the oftentimes
huge computational expense of running a stochastic simulation
which becomes impractical for large systems. The master
equation also plays into the ease of the method because, for
each action in the diagrams, there is a corresponding term in
the equation.

The terms in the master equation from the split product
gave rise to the λ parameters. The λ parameters reveal that
the low molecule species is the driver in product interactions.
They also allow us to investigate different paths in bistability.
Selecting different λ allows the selection of different paths in
the bistable process.

Different directions lay ahead for future studies. Instead of
taking the initial limit in the updating process of �t → 0 we
can keep �t finite and let the updating process run at discrete
times. Moreover, the time intervals �t for each update do not
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need to be equally spaced and, even more, they may be drawn
from a probability distribution. In this way some elementary
units or subnetworks will be updated more often than others.
This type of approach is similar with part of the Gillespie
algorithm for which the time between reaction is stochastic.
In this case the LC method becomes a hybrid, keeping the
differential equations for the reactions but the time updating
process needs stochastic simulations.

APPENDIX A: EQUILIBRIUM REACTION

In what follows we describe the procedure used to compute
the accuracy of the LC method on complex formation in

equilibrium reactions: A + B
kp−→ C, C

kn−→ A + B. The final
results are tabulated in Tables I to V. All parameters were
varied except kp which was set to kp = 1 so that the timescale
in the master equation is expressed relative to kp. Changing
kp is equivalent to changing the time unit. To give an
example of the tabulated results we used kn = 10−4 and the
initial conditions, qA = 1, qB = 0, qC = 1000, which give the
initial generating function F (zA,zB,zC,t = 0) = z1

Az0
Bz1000

C .
This specific example was chosen because low molecule
numbers like 1 and 0 are not easy to study by using a system
of differential equations because their fluctuations are high
relative to the mean. We generated 103 paths for the entire
process by using the Gillespie algorithm. We denote the kth
path for molecules A, B, and C by PA,k , PB,k , and PC,k ,
where k = 1, . . . ,103. The time horizon was set to tTarget = 104

so that the entire transition process, from the initial state to
the equilibrium state, was included in our simulation. The
jumps for each stochastic realization P(τ (k)

j )A,k , P(τ (k)
j )B,k ,

TABLE I. The accuracy of the LC method on equilibrium reaction
for kn = 10−4.

q1 q2 q3 λ εmax tTarget

1 1 0 0.5 2.3 × 10−3 1.0 × 107

0 0 1 0.5 2.1 × 10−2 1.0 × 107

1 0 1 0 4.4 × 10−3 1.0 × 107

1 0 1 1 2.0 × 104 1.0 × 107

10 1 0 0 1.3 × 10−3 1.0 × 107

10 1 0 1 1.0 × 105 1.0 × 107

1 0 10 0 1.9 × 10−3 1.0 × 106

1 0 10 1 2.4 × 103 1.0 × 106

100 1 0 0 2.1 × 10−3 1.0 × 107

100 1 0 1 1.0 × 106 1.0 × 107

1 0 100 0 3.3 × 10−3 1.0 × 105

1 0 100 1 1.8 × 102 1.0 × 105

1000 1 0 0 2.8 × 10−3 1.0 × 107

1000 1 0 1 1.0 × 107 1.0 × 107

1 0 1000 0 7.4 × 10−3 1.0 × 104

1 0 1000 1 1.5 × 101 1.0 × 104

10 10 0 0.5 3.8 × 10−3 1.0 × 106

0 0 10 0.5 2.0 × 10−3 1.0 × 106

100 100 0 0.5 4.7 × 10−3 1.0 × 105

0 0 100 0.5 3.8 × 10−3 1.0 × 105

1000 1000 0 0.5 3.8 × 10−2 1.0 × 104

0 0 1000 0.5 3.8 × 10−2 1.0 × 104

TABLE II. The accuracy of the LC method on equilibrium
reaction for kn = 10−1.

