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Abstract. Relative Difference Sets with the parameters(2a, 2b, 2a, 2a−b) have been constructed many ways (see
[2], [3], [5], [6], and [7] for examples). This paper modifies an example found in [1] to construct a family of
relative difference sets in 2-groups that gives examples forb = 2 andb = 3 that have a lower rank than previous
examples. The Simplex code is used in the construction.
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1. Introduction

A Relative Difference Set (RDS) in a groupG relative to a subgroupN is a subsetD so
that every element ofG−N is representedλ times as differencesd−d′, d, d′ ∈ D, and no
element ofN has such a representation. This is called a(m, n, k, λ) RDS, wheren = |N|,
mn= |G|, andk = |D|. These have been constructed for many possible parameters. This
paper will focus on the case wherek = nλ; in particular, we will be using the parameters
(2a, 2b, 2a, 2a−b). In a recent survey of RDS, Pott says “It is, in my opinion, one of the
most interesting questions about relative difference sets to find all possible groupsG which
contain such difference sets (referring to(pa, pb, pa, pa−b)) . . . ” [7]. These were first
studied by Elliot and Butson [3]. More recently, Jungnickel [5] has constructed RDS with
these parameters for all possibilities ofa andb. The (abelian) groups he used wereZb

4×Za−b
2

(he also has some nonabelian examples). In [2], the author used techniques from difference
sets to find many more groups that have a RDS; these examples were mainly whena is
even. This paper modifies a construction found in [1] to construct examples. The current
state of knowledge about RDS with these parameters is summarized as follows (see [7] for
more details).

THEOREM 1.1 Let G be an abelian group of order22a+b. If b = 1, then G has a
(22a, 2, 22a, 22a−1) RDS relative to any subgroup of order 2 if and only ifexp(G) ≤ 2a+1

[6]. If b > 1, then G has a(22a, 2b, 22a, 22a−b) RDS if G has rank at least a+ b (and the
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RDS is relative to an elementary abelian subgroup) [2]. Also, a necessary condition for a
RDS with these parameters to exist isexp(G) ≤ 22a andexp(G) ≤ 2a exp(N) [8].

Thus, theb = 1 existence question has been completely answered (forp = 2). In solving
that problem, Ma and Schmidt [6] state that the case withb > 1 is “much more difficult”.
We focus on that case in that paper, and we provide new constructions for two cases.

It is helpful to consider the group ringZG when working with RDS. If we write the subset
A of G as A = ∑a∈A a, andA(−1) = ∑a∈A a−1, then the definition of RDS implies that
D is a RDS iff DD(−1) = k + λ(G − N). When the groupG is abelian, then a character
of G is a homomorphism fromG to the complex numbers. We can extend this character
(homomorphism) linearly to the group ring. If we use the basic fact that the character sum
over a group will be 0 if the character is nonprincipal (nontrivial) on the group, then there
are 3 possible character sums. Moreover, the standard inversion theory arguments show
that if we have a set that has all of the correct character sums, then the set must be a RDS.
This tool is summarized in the following well-known lemma (see [9]).

LEMMA 1.1 Let G be an abelian group. A subset D is a(m, n, k, λ) RDS relative to a
subgroup N if and only if (i) every character that is nonprincipal on N has a character
sum of modulus

√
k (ii) every character that is principal on N but nonprincipal on G has

a character sum of modulus
√

k− nλ (iii) The size of the set D is k.

In order to construct the RDS in the next section, we will need some basic information
about the Simplex code (actually the extended Simplex code). One way to define this code
is as the dual of the binary Hamming code. The parity check matrix for the Hamming
code will haver rows, and there will be 2r − 1 columns: each column will be a distinct
nonzero binaryr -tuple. We will extend this matrix by one further column of all zeros (for
convenience, put the column of zeros as the first column and call it column 0). The Simplex
code is the codeC generated by the row space. The weight enumerator of this code is
WC(z) = 1+ (2r − 1)z2r−1

; in other words, all of the nonzero codewords have weight 2r−1

(see [4]). We need a few other basic facts about this code, which we include in the following
lemma.

