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Abstract. Relative Difference Sets with the parametéd, 20, 22, 22-0) have been constructed many ways (see
[2], [3], [5], [6], and [7] for examples). This paper modifies an example found in [1] to construct a family of
relative difference sets in 2-groups that gives exampleb fer2 andb = 3 that have a lower rank than previous
examples. The Simplex code is used in the construction.
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1. Introduction

A Relative Difference Set (RDS) in a grou relative to a subgroupl is a subseD so

that every element @& — N is represented times as differences—d’, d, d’ € D, and no
element ofN has such a representation. This is callédhan, k, ) RDS, wheren = |N|,

mn = |G|, andk = |D|. These have been constructed for many possible parameters. This
paper will focus on the case wheke= nA; in particular, we will be using the parameters
(22,20 22 22-b)y |n a recent survey of RDS, Pott says “It is, in my opinion, one of the
most interesting questions about relative difference sets to find all possible ggauipish
contain such difference sets (referring(?, p°, p?, p*®)) ...” [7]. These were first
studied by Elliot and Butson [3]. More recently, Jungnickel [5] has constructed RDS with
these parameters for all possibilitiesaaindb. The (abelian) groups he used wér%x zg—b

(he also has some nonabelian examples). In [2], the author used techniques from difference
sets to find many more groups that have a RDS; these examples were mainlauwhen
even. This paper modifies a construction found in [1] to construct examples. The current
state of knowledge about RDS with these parameters is summarized as follows (see [7] for
more details).

THEOREM 1.1 Let G be an abelian group of ordeg?®®®. If b = 1, then G has a
(2%, 2,222 222-1) RDS relative to any subgroup of order 2 if and onlgif(G) < 22+1
[6]. Ifb > 1, then G has g2%, 2°, 222 223-b) RDS if G has rank at least & b (and the
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RDS is relative to an elementary abelian subgroup) [2]. Also, a necessary condition for a
RDS with these parameters to exiseig(G) < 222 andexp(G) < 22 exp(N) [8].

Thus, theb = 1 existence question has been completely answereg §oR). In solving
that problem, Ma and Schmidt [6] state that the case tvith 1 is “much more difficult”.
We focus on that case in that paper, and we provide new constructions for two cases.

Itis helpful to consider the group ringG when working with RDS. If we write the subset
AofGasA =), ,a andA-D =Y __ a1 then the definition of RDS implies that
DisaRDSiff DD = k + A(G — N). When the grouf is abelian, then a character
of G is a homomorphism fron® to the complex numbers. We can extend this character
(homomaorphism) linearly to the group ring. If we use the basic fact that the character sum
over a group will be 0 if the character is nonprincipal (nontrivial) on the group, then there
are 3 possible character sums. Moreover, the standard inversion theory arguments show
that if we have a set that has all of the correct character sums, then the set must be a RDS.
This tool is summarized in the following well-known lemma (see [9]).

LEMMA 1.1 Let G be an abelian group. A subset D igma, n, k, ») RDS relative to a
subgroup N if and only if (i) every character that is nonprincipal on N has a character
sum of modulus/k (ii) every character that is principal on N but nonprincipal on G has
a character sum of modulugk — na (i) The size of the set D is k.

In order to construct the RDS in the next section, we will need some basic information
about the Simplex code (actually the extended Simplex code). One way to define this code
is as the dual of the binary Hamming code. The parity check matrix for the Hamming
code will haver rows, and there will be™2— 1 columns: each column will be a distinct
nonzero binary -tuple. We will extend this matrix by one further column of all zeros (for
convenience, put the column of zeros as the first column and call it column 0). The Simplex
code is the cod€ generated by the row space. The weight enumerator of this code is
We(2) = 1+ (2 — 1)227"; in other words, all of the nonzero codewords have weight 2
(see [4]). We need a few other basic facts about this code, which we include in the following
lemma.

LEMMA 1.2 Anyr linearly independent codewords, a, . . ., o from C will generate the
Simplex code. If we put these codewords into a matrix witheing the i row, then the
columns of this matrix will be distinct, and every possible r-tuple of Os and 1s will appear
as a column. Any two distinct+ 1 dimensional spacestand H will have the property
they they intersect in a+ 2 dimensional space, so their union will not be the whole code.

Proof. The first property is basic linear algebra. The second part is true because of the
connection to the Hamming code. If we drop the all 0 column, the matrix formed by the
«aj is the parity check matrix for a code. Since the Hamming code has minimum distance
3, no two columns of the parity check matrix can be the same (otherwise, there would be a
word of weight 2). The all 0 column will be distinct from any of the other columns. Since
there are 2distinct columns and there aré @istinctr -tuples, it is clear that evemy-tuple
appears as a column exactly once. Finally, the last part abouttHedimensional spaces
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is basic linear algebra of hyperplanes along with a counting argument of elements of the
code. ]

The code will be used to determine how to modify a basic group ring element so the
character sums of the combinations will all be correct.