q1 q2 q3 λ εmax tTarget

1 1 0 0.5 2.7 × 10−3 1.0 × 104

0 0 1 0.5 7.8 × 10−4 1.0 × 104

1 0 1 0 3.1 × 10−3 1.0 × 104

1 0 1 1 1.2 × 101 1.0 × 104

10 1 0 0 3.8 × 10−3 1.0 × 104

10 1 0 1 9.9 × 101 1.0 × 104

1 0 10 0 4.5 × 10−2 1.0 × 103

1 0 10 1 1.1 1.0 × 103

100 1 0 0 1.8 × 10−3 1.0 × 104

100 1 0 1 1.0 × 103 1.0 × 104

1 0 100 0 5.4 × 10−2 1.0 × 102

1 0 100 1 1.2 × 10−1 1.0 × 102

1000 1 0 0 2.0 × 10−3 1.0 × 104

1000 1 0 1 1.0 × 104 1.0 × 104

1 0 1000 0 2.2 × 10−2 1.0 × 101

1 0 1000 1 2.7 × 10−2 1.0 × 101

10 10 0 0.5 1.2 × 10−1 1.0 × 103

0 0 10 0.5 1.2 × 10−1 1.0 × 103

100 100 0 0.5 6.7 × 10−2 1.0 × 102

0 0 100 0.5 6.8 × 10−2 1.0 × 102

1000 1000 0 0.5 2.3 × 10−2 1.0 × 101

0 0 1000 0.5 2.3 × 10−2 1.0 × 101

and P(τ (k)
j )A,k appear at τ

(k)
j , which are random numbers

generated by Gillespie algorithm. The index j starts at 1 for
each k but ends at a random value j (k)

max which is dictated by the

TABLE III. The accuracy of the LC method on equilibrium
reaction for kn = 1.

q1 q2 q3 λ εmax tTarget

1 1 0 0.5 9.2 × 10−4 1.0 × 103

0 0 1 0.5 8.3 × 10−4 1.0 × 103

1 0 1 0 1.8 × 10−3 1.0 × 103

1 0 1 1 5.8 × 10−1 1.0 × 103

10 1 0 0 2.2 × 10−3 1.0 × 103

10 1 0 1 8.8 1.0 × 103

1 0 10 0 5.5 × 10−2 1.0 × 102

1 0 10 1 1.2 × 10−1 1.0 × 102

100 1 0 0 3.2 × 10−3 1.0 × 103

100 1 0 1 9.9 × 101 1.0 × 103

1 0 100 0 2.0 × 10−2 1.0 × 101

1 0 100 1 2.5 × 10−2 1.0 × 101

1000 1 0 0 2.2 × 10−3 1.0 × 103

1000 1 0 1 1.0 × 103 1.0 × 103

1 0 1000 0 7.2 × 10−3 1
1 0 1000 1 7.7 × 10−3 1
10 10 0 0.5 6.7 × 10−2 1.0 × 102

0 0 10 0.5 6.8 × 10−2 1.0 × 102

100 100 0 0.5 2.4 × 10−2 1.0 × 101

0 0 100 0.5 2.3 × 10−2 1.0 × 101

1000 1000 0 0.5 4.6 × 10−3 5.0 × 10−1

0 0 1000 0.5 7.5 × 10−3 1

052404-8



SPLITTING NODES AND LINKING CHANNELS: A . . . PHYSICAL REVIEW E 94, 052404 (2016)

TABLE IV. The accuracy of the LC method on equilibrium
reaction for kn = 101.

q1 q2 q3 λ εmax tTarget

1 1 0 0.5 3.7 × 10−3 1.0 × 103

0 0 1 0.5 2.4 × 10−3 1.0 × 103

1 0 1 0 1.4 × 10−3 1.0 × 103

1 0 1 1 9.3 × 10−2 1.0 × 103

10 1 0 0 1.2 × 10−3 1.0 × 102

10 1 0 1 5.0 × 10−1 1.0 × 102

1 0 10 0 4.3 × 10−2 1.0 × 101

1 0 10 1 5.4 × 10−2 1.0 × 101

100 1 0 0 2.1 × 10−3 1.0 × 102

100 1 0 1 9.1 1.0 × 102

1 0 100 0 7.2 × 10−3 1.4
1 0 100 1 7.7 × 10−3 1.4
1000 1 0 0 2.0 × 10−3 1.0 × 102

1000 1 0 1 9.9 × 101 1.0 × 102

1 0 1000 0 2.1 × 10−3 1.0 × 10−1

1 0 1000 1 2.1 × 10−3 1.0 × 10−1

10 10 0 0.5 4.8 × 10−2 1.0 × 101

0 0 10 0.5 4.8 × 10−2 1.0 × 101

100 100 0 0.5 6.7 × 10−3 1.3
0 0 100 0.5 7.3 × 10−3 1.3
1000 1000 0 0.5 2.4 × 10−3 5.0 × 10−2

0 0 1000 0.5 2.6 × 10−3 1.0 × 10−1

condition τ
(k)

j
(k)
max+1

> tTarget. In our simulations j (k)
max was about

3500.
The LC generating function produces a system of ordi-

nary differential equations for FA(t), FB(t), FC(t), FAA(t),

TABLE V. The accuracy of the LC method on equilibrium
reaction for kn = 104.