LEMMA 1.2 Any r linearly independent codewordsα1, α2, . . . , αr from C will generate the
Simplex code. If we put these codewords into a matrix withαi being the ith row, then the
columns of this matrix will be distinct, and every possible r-tuple of 0s and 1s will appear
as a column. Any two distinct r− 1 dimensional spaces H1 and H2 will have the property
they they intersect in a r− 2 dimensional space, so their union will not be the whole code.

Proof. The first property is basic linear algebra. The second part is true because of the
connection to the Hamming code. If we drop the all 0 column, the matrix formed by the
αi is the parity check matrix for a code. Since the Hamming code has minimum distance
3, no two columns of the parity check matrix can be the same (otherwise, there would be a
word of weight 2). The all 0 column will be distinct from any of the other columns. Since
there are 2r distinct columns and there are 2r distinctr -tuples, it is clear that everyr -tuple
appears as a column exactly once. Finally, the last part about ther − 1 dimensional spaces
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is basic linear algebra of hyperplanes along with a counting argument of elements of the
code.

The code will be used to determine how to modify a basic group ring element so the
character sums of the combinations will all be correct.

2. Theb = 2 Case

In this section, we consider RDS with the parameters(22r+4, 4, 22r+4, 22r+2). From the
results mentioned in the introduction, these will exist in any group whose rank is at least
r + 4. To do this, use the technique found in [2] to construct a(22r+4, 2r+2, 22r+4, 2r+2)

RDS in a group with rank 2r + 4 relative to any elementary abelian subgroup of order
2r+2. A result mentioned in [5] implies that we will still have a RDS when we consider the
image of the RDS under the natural map fromG to G/H , whereH is any subgroup of the
forbidden subgroupN. Thus, if we contract the group with the(22r+4, 2r+2, 22r+4, 2r+2)

RDS by an elementary abelian subgroup of order 2r , the image of the RDS will be a
(22r+4, 4, 22r+4, 22r+2) RDS in a group with rank at leastr + 4. We will construct a RDS
with these parameters in any abelian group with rank at leastr + 3 and that contains a
subgroup isomorphic toZ4× Z4. Note that any abelian group with rank exactlyr + 3 that
meets the exponent bound of 2r+3 (when exp(N) = 2) will have a subgroup isomorphic to
Z4× Z4.

SupposeG is an abelian group of order 22r+6 with a subgroupH isomorphic toZ2
4×Zr+1

2 .
Let H be generated byx, y, z, w1, . . . , wr , wherex4 = y4 = z2 = w2

1 = · · · = w2
r = 1.

The forbidden subgroup for the construction will be〈x2, y2〉. The basic building block of
our RDS is the following group ring element:

D0 = (1+ x)(1+ y)(1+ xyz)(1+ w1)(1+ w2) · · · (1+ wr )

We have the following character theory sum on this basic block.

LEMMA 2.1 Let χ be a nonprincipal character on H. Thenχ(D0) = 2r+2 or 0 if χ is a
character of order 4, andχ(D0) = 0 if χ is a character of order 2.

Proof. If χ is a character of order 4, thenχ will have sum(1± √−1) on two of the
three terms(1+ x), (1+ y), (1+ xyz). Since the modulus of(1±√−1) is

√
2, the two

of these multiplied together will have modulus 2. There arer + 1 other terms, and all of
these terms will have character sum(1± 1). If any of the terms is (1-1), thenχ(D0) = 0,
but if all of these terms are (1+1), thenχ(D0) = 2r+2. If χ is a character of order 2, then
at least one of the terms inD0 will have a character sum of (1-1), and soχ(D0) = 0.