2. Theb=2Case

In this section, we consider RDS with the paramet@ft, 4, 22 +4, 22+2)  From the
results mentioned in the introduction, these will exist in any group whose rank is at least
r + 4. To do this, use the technique found in [2] to construg@Z*, 2/ +2, 22 +4 2r+2)
RDS in a group with rank 2+ 4 relative to any elementary abelian subgroup of order
2'+2_ Aresult mentioned in [5] implies that we will still have a RDS when we consider the
image of the RDS under the natural map fr@to G/H, whereH is any subgroup of the
forbidden subgroupN. Thus, if we contract the group with thg% +4, 2/+2 22r+4 2r+2)
RDS by an elementary abelian subgroup of ordertBe image of the RDS will be a
(27 +4 4, 22+4 2742y RDS in a group with rank at least+ 4. We will construct a RDS
with these parameters in any abelian group with rank at leasB and that contains a
subgroup isomorphic td, x Z4. Note that any abelian group with rank exaatly 3 that
meets the exponent bound 62 (when expgN) = 2) will have a subgroup isomorphic to
Z4 X Z4.

SupposeS is an abelian group of ordef2® with a subgrougH isomorphic tazZ2 x ZE”.
Let H be generated by, y, z, wy, ..., w;, wherex* = y* =22 = w? = ... = w2 = 1.
The forbidden subgroup for the construction will €&, y?). The basic building block of
our RDS is the following group ring element:

Do=1+xA+yA+xy2A+w)(d+w2) - 1+ wr)

We have the following character theory sum on this basic block.

LEMMA 2.1 Let x be a nonprincipal character on H. Then(Dg) = 2°t2 or 0 if x is a
character of order 4, angt (Do) = Qif x is a character of order 2.

Proof. If x is a character of order 4, thenwill have sum(1 £ +/—1) on two of the
three termg1 + x), (1L + y), (1 + xy2). Since the modulus dfL + v/—1) is +/2, the two
of these multiplied together will have modulus 2. Thererare 1 other terms, and all of
these terms will have character siint 1). If any of the terms is (1-1), thep(Dg) = 0,
but if all of these terms are (1+1), ther(Dg) = 2'+2. If x is a character of order 2, then
at least one of the terms Dy will have a character sum of (1-1), and gdDg) = O.

[ ]

This result gives a clue as to why we will need the Simplex code to help us construct the
code. We will eventually want the character sum of the RDS td h&far everycharacter
of order 4. TheDg that we have defined above is only nonzero for those characters that
have (1+1) as a character sum for all of the terms that ar¢inat,/—1). We will need a
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lot of other blocks that are modifications of this basic block that will contribute the correct
character sum for some of the characters of order 4 and will have a character sum of 0 on
all of the rest. The Simplex code will tell us how to make the modifications.

Letas, ay, ..., a1 be a basis for the Simplex co@eof dimensiorr + 1 as defined in
the introduction. We want to choose another basisfpsay i, 82, ..., B, in a careful
way. We first choosg, ¢ (a2). We next choos@s & (as, oz + B2) U (B2). The next
choice isBs & (a4, a2 + B2, a3z + B3) U (B2, B3); this process is continued until we choose
Bri1 & (ry1, 02+ P2, a3+ B3, ..., o + Br) U (B2, Ba, ..., Br). Finally, we choose; ¢
(B2, B3, ..., Bri1). These choices accomplish two things at once: firstgthere linearly
independent and therefore are a basisfoGecond, the, + 82, az+ B3, ..., r41+ Brea
are linearly independent, and we can pick one more linearly independent codevsurd
thatyy, oo + B2, a3 + B3, ..., or11 + Bry1 is also a basis fo€.

We are now in a position to define all of the other blocks. We will use the notatipn
to refer to thej'" component oty (and similarly for thes; ; andy ;). With that notation,
the following are all of the other blocks of the RDS.

Dj = (L+xy* )L+ x?Priy) (14 xMH21iy2) (1 + x¥2iy*2iw,)
1+ X2ﬂ3.j y20£3.j wo) -+ (L+ X2,3r+1.j y201r+14 wr)

Note that these blocks are indexed by the columns of the matrices of the basis vectors;
since there are'2! columns, we will have a total of' 2! blocks (includingDg: note
that Dy comes from the all 0 column). Each of these blocks is a subskt, &nd there
are Z'+6,2r+5 — 2r+1 distinct cosets oH in G. If we label the coset representatives
{Qo, Q1. . .., Gp+1_1}, then defineD = Uf!é‘lgj D;. The next theorem claims that this is
the RDS we have been looking for.

THEOREM 2.1 The set D defined above is(8% 4, 4, 22 +4, 22+2) RDS in any abelian
group with rank at least #- 3 and Z, x Z4 as a subgroup (N is the subgroup % Z,
inside Z; x Zj).