q1 q2 q3 λ εmax tTarget

1 1 0 0.5 3.3 × 10−3 1.0 × 103

0 0 1 0.5 2.5 × 10−3 1.0 × 103

1 0 1 0 3.6 × 10−3 1.0 × 103

1 0 1 1 3.7 × 10−3 1.0 × 103

10 1 0 0 3.3 × 10−3 1.0 × 102

10 1 0 1 3.4 × 10−3 1.0 × 102

1 0 10 0 3.3 × 10−3 1.0 × 101

1 0 10 1 3.4 × 10−3 1.0 × 101

100 1 0 0 2.8 × 10−3 1.0 × 101

100 1 0 1 1.0 × 10−2 1.0 × 101

1 0 100 0 6.0 × 10−3 1.0 × 10−1

1 0 100 1 6.1 × 10−3 1.0 × 10−1

1000 1 0 0 2.1 × 10−3 1.0 × 101

1000 1 0 1 9.3 × 10−2 1.0 × 101

1 0 1000 0 1.6 × 10−3 1.0 × 10−3

1 0 1000 1 1.6 × 10−3 1.0 × 10−3

10 10 0 0.5 2.2 × 10−3 1.0 × 101

0 0 10 0.5 3.7 × 10−3 1.0 × 101

100 100 0 0.5 5.4 × 10−3 1.0 × 10−1

0 0 100 0.5 4.0 × 10−3 1.0 × 10−1

1000 1000 0 0.5 3.9 × 10−3 1.0 × 10−3

0 0 1000 0.5 3.3 × 10−3 1.0 × 10−3

FIG. 11. An example of a stochastic process with large variation
between the duration of different states. The spiky jumps have a
duration of 5.0 × 10−3 whereas the duration of the longest zero state
is 7.7. The arbitrary unit of time is set by kp = 1.

FBB(t), FCC(t), FAB(t), and FBC(t) which were numerically
solved with Mathematica on the time interval [0,tTarget]. The
LC results were obtained much faster than the results from
the stochastic simulations. To compare the simulations with
the LC results, we need to compute time-dependent first-
and second-order factorial moments out of the 103 paths.
We cannot take the path average over k for a fixed time
τ

(k)
j because these times are stochastic and thus are not the

same for all paths. One way to obtain the moments from
the simulated data is to interpolate each path and obtain a
function defined for each time in the interval [0,tTarget]. We
then sample these interpolations at a specified time sequence,
say ts = s

tTarget

100 , with s = 0, . . . ,100. The path average over k is
simplified because the time sequence ts is common for all paths
k = 1, . . . ,103. This approach works if the molecule number is
large and if the difference between adjacent times τ

(k)
j−1 − τ

(k)
j

does not vary wildly. For small molecule numbers a molecule
may jump only between states q = 0 and q = 1, and so a
linear or other smooth interpolation will introduce artifacts.
The result depends on the location of the sampled times ts . As a
consequence we used a zero-order interpolation that represents
paths as step functions. For this approach the process is kept
discrete, the sampled state at ts is either 0 or 1, not an
artifact intermediate number between 0 and 1. Although the
interpolation artifact is eliminated there is another problem that
needs to be solved. Say the state is q = 0 between [τ (k)

j−1,τ
(k)
j ]

over a time length of τ
(k)
j−1 − τ

(k)
j = 7.7; Fig. 11. Next, the state

jumps to q = 1 for a time length τ
(k)
j − τ

(k)
j+1 = 5.0 × 10−4.

For such spiky jumps, the probability that ts will land between
τ

(k)
j and τ

(k)
j+1 is very small and so the value q = 1 is not

sampled. If the process is such that the state q = 1 is short
lived for the entire process, then we would get the erroneous
result that the average value is zero. These problems are
solved if we use a zero-order interpolation and take a time
average over a subinterval of [0,tTarget]. The time average will
capture the short-living states and so states like q = 1 over
τ

(k)
j − τ

(k)
j+1 = 5.0 × 10−4 are not lost.