This result gives a clue as to why we will need the Simplex code to help us construct the
code. We will eventually want the character sum of the RDS to be 2r+2 for everycharacter
of order 4. TheD0 that we have defined above is only nonzero for those characters that
have (1+1) as a character sum for all of the terms that are not(1±√−1). We will need a
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lot of other blocks that are modifications of this basic block that will contribute the correct
character sum for some of the characters of order 4 and will have a character sum of 0 on
all of the rest. The Simplex code will tell us how to make the modifications.

Let α1, α2, . . . , αr+1 be a basis for the Simplex codeC of dimensionr + 1 as defined in
the introduction. We want to choose another basis forC, sayβ1, β2, . . . , βr , in a careful
way. We first chooseβ2 6∈ 〈α2〉. We next chooseβ3 6∈ 〈α3, α2 + β2〉 ∪ 〈β2〉. The next
choice isβ4 6∈ 〈α4, α2+ β2, α3+ β3〉 ∪ 〈β2, β3〉; this process is continued until we choose
βr+1 6∈ 〈αr+1, α2+ β2, α3+ β3, . . . , αr + βr 〉 ∪ 〈β2, β3, . . . , βr 〉. Finally, we chooseβ1 6∈
〈β2, β3, . . . , βr+1〉. These choices accomplish two things at once: first, theβi are linearly
independent and therefore are a basis forC. Second, theα2+β2, α3+β3, . . . , αr+1+βr+1

are linearly independent, and we can pick one more linearly independent codewordγ1 so
thatγ1, α2+ β2, α3+ β3, . . . , αr+1+ βr+1 is also a basis forC.

We are now in a position to define all of the other blocks. We will use the notationαi, j

to refer to thej th component ofαi (and similarly for theβi, j andγi, j ). With that notation,
the following are all of the other blocks of the RDS.

Dj = (1+ xy2α1, j )(1+ x2β1, j y)(1+ x1+2γ1, j yz)(1+ x2β2, j y2α2, jw1)

(1+ x2β3, j y2α3, jw2) · · · (1+ x2βr+1, j y2αr+1, jwr )

Note that these blocks are indexed by the columns of the matrices of the basis vectors;
since there are 2r+1 columns, we will have a total of 2r+1 blocks (includingD0: note
that D0 comes from the all 0 column). Each of these blocks is a subset ofH , and there
are 22r+6/2r+5 = 2r+1 distinct cosets ofH in G. If we label the coset representatives
{g0, g1, . . . , g2r+1−1}, then defineD = ∪2r+1−1

j=0 gj Dj . The next theorem claims that this is
the RDS we have been looking for.

THEOREM 2.1 The set D defined above is a(22r+4, 4, 22r+4, 22r+2) RDS in any abelian
group with rank at least r+ 3 and Z4 × Z4 as a subgroup (N is the subgroup Z2 × Z2

inside Z4× Z4).

Proof. We need to show that for any character that is nonprincipal onN = 〈x2, y2〉, the
character sum is 2r+2. Consider the case whenχ |H (the character restricted to the subgroup
H ) sends the generatorx to ±√−1 and all the other generators to±1. In this case, the
terms(1+ xy2α1, j ) and(1+ x1+2γ1, j yz) both go to(1±√−1) in all the blocks. The other
terms will all go to(1±1), and we want exactly one block to have all of its terms go to (1 +
1). If we look at where the(r +1)-tuple(y, w1, w2, . . . , wr ) gets sent, each component will
be sent to±1. We want to choose the columnj ′ so thatβi, j ′ = 1 when thei th component
is -1 andβi, j ′ = 0 when thei th component is +1 (we know that we can do this because
every possibler + 1-tuple shows up exactly one time as a column of theβi matrix). The
reason for this is we will multiply the -1 character value in thei th component byχ(x2βi, j ′ ),
and this is -1 ifβi, j ′ = 1. TheDj ′ associated to thej ′th column will have a character sum
of modulus 2r+2. All of the otherDj will have at least one term of (1-1), so the sum over
those will be 0. Similar arguments will handle the characters that sendy to ±√−1 and
everything else to±1 (this will use theαs instead of theβs) and the characters that send
both x andy to ±√−1 and everything else to±1 (this will use theγ1 and theαi + βi s).
The key to all of these working is that each possible column will show up in the appropriate
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matrix exactly one time, and that is true of the Simplex code. Thus, every character that is
nonprincipal on the subgroup〈x2, y2〉 has a character sum of modulus 2r+2.