Proof. We need to show that for any character that is nonprincipalloa (x2, y?), the
character sum is'22. Consider the case whery (the character restricted to the subgroup
H) sends the generatarto ++/—1 and all the other generators 46l. In this case, the
terms(1 4+ xy?+i) and(1 4+ x**?".iyz) both go to(1 + +/—1) in all the blocks. The other
terms will all go to(1 + 1), and we want exactly one block to have all of its terms go to (1 +
1). If we look at where thér + 1)-tuple(y, w1, wo, ..., wy) gets sent, each component will
be sent tat1. We want to choose the colunjnso thatg; ;; = 1 when the ™" component

is -1 andg; j; = 0 when theit® component is +1 (we know that we can do this because
every possible + 1-tuple shows up exactly one time as a column ofghenatrix). The
reason for this is we will multiply the -1 character value in tHecomponent byy (x2.i"),

and this is -1 ifg; j = 1. TheD; associated to th¢'" column will have a character sum
of modulus 2+2. All of the otherD; will have at least one term of (1-1), so the sum over
those will be 0. Similar arguments will handle the characters that gendt-+/—1 and
everything else ta:1 (this will use thexs instead of theggs) and the characters that send
bothx andy to ++/—1 and everything else te&x1 (this will use they; and thex; + ;).

The key to all of these working is that each possible column will show up in the appropriate
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matrix exactly one time, and that is true of the Simplex code. Thus, every character that is
nonprincipal on the subgroup?, y?) has a character sum of modulis?2

There are still a few characters that we need to check to show that this is an RDS. We need
to check all characters of order 2 h Characters of order 2 have to send the generators
andy to +1, so all of the termg? andy? that we introduced in thB; have no effect on the
character sum. Thus, the character sum for these characters of ordét hare exactly
the same character sumRgfor all j. We showed in Lemma 2.1 that characters of order 2
on H have a 0 character sum @y, so this is true for all th®; and thus the sum over all of
D is 0. Ifthe charactey is principal onH but nonprincipal orG, theny (D;) = 23 (that
is the size of theD;). The sum oveD is x(D) = Y x(g)x(Di) = 23> x(g) = 0.
Finally, the principal character d@ counts the number of elements in this subset, and that
number is 2+1 . 243 = 2Z+4 — K (the first term in the product is the number of distinct
blocks, and the second term is the size of each block). Since all of the character sums
are what we want them to be, the inversion formula says that this subset is a RDS with
the proper parameters in any group of rank at least3 and that has a subgroug.

]

Example 2.1: Consider the case when = 3. Leta; = 000000001111111%, =
000011110000111%3 = 001100110011001andas = 0101010101010101 (this is the
case where the parity check matrix for the Hamming code is a binary counter). We can then
chooseB, = 0000000011111118; = 000011110000111B, = 0011001100110011,
andB; = 0101010101010101. The final matrix willbg+ 8, = 0000111111110000:3+

Bz =001111000011110Q@4 + B4 = 0110011001100110, and = 0000000011111111.

The following are the blocks of the RDS:

Do = (1+ X)L+ Y)(L+ Xy (L + w1) (1 + w2) (1 + ws):
D1 = (14 )1+ x*y)(1+ xy2 (L + w1) (1 + w2) (1 + y?ws);

Dz = (1+ X)L+ y) L+ xy2(1+ w) (L + y*wz) (1 + X*w3);

D3 = (1+ )1+ x*y)(1+ xy2 (L + w1) (1 + Y?w2) (1 + x*y?ws);

Da = 1+ )1+ V) A+ xy2(1+ y?w1) (1 + X*w2) (1 + w3);

Ds = (1+ X)L+ X*Y) (L + Xy (1 + y*w1) (1 + x*w2) (1 + ywa):

De = (1+ X)L+ Y) (L + Xy (L + Y?w1) (L + X*y*wp) (1 + X*w3);

D7 = (1+ X)L+ X*Y) (L + Xy (1 + y*w1) (1 + X?y*w2) (1 + X*y?w3);
Ds = (1+ xy) (1 + ¥) (1 + x%y2) (1 + x*w1) (1 4 w2) (1 + wa):

Do = (14 xy) (1 + x*y) (1 + X}y (L + x*w1) (1 + w2) (1 + y?ws);
Dio= (14 Xy) (L + V)1 + X*y2D (1 + x*w1) (L + y?w2) (1 + X*w3);

D11 = (14 xy) (L + x*y) (1 + x°y2) (L + x*w1) (1 + y?w2) (1 + X*y*w3);
D12 = (1 + XYL+ V)L + Xy (1 + x*y?w1) (1 + X*w2) (1 + wa);
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Dis = (L + Xy (1 + x2y) (L + x3y2) (1 + x2y2w1) (1 + X*w2) (1