To compute the time average, the interval [0,tTarget] was
divided in ten subintervals, [ti ,ti+1], with i = 0, . . . ,9. The
time-average for each path Pk over each of the ten time

052404-9



CAMERON FERWERDA AND OVIDIU LIPAN PHYSICAL REVIEW E 94, 052404 (2016)

intervals was computed, 〈Pk〉[ti ,ti+1]. Finally, for each [ti ,ti+1],
which is common to all paths, we took the average over all
paths k = 1, . . . ,103; that is, 10−3 ∑

k〈Pk
〉[ti ,ti+1]>. For the

second-order moments, such as FAB(t), we first multiplied the
paths PA,k and PB,k which can be done because A and B jump
at the same time for path k. Then we took the time average. The
time average over [ti ,ti+1] of the moments obtained from the
simulated data are denoted by F

Gillespie
A[ti ,ti+1], F

Gillespie
B[ti ,ti+1], F

Gillespie
C[ti ,ti+1],

F
Gillespie
AA[ti ,ti+1], F

Gillespie
BB[ti ,ti+1], F

Gillespie
CC[ti ,ti+1], F

Gillespie
AB[ti ,ti+1], F

Gillespie
AC[ti ,ti+1], and

F
Gillespie
BC[ti ,ti+1].

Next, the ordinary differential equations from the LC-model
were solved with Mathematica:

dFA

dt
= −kpFAB + knFC,

dFB

dt
= −kpFAB + knFC,

dFC

dt
= kpFAB − knFC,

dFAA

dt
= 2kp(1 − λ)FAB − 2kpλ

FAAFAB

FA

− 2kp(1 − λ)
F 2

AB

FB

+ 2knFAC,

dFBB

dt
= 2kpλFAB − 2kp(1 − λ)

FBBFAB

FB

− 2kpλ
F 2

AB

FA

+ 2knFBC,

dFCC

dt
= 2kpλ

FABFAC

FA

+ 2kp(1 − λ)
FABFBC

FB

− 2knFCC,

dFAB

dt
= −kpλ

FAAFAB

FA

− kp(1 − λ)
FBBFAB

FB

− kpλ
F 2

AB

FA

− kp(1 − λ)
F 2

AB

FB

+ knFAC + knFBC + knFC,

dFAC

dt
= −kp(1 − λ)FAB + kpλ

FAAFAB

FA

− kpλ
FABFAC

FA

− kp(1 − λ)
FABFBC

FB

+ kp(1 − λ)
F 2

AB

FB

− knFAC + knFCC,

dFBC

dt
= −kpλFAB − kpλ

FABFAC

FA

+ kp(1 − λ)
FABFBB

FB

− kp(1−λ)
FABFBC

FB

+kpλ
F 2

AB

FA

− knFBC + knFCC.

The initial conditions are generated, as above, from
F (zA,zB,zC,t = 0) = z1

Az0
Bz1000

C . This will give FB(t = 0) =
0 which cannot be used because the LC equations contain
FB(t = 0) as a denominator at t = 0. To avoid division by zero
we took FB(0) = 10−4. In general, for the zero-molecule initial
value, we used a small value for the LC initial conditions. For
FBB(t = 0) = qB(qB − 1) we used FBB(t = 0) = |qB(qB −
1)| to avoid negative numbers given that FBB should be either
zero or a positive number. The LC system of differential
equations were numerically solved for λ ∈ {0,0.1,0.2, . . . ,1}.

FIG. 12. The maximum error for kp = 1, kn = 10−4, qA = 1,
qB = 0, and qC = 1000. The time horizon is tTarget = 104. The time
unit is set by kp = 1.

The time averages of the LC moments over [ti ,ti+1] were
computed. These time-average values are denoted F LC

A[ti ,ti+1],
F LC

B[ti ,ti+1], F LC
C[ti ,ti+1], F LC

AA[ti ,ti+1], F LC
AB[ti ,ti+1], and so on.

The error for the first moment of molecule A, corresponding
to the time interval [ti ,ti+1] is computed as

εA[ti ,ti+1] =
∣∣F LC

A[ti ,ti+1] − F
Gillespie
A[ti ,ti+1]

∣∣
F

Gillespie
A[ti ,ti+1]

(A1)

if F
Gillespie
A[ti ,ti+1] �= 0 and

εA[ti ,ti+1] = ∣∣F LC
A[ti ,ti+1] − F

Gillespie
A[ti ,ti+1]

∣∣ (A2)

for F
Gillespie
A[ti ,ti+1] = 0.

These same formulas were used for all moments and all
ten time intervals. To get an overall view for the error for the
entire process, we defined εmax by computing the mean value
over the time intervals of the logarithm of the error for each
moment [Eqs. (A1) and (A2)], and then took the maximum
value over the moments:

log10(εmax) = max
over all 9 moments

(
1

10

9∑
i=0

log10(εmoment[ti ,ti+1])

)
.