There are still a few characters that we need to check to show that this is an RDS. We need
to check all characters of order 2 onH . Characters of order 2 have to send the generatorsx
andy to±1, so all of the termsx2 andy2 that we introduced in theDj have no effect on the
character sum. Thus, the character sum for these characters of order 2 onH have exactly
the same character sum asD0 for all j . We showed in Lemma 2.1 that characters of order 2
on H have a 0 character sum onD0, so this is true for all theDj and thus the sum over all of
D is 0. If the characterχ is principal onH but nonprincipal onG, thenχ(Dj ) = 2r+3 (that
is the size of theDj ). The sum overD is χ(D) = ∑χ(gi )χ(Di ) = 2r+3∑χ(gi ) = 0.
Finally, the principal character onG counts the number of elements in this subset, and that
number is 2r+1 · 2r+3 = 22r+4 = k (the first term in the product is the number of distinct
blocks, and the second term is the size of each block). Since all of the character sums
are what we want them to be, the inversion formula says that this subset is a RDS with
the proper parameters in any group of rank at leastr + 3 and that has a subgroupZ2

4.

Example 2.1: Consider the case whenr = 3. Let α1 = 0000000011111111, α2 =
0000111100001111, α3 = 0011001100110011, andα4 = 0101010101010101 (this is the
case where the parity check matrix for the Hamming code is a binary counter). We can then
chooseβ2 = 0000000011111111, β3 = 0000111100001111, β4 = 0011001100110011,
andβ1 = 0101010101010101. The final matrix will beα2+β2 = 0000111111110000, α3+
β3 = 0011110000111100, α4 + β4 = 0110011001100110, andγ1 = 0000000011111111.
The following are the blocks of the RDS:

D0 = (1+ x)(1+ y)(1+ xyz)(1+ w1)(1+ w2)(1+ w3);
D1 = (1+ x)(1+ x2y)(1+ xyz)(1+ w1)(1+ w2)(1+ y2w3);
D2 = (1+ x)(1+ y)(1+ xyz)(1+ w1)(1+ y2w2)(1+ x2w3);
D3 = (1+ x)(1+ x2y)(1+ xyz)(1+ w1)(1+ y2w2)(1+ x2y2w3);
D4 = (1+ x)(1+ y)(1+ xyz)(1+ y2w1)(1+ x2w2)(1+ w3);
D5 = (1+ x)(1+ x2y)(1+ xyz)(1+ y2w1)(1+ x2w2)(1+ y2w3);
D6 = (1+ x)(1+ y)(1+ xyz)(1+ y2w1)(1+ x2y2w2)(1+ x2w3);
D7 = (1+ x)(1+ x2y)(1+ xyz)(1+ y2w1)(1+ x2y2w2)(1+ x2y2w3);
D8 = (1+ xy2)(1+ y)(1+ x3yz)(1+ x2w1)(1+ w2)(1+ w3);
D9 = (1+ xy2)(1+ x2y)(1+ x3yz)(1+ x2w1)(1+ w2)(1+ y2w3);
D10 = (1+ xy2)(1+ y)(1+ x3yz)(1+ x2w1)(1+ y2w2)(1+ x2w3);
D11 = (1+ xy2)(1+ x2y)(1+ x3yz)(1+ x2w1)(1+ y2w2)(1+ x2y2w3);
D12 = (1+ xy2)(1+ y)(1+ x3yz)(1+ x2y2w1)(1+ x2w2)(1+ w3);
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D13 = (1+ xy2)(1+ x2y)(1+ x3yz)(1+ x2y2w1)(1+ x2w2)(1+ y2w3);
D14 = (1+ xy2)(1+ y)(1+ x3yz)(1+ x2y2w1)(1+ x2y2w2)(1+ x2w3);
D15 = (1+ xy2)(1+ x2y)(1+ x3yz)(1+ x2y2w1)(1+ x2y2w2)(1+ x2y2w3)