(A3)

The overall error εmax depends on λ; Fig. 12. We noticed
that the overall maximum error is lowest for λ = 0. The value
λ = 0 eliminates the action of qA in Fig. 3(b) and leaves only
the lowest molecule number B, qB = 0 < qA = 1 in Fig. 12,
as the driving molecule in Fig. 3(a). We found that the trend
for all cases we simulated and tabulated in Tables I to V was
that the LC term that produces the lowest error corresponds to
the lowest initial value molecule number.

APPENDIX B: FOURTH-ORDER CLOSED SOLUTION
FOR COMPLEX FORMATION PROCESS

Here we discuss the complete solution of the biocircuit
from Fig. 5(a). The product node is not split and so the solution
extends up to the fourth order before it closes. The molecules
that bind, 1 and 2, are connected to the environment through the
generators g1(t) and g2(t), respectively. The finite system of
equations contains 13 equations. The moment F33(t) depends
on F123(t) which in turns depends on F1122(t). For simplicity,
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the time argument t is dropped for the generators, the function
f (t), and the moments:

(1) dF1/dt = g1,
(2) dF11/dt = 2g1F1,
(3) dF2/dt = g2,
(4) dF22/dt = 2g2F2,
(5) dF12/dt = g2F1 + g1F2,
(6) dF3/dt = f F12,
(7) dF112/dt = g2F11 + 2g1F12,
(8) dF122/dt = 2g2F12 + g1F22,
(9) dF1122/dt = 2g2F112 + 2g1F122,
(10) dF13/dt = f F112 + f F12 + g1F3,
(11) dF23/dt = f F12 + f F122 + g2F3,
(12) dF123/dt = f F112 + f F1122 + f F12 + f F122 +

g2F13 + g1F23,
(13) dF33/dt = 2f F123.
Integrating the system of equations for the moments, the

biocircuit’s time evolution can be casted as an input-output
mapping. For example, a simple input-output relation becomes
apparent for the mean values of q1 and q2:

F1(t) = F 0
1 +

∫ t

0
dt1g1(t1),

F2(t) = F 0
2 +

∫ t

0
dt1g2(t1). (B1)

Here, F 0
1 and F 0

2 are the initial mean values F1(0) and F2(0)
and are considered as the input variables. The output variables
are F1(t) and F2(t).

The input-output relation for all the other moments can
be represented as nested integrals. For example, the time
evolution of the mean value for the q3 molecule is

F3(t) =
∫ t

0
dt3f (t3)

∫ t3

0
dt2g1(t2)

∫ t2

0
dt1g2(t1)

+
∫ t

0
dt3f (t3)

∫ t3

0
dt2g2(t2)

∫ t2

0
dt1g1(t1)

+F 0
1

∫ t

0
dt3f (t3)

∫ t3

0
dt2g2(t2)

+F 0
2

∫ t

0
dt3f (t3)

∫ t3

0
dt2g1(t2)

+F 0
12

∫ t

0
dt3f (t3) + F 0

3 . (B2)

As the transition probability T (q,t) = f (t)q1q2 shows, the
product q1q2 controls q3. To make this product visible in F3(t)
we use∫ t3

0
dt2g1(t2)

∫ t2

0
dt1g2(t1) +

∫ t3

0
dt2g2(t2)

∫ t2

0
dt1g1(t1)

=
( ∫ t3

0
dt2g1(t2)

)( ∫ t3

0
dt2g2(t2)

)
(B3)

and obtain

F3(t) =
∫ t

0
dt3f (t3)

(∫ t3

0
dt2g1(t2)

)(∫ t3

0
dt2g2(t2)

)
+F 0

1

∫ t

0
dt3f (t3)

∫ t3

0
dt2g2(t2)

FIG. 13. The LC-mean value F3 coincides within the exact
solution with a mean error of 2.8 × 10−7 over the time interval [0,3.5].
The arbitrary unit of time is set by g2(t) = 1; Fig. 5(a).

+F 0
2

∫ t

0
dt3f (t3)

∫ t3

0
dt2g1(t2)

+F 0
12

∫ t4

0
dt3f (t3) + F 0

3 . (B4)

Dropping the integral sign in a nested integral we arrive at a
simple notation for the mean value F3(t):

F3(t) = fg1g2 + fg2g1 + fg2F
0
1 + fg1F

0
2 + f F 0

12 + F 0
3 .

(B5)
Representing the product rule (B3) as g1g2 + g2g1 = (g1g2)
we get

F3(t) = f (g1g2) + fg2F
0
1 + fg1F

0
2 + f F 0

12 + F 0
3 . (B6)

Similar formulas can be obtained for all moments [32].

APPENDIX C: COMPARISON BETWEEN SOLVABLE
SYSTEM FROM FIG. 5(A) AND ITS LOOP-CLOSING

VERSION

The moments F3(t), F33(t), F13(t), and F23(t) were numer-
ically computed by Mathematica for both the solvable system
and its LC version. For the solvable system from Fig. 5(a),
we used the equations from Appendix B. Then a mean error
εmean

moment was computed for each moment:

log10

(
εmean

moment

) = 1

103

103−1∑
k=0

log10(εmoment(tk)). (C1)

Here, εmoment(tk) follows the same rule as above, (A1) and
(A2), with F

Gillespie
moment (t) being exchanged with F solvable model

moment (t).
Instead of using averages over time intervals [ti ,ti+1] that were
required by the stochastic simulation results, here we used
numerical values computed at a sequence of time points tk =
0.1 + k (tTarget)/103, k = 0, . . . ,103 − 1 for both the solvable
model Fig. 5(a) and its LC approximation Fig. 5(b). In Figs. 13
and 14, tTarget = 3.5. This εmean

moment was reported in Sec. III.
We also used constant generators to find the error, by

varying g1 and g2 independently between 0 and 10 in steps
of five. We kept f (t) = 1. The initial values for q1 and q2 were
varied independently choosing the values 0, 1, 10, and 100.
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FIG. 14. The LC-mean value F13 coincides within the exact
solution with a mean error of 2.7 × 10−7. The driving molecule is
q1, λ = 1, which starts at t = 0 from zero. The LC-mean value F23

coincides within the exact solution with a mean error of 1.5 × 10−1.
The molecule q2 starts at t = 0 from 1 and its controlling term is
absent from the LC master equation, 1 − λ = 0. The error is much
smaller for the correlation F13 of q3 with the driving molecule q1 then
F23 between q3 and q2. This situation was observed in many other
comparisons between the LC and the exact results. The arbitrary unit
of time is set by g2(t) = 1; Fig. 5(a).

The initial value of q3 was 0 for all the runs. λ was fixed by
the driving molecule: λ = 1 if the initial q1 was less then the
initial q2. The time horizon was tTarget = 10. For each of the
combinations of the above parameters, we computed εmean

moment
from Eq. (C1) for F3(t), F33(t), F13(t), F23(t). Then we find
the maximum value over the four moments. This maximum
value for all the parameter combinations covered the range
from 10−3 to 10−1.

APPENDIX D: BISTABLE NETWORK

In what follows we describe the LC method applied to
the bistable system from Fig. 6. The reactions, transition
probabilities, and numerical values of their parameters are
taken from Ref. [38]. The association of variables qi with
the biochemical notations are E = q1, S = q2, ES = q3,
I = q4, EI = q5, and ESI = q6. We study the paths of the
substrate molecule S that show the bistable character of the
biocircuit. The path of the S molecule may move between a
low and a high state. Because the behavior of S is sufficient
to show the bistability we decided to eliminate the product
molecule P from the Eq. (D14) and worked with six molecules
instead of seven. We changed ES → E + P from Ref. [38]
with T3 = kprotq3 to ES → E with the same transition

rate:

E + S → ES, T1 = k+
1 q1q2, k+

1 = 25 979.537, (D1)

ES → E + S, T2 = k−
1 q3, k−

1 = 3.372 245 5, (D2)

ES → E, T3 = kprotq3, kprot = 5844.999, (D3)

E + I → EI, T4 = k+
2 q1q4, k+

2 = 5.334 155 5, (D4)

EI → E + I, T5 = k−
2 q5, k−

2 = 16 623.325, (D5)

ES + I → ESI, T6 = k+
3 q3q4, k+

3 = 12 200.836, (D6)

ESI → ES + I, T7 = k−
3 q6, k−

3 = 1472.3849, (D7)

ESI → EI + S, T8 = k−
4 q6, k−

4 = 15 145.809, (D8)

EI + S → ESI, T9 = k+
4 q2q5, k+

4 = 9647.324. (D9)

Molecules S and I degrade proportional with their respective
number:

S → ∅, T10 = ξSq2, ξS = 1, (D10)

I → ∅, T11 = ξI q4, ξI = 1. (D11)

Molecules S and I accumulate, being coupled to external
generators.