In the groupZ64× Z4× Z4
2, if g is an element of order 64 so thatg16 = x, then the RDS

is D = ∪15
i=0gi Di . This is an RDS in a group of rank 6, and the best that could be done

with previous constructions was rank 7 (start with a(1024, 32, 1024, 32) RDS in a group
of rank 10 and mod out the forbidden subgroup by a subgroup of order 8). The exponent
of the group we have chosen is as big as the exponent bound allows; any other group of
order 4096, rank 6, and exponent less than 64 will have a RDS by using these basic blocks.

3. Theb = 3 Case

We will use the same basic pattern as in the last section. We first define a basic building
block for a(22r+10, 8, 22r+10, 22r+7) RDS. This basic block will be a subset of a subgroup
isomorphic toH = Z3

4 × Zr+4
2 , wherex4 = y4 = z4 = w2 = u2 = v2 = t2 = s2

1 = · · · =
s2
r = 1 (note that the forbidden subgroup in this case will be〈x2, y2, z2〉).

D0 = (1+ x)(1+ y)(1+ z)(1+ xyw)(1+ xzu)(1+ yzv)

(1+ xyzt)(1+ s1)(1+ s2) · · · (1+ sr )

LEMMA 3.1 Any character of order4 on H will have character sum of modulus2r+5 or 0
on D0. Any character of order2 on H will have character sum of0 on D0.

The reason for this is the same as for Lemma 2.1, but in this case for every character of
order 4 there will be 4 terms of the form(1±√−1).

We need to determine where to modify this basic block to get the character sums to work
out correctly. The Simplex code is used here to determine the pattern for thex2, y2, andz2.
We will only do the case wherer > 1 here: ther = 0 andr = 1 cases will be explained
in the example following the theorem. Choose a basisα1, α2, . . . , αr+3 for the codeC of
dimensionr + 3. We will use theαi to determine which of the blocks to put thex2 in for
the terms (in order)(1+ y), (1+ z), (1+ yzv), (1+ s1), . . . , (1+ sr ). For the next phase
we will use the basisα4 + αr+3, α1, α2, . . . , αr+2 to determine which of the blocks to put
the y2 in for the terms (in order)(1+ x), (1+ z), (1+ xzu), (1+ s1), . . . , (1+ sr ). To
determine where to put thez2, we use the basisα2, α3, . . . , αr+3, α1+ αr+2+ αr+3 for the
terms (in order)(1+ x), (1+ y), (1+ xyw), (1+ s1), . . . , (1+ sr ). Those three patterns
will make the blocks work for the characters that are of order 4 on (respectively) justx,
just y, and justz. Once these three are established, most of the rest of the bases that are
required are combinations of these basic three ordered bases.

The following tables show how to fill out the rest of the bases. In the “how chosen”
column of the table, most of the vectors are forced on us by choices made in previous bases
(those are indicated by “from. . .bases for. . . ”). There are two choices in the first table,
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two choices in the second table, and one choice in the third table. These choices are made
with two goals: first, they have to complete a basis for the vector space so that the characters
listed at the top of the table will have the proper character sum. Second, they have to be
chosen so that the combination with a vector from another table will be the appropriate
vector in a later table. The last table does not have any choices because all of the vectors
are simply combinations of previously chosen vectors, and we had to make those choices
so that the last table would be a basis.