→ S, T12 = GS, GS = 1734.2661, (D12)

→ I, T13 = GI , GI = 1. (D13)

The initial conditions for the Gillespie simulation at t = 0
are E = 2, S = 400, ES = 0, I = 1, EI = 0, and ESI = 0.
For the LC method we take 0 as 10−10 for the same reason
as given in Appendix A, and so we used E = 2, S = 400,
ES = 10−10, I = 1, EI = 10−10, and ESI = 10−10. For the
LC method we need initial conditions for the second-order
moments. We used Fii(0) = |qi(qi − 1)|, where the absolute
value was necessary only for the case of 10−10 initial condition.
The initial values for the correlations were Fij (0) = qiqj for
all i < j with i,j = 1, . . . ,6. The molecules are considered
to be uncorrelated at t = 0, with an initial probability dis-
tribution F (z,0) = z2

1z
400
2 z0

3z
1
4z

0
5z

0
6. The differential equations

were numerically solved on the interval [0,4]. The LC method
provides the following master equation for the generating
function F (z,t) ≡ F (z1,z2,z3,z4,z5,z6,t):

∂tF (z,t) = λ1
(
z−1

1 z−1
2 z3 − 1

)
k+

1

F12(t)

F1(t)
z1∂z1F (z,t)

+ (1 − λ1)
(
z−1

1 z−1
2 z3 − 1

)
k+

1

F12(t)

F2(t)
z2∂z2F (z,t)

+ λ2
(
z−1

1 z−1
4 z5 − 1

)
k+

2

F14(t)

F1(t)
z1∂z1F (z,t)

+ (1 − λ2)
(
z−1

1 z−1
4 z5 − 1

)
k+

2

F14(t)

F4(t)
z4∂z4F (z,t)

+ λ3
(
z−1

3 z−1
4 z6 − 1

)
k+

3

F34(t)

F3(t)
z3∂z3F (z,t)

+ (1 − λ3)
(
z−1

3 z−1
4 z6 − 1

)
k+

3

F34(t)

F4(t)
z4∂z4F (z,t)
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TABLE VI. The relation to the MAPK notation from Ref. [41].

q1 = E1 q9 = MAPK q17 = MAPKKPMAPKKKS
q2 = E2 q10 = MAPKP q18 = MAPKKPPMAPKKPa
q3 = MAPKKK q11 = MAPKPa q19 = MAPKKPPMAPK
q4 = MAPKKKS q12 = MAPKPP q20 = MAPKPMAPKPa
q5 = MAPKK q13 = MAPKKKE1 q21 = MAPKPMAPKKPP
q6 = MAPKKP q14 = MAPKKKE2 q22 = MAPKKPPMAPKPa
q7 = MAPKKPP q15 = MAPKKMAPKKKS
q8 = MAPKKPa q16 = MAPKKPMAPKKPa

+ λ4
(
z−1

2 z−1
5 z6 − 1

)
k+

4

F25(t)

F2(t)
z2∂z2F (z,t)

+ (1 − λ4)
(
z−1

2 z−1
5 z6 − 1

)
k+

4

F25(t)

F5(t)
z5∂z5F (z,t)

+ (
z1z2z

−1
3 − 1

)
k−

1 z3∂z3F (z,t)

+ (
z1z4z

−1
5 − 1

)
k−

2 z5∂z5F (z,t)

+ (
z3z4z

−1
6 − 1

)
k−

3 z6∂z6F (z,t)

+ (
z2z5z

−1
6 − 1

)
k−

4 z6∂z6F (z,t)

+ (
z1z

−1
3 − 1

)
kprotz3∂z3F (z,t)

+ (
z−1

2 − 1
)
ξSz2∂z2F (z,t)

+ (
z−1

4 − 1
)
ξI z4∂z4F (z,t)

+ (z2 − 1)GSF (z,t) + (z4 − 1)GIF (z,t). (D14)

APPENDIX E: ULTRASENSITIVE NETWORK

The parameters used to simulate the network from Fig. 8
are as follows:

(i) The λ parameters are λ1 = 1, λ2 = 0.5, λ3 = 0.5, λ4 =
0.5, λ5 = 0.5, λ6 = 1, λ7 = 0.75, λ8 = 0.5, λ9 = 0.25,

λ10 = 0.
(ii) a = 103.2, d = 103, k = 103. The LC master equation

contains ten parts of the type described in Fig. 8 inset. For all
ten parts the a, d, and k parameters are equal. Equal parameters
were used also in Ref. [41].

(iii) To avoid overcrowding Fig. 8 with names of each
molecule we will use the following method to localize the
molecules: With reference to the inset of Fig. 8, the name of
the intermediate molecule z3 is constructed by concatenation
of the name of z1 and z2, the concatenation symbol being the
column :, Name[z3] = Name[z1] : Name[z2]. The molecules
z4 and z5 are obtained by dissociation of z3. The name of
z4 is Name[z4] = Name[z3]/Name[z5], where “/” means that
z5 left the complex z3 to obtain z4. Similarly, Name[z5] =
Name[z3]/Name[z4].