Whenx andy are sent to±√−1

Term vector how chosen
(1+ z) α1 + α2 from first and second bases for(1+ z)
(1+ xyw) α1 chosen to avoid basis vectors,

other(1+ xyw) term (usey2)
(1+ xyzt) α3 chosen to avoid basis vectors (usey2)
(1+ s1) α3 + α4 from first and second bases for(1+ s1)

(1+ s2) α4 + α5 from first and second bases for(1+ s2)

...
...

...

(1+ sr ) αr+2 + αr+3 from first and second bases for(1+ sr )

Whenx andz are sent to±√−1

Term vector how chosen
(1+ y) α1 + α3 from first and third bases for(1+ y)
(1+ xzu) α1 chosen to avoid basis vectors,

other(1+ xzu) term (usez2)
(1+ xyzt) α2 if r is odd chosen to avoid basis vectors

α2 + α3 if r is even (usez2)
(1+ s1) α4 + α5 from first and third bases for(1+ s1)

(1+ s2) α5 + α6 from first and third bases for(1+ s2)

...
...

...

(1+ sr−1) αr+2 + αr+3 from first and third bases for(1+ sr−1)

(1+ sr ) αr+2 + α1 from first and third bases for(1+ sr )

Wheny andz are sent to±√−1

Term vector how chosen
(1+ x) α2 + α4 + αr+3 from second and third bases for(1+ x)
(1+ yzv) α1 chosen to avoid basis vectors,

other(1+ yzv) term (usez2)
(1+ xyzt) α2 + α3 if r is odd from fourth and fifth bases for(1+ xyzt)

α2 if r is even
(1+ s1) α3 + α5 from second and third bases for(1+ s1)

(1+ s2) α4 + α6 from second and third bases for(1+ s2)

...
...

...

(1+ sr−1) αr+1 + αr+3 from first and third bases for(1+ sr−1)

(1+ sr ) αr+3 + α1 from second and third bases for(1+ sr )
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Whenx, y, andz are sent to±√−1

Term vector how chosen
(1+ xyw) α1 + α4 from third and fourth bases for(1+ xyw)
(1+ xzu) α1 + α2 from second and fifth bases for(1+ xzu)
(1+ yzv) α1 + α3 from first and sixth bases for(1+ yzv)
(1+ s1) α3 + α4 + α5 from first, second, and third bases for(1+ s1)

(1+ s2) α4 + α5 + α6 from first, second, and third bases for(1+ s2)

...
...

...

(1+ sr−1) αr+1 + αr+2 + αr+3 from first, second, and third bases for(1+ sr−1)

(1+ sr ) α1 from first, second, and third bases for(1+ sr )

We will use these ordered bases for the Simplex code in the same way we did before to
define the rest of the blocks of the RDS. TheDj will havex2, y2, andz2 in the blocks where
the appropriate basis vector has a 1 in thej th position, and they will not appear if there is a
0 in the j th position. IfG is any abelian group of order 22r+13 with H as a subgroup, then
there are 22r+13/2r+10 = 2r+3 cosets ofH in G. If {g0, g1, . . . , g2r+3−1} is a set of coset
representatives, theD = ∪gj Dj is the RDS.

THEOREM3.1 Let G be any abelian group of order22r+13 (r > 1) of rank at least r+7 and
a subgroup isomorphic to Z34. Then the set D defined above is a(22r+10, 8, 22r+10, 22r+7)

RDS in G relative to the subgroup Z2× Z2× Z2 contained in Z4× Z4× Z4.

The proof of this is similar to (but more complicated than) the proof of the theorem in
the previous section. It relies on the fact that the seven sets of codewords chosen above
are linearly independent. This would imply that they form a basis for the code, and when
they are put into the matrix form every possible column will show up exactly one time.
If this is true, then every character of order 4 will have a character sum of modulus 2r+5

for exactly one of theDj and will sum to 0 on all the other blocks. The other characters
will work out the same as they did onD0, and the inversion formula will finish the proof.
The rank of the group here is one less than what was previously possible (start with a
(22r+10, 2r+5, 22r+10, 22r+5) RDS in a group with rank 22r+10 and mod out the forbidden
subgroup by a group of order 2r+2 yielding rankr + 8).

Example 3.1: Consider the case whenr = 1. Let α1 = 0000000011111111, α2 =
0000111100001111, α3 = 0011001100110011, andα4 = 0101010101010101 as in Ex-
ample 2.1. The pattern of ordered bases that we will use for the 7 different types of char-
acters of order 4 are as follows:{α1, α2, α3, α4}; {α4, α1, α2, α3}; {α2, α3, α4, α1}; {α1 +
α2, α1, α3, α3 + α4}; {α1 + α3, α1, α2, α1 + α4}; {α2 + α4, α1, α2 + α3, α1 + α3}; {α1 +
α4, α1+ α2, α1+ α3, α1+ α3+ α4}. The blocks are as follows:

D0 = (1+ x)(1+ y)(1+ z)(1+ xyw)(1+ xzu)(1+ yzv)

(1+ xyzt)(1+ s1);
D1 = (1+ xy2)(1+ y)(1+ z)(1+ xyz2w)(1+ xzu)(1+ yzv)

(1+ xyzt)(1+ x2s1);
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D2 = (1+ x)(1+ yz2)(1+ z)(1+ xyw)(1+ xzu)(1+ x2yzv)

(1+ xy3zt)(1+ y2s1);
D3 = (1+ xy2)(1+ yz2)(1+ z)(1+ xyz2w)(1+ xzu)(1+ x2yzv)

(1+ xy3zt)(1+ x2y2s1);
D4 = (1+ xz2)(1+ y)(1+ x2z)(1+ xyw)(1+ xy2zu)(1+ yzv)

(1+ xyz3t)(1+ s1);
D5 = (1+ xy2z2)(1+ y)(1+ x2z)(1+ xyz2w)(1+ xy2zu)

(1+ yzv)(1+ xyz3t)(1+ x2s1);
D6 = (1+ xz2)(1+ yz2)(1+ x2z)(1+ xyw)(1+ xy2zu)

(1+ x2yzv)(1+ xy3z3t)(1+ y2s1);
D7 = (1+ xy2z2)(1+ yz2)(1+ x2z)(1+ xyz2w)(1+ xy2zu)

(1+ x2yzv)(1+ xy3z3t)(1+ x2y2s1);
D8 = (1+ x)(1+ x2y)(1+ y2z)(1+ xy3w)(1+ xz3u)

(1+ yz3v)(1+ xyzt)(1+ z2s1);
D9 = (1+ xy2)(1+ x2y)(1+ y2z)(1+ xy3z2w)(1+ xz3u)

(1+ yz3v)(1+ xyzt)(1+ x2z2s1);
D10 = (1+ x)(1+ x2yz2)(1+ y2z)(1+ xy3w)(1+ xz3u)

(1+ x2yz3v)(1+ xy3zt)(1+ y2z2s1);
D11 = (1+ xy2)(1+ x2yz2)(1+ y2z)(1+ xy3z2w)(1+ xz3u)

(1+ x2yz3v)(1+ xy3zt)(1+ x2y2z2s1);
D12 = (1+ xz2)(1+ x2y)(1+ x2y2z)(1+ xy3w)(1+ xy2z3u)

(1+ yz3v)(1+ xyz3t)(1+ z2s1);
D13 = (1+ xy2z2)(1+ x2y)(1+ x2y2z)(1+ xy3z2w)(1+ xy2z3u)

(1+ yz3v)(1+ xyz3t)(1+ x2z2s1);
D14 = (1+ xz2)(1+ x2yz2)(1+ x2y2z)(1+ xy3w)(1+ xy2z3u)

(1+ x2yz3v)(1+ xy3z3t)(1+ y2z2s1);
D15 = (1+ xy2z2)(1+ x2yz2)(1+ x2y2z)(1+ xy3z2w)(1+ xy2z3u)

(1+ x2yz3v)(1+ xy3z3t)(1+ x2y2z2s1)

If we consider the groupZ64× Z2
4 × Z5

2, if g is an element of order 64 so thatg16 = x,
then the RDS isD = ∪15

i=0gi Di . This has rank 8, and the best that could be done before was
9. As before, there are a lot of other abelian groups of rank 8 that will have RDSs based on
this construction.