(iv) To write the master equation in terms of zk , k =
1, . . . ,22, the molecules from Fig. 8 are denoted as follows:

q1 = E1, q2 = w1, q3 = α, q4 = E2, q5 = β,

q6 = β̃ = (β : E2)/E2, q7 = E3, q8 = w2, q9 = γ,

q10 = γ̃=(γ : E3)/E3, q11=w3, q12 = δ, q13 = α : E1,

q14 = E2 : w1, q15=β : E2, q16=w2 : ((β : E2)/E2),

q17 = E2 : ((β : E2)/E2), q18=E3 : w2, q19=γ : E3,

q20 = w3 : ((γ : E3)/E3), q21 = E3 : ((γ : E3)/E3),

q22 = δ : w3. (E1)

(v) The initial molecule numbers at t = 0 are

q1 = 1, . . . ,30, q2 = 30, q3 = 300, q4 = 10−15,

q5 = 120, q6=10−15, q7=10−15, q8 = 30, q9 = 120,

q10 = 10−15, q11 = 12, q12 = 10−15, q13 = 10−15,

q14 = 10−15, q15 = 10−15, q16 = 10−15,

q17 = 10−15, q18 = 10−15, q19 = 10−15,

q20 = 10−15, q21 = 10−15, q22 = 10−15.

(vi) The initial probability at t = 0 is taken to be F =∏22
i=1 z

qi

i .
The relation to the MAPK notation from Ref. [41] is given

in Table VI.
The stochastic dynamics of the ultrasensitive net-

work can be expressed in terms of the time-dependant
Hill function: Fδ(t) = ωδt

mδ/(1 + αδt
mδ ) and Fδδ(t) =

ωδδt
mδδ /(1 + αδδt

mδδ ). The parameters m, ω, and α depend
on the initial value FE1(0). We used the time-dependant Hill
functions to compute the response times T1/2, T −

1/2, and T +
1/2.

APPENDIX F: REDUCING A NETWORK BY SPLITTING
AND PROJECTION

The steps taken to obtain the equivalence of the ultrasensi-
tive subnetwork from Fig. 10(a) with the simplified network
from Fig. 10(b) were

(i) The time interval over which the projection was
computed was taken to be [0,0.5] and was divided in 5000
pieces. The functions FE3(t), Fδ(t), FE3δ(t), FE3E3(t), and
Fδδ(t) were computed by using the LC method applied to the
entire network of 22 molecules of Fig. 8. Each function was
sampled at tk = 0.0001(k − 1) with k = 1, . . . ,5000.

(ii) For the simplified molecule network of Fig. 10(b) the
driving λ parameter is λ = 0.5 because of the identity of the
molecules 1 and 2.

(iii) The optimization procedure was carried in two
steps. First the parameters k+, k− were considered func-
tions of time and a sequence of k+(tk), k−(tk) for each
sampled time was obtained. This optimization gives an
equivalent model for Fig. 10(b) with time-dependent asso-
ciation and dissociation parameters. For each time tk the
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FIG. 15. The results of the second optimization for which k+ = 0.000 13 and k− = 0.009. The arbitrary unit of time in the ultrasensitive
network is set by the dissociation constant d = 103. The time horizon on which the systems from Fig. 10 were studied is 0.05. Only those time
intervals on which each generators G, p, n and G3, p3, n3 act were plotted.

unknowns k+(tk), k−(tk), G(tk), p(tk), n(tk), G3(tk), p3(tk),
and n3(tk) were determined by minimizing the objective
function: ( dFE3

dt
− dF1

dt
)2 + ( dFδ

dt
− dF3

dt
)2 + ( dFE3E3

dt
− dF11

dt
)2 +

( dFδδ

dt
− dF33

dt
)2 + ( dFE3δ

dt
− dF13

dt
)2 computed at tk . There is no

need to include in the objective function the moments of the
molecule labeled 2 in Fig. 10(b) because the time evolution of
this molecule is identical to the evolution of molecule 1. The
minimization was carried out through the Mathematica com-
mand NMinimize with the DifferentialEvolution method [33].

The optimization constraint imposes that all the unknowns
should be non-negative.

(iv) For the second optimization procedure, we computed
the median value for the association and dissociation time-
dependent parameters obtained from the first optimization:
k+ = 0.000 13 and k− = 0.009. These values were used for
a second run of the optimization algorithm for which k+ and
k− are now known constants. The results are presented in
Fig. 15.
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