There is a similar construction for ther = 0 case. The only difference is the ordered sets
of vectors with 3 elements must be chosen so that they are linearly independent.

It is worth making several notes about this construction.

1. The involutionsu, v, w andt are needed here in order to make sure that the basic block
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does not have any coefficients other than 0 or 1. If there were coefficients of higher
orders, then this would be a RDS with repeated elements, which we are not allowed to
do. The same thing was true in theb = 2 case, and in general we will need 2b− b− 1
involutions when there areb distinct generators of order 4.

2. There are other ways to choose the seven bases that are required to make this construction
work. The difficult part of making the choices is that each stage has implications on
later bases. For example, when we choseα1 as the codeword associated to(1+ y) in the
first basis (for characters that just sendx to±√−1) andα2 as the codeword associated
to (1+ y) in the second basis (for characters that just sendz to ±√−1), that forced
α1+ α2 to be the codeword associated to(1+ y) in the fourth basis (for characters that
sendx andz to±√−1). The reason this is forced on us is thatα1 determines where to
put x2, α2 determines where to putz2. Once these are placed, when just one ofx2 and
z2 appears in a term, the characterχ that sends bothx andz to±√−1 will multiply the
y term by−1; if neitherx2 nor z2 appear or both, then they term will not be affected.
This situation is best described by adding the two codewords: when one component
has a 0 and the other has a 1, the sum is 1 (corresponding to multiplying by−1) and
when both components have either 0s or 1s, the sum is 0 (corresponding to multiplying
by +1). There are many dependence relationships like this.

3. We will need to use the notationa1, . . . ,ar+3 for the first basis,b1, . . . ,br+3 for the
second basis, up throughg1, . . . , gr+3 for the seventh basis. With this notation, the
most difficult of the choices to make are the following:

a. The codewordd2 must be chosen so that it is not in the hyperplane〈d1, d4, . . . ,dr+3, c3〉
(those are all predetermined, andd2 cannot be dependent on any of thedi s). Also,
d2 cannot be in the cosetc3 + 〈a4 + b4 + c4, . . . ,ar+3 + br+3 + cr+3〉. There
are elements left to choose from by Lemma 1.1. The codeworde2 has a similar
restriction.

b. The codeworde3 must be chosen so that it is not in the hyperplane〈e1, e2, e4, . . . ,er+3〉.
It must also avoidd3 + 〈b1 + c1, b4 + c4, . . . ,br+3 + cr+3〉 so that f3 = d3 + e3

will be linearly independent of the otherfi .

c. The codewordf2 must avoid the hyperplane〈 f1, f3, . . . , fr+3〉 and the coseta3 +
〈c3 + d2, b3 + e2,a4 + b4 + c4, . . . ,ar+3 + br+3 + cr+3〉. Since both of these are
hyperplanes, we need to know that they are not the same hyperplane. This can be
done if we make a good choice ofe2. This choice is the reason that we did not
write the basis in the most general way possible. Lemma 1.1 helps with making
the choices.

4. This idea can be generalized to higher order forbidden subgroups. For example, if
we want to do this for a forbidden subgroup that is elementary abelian of order 16,
we need to use a basic block with 15 elements in it which include all possible ele-
ments of order 4. The subgroupH will be Z4

4 × Zr+11
2 , and the parameters will be

(22r+22, 16, 22r+22, 22r+18) for abelian groups of rankr +15. This rank can be obtained
through previously mentioned methods (start with a(22r+22, 2r+11, 22r+22, 2r+11) and
contract by a subgroup of order 2r+7 yielding a group of rank 2r+22−(r+7) = r+15).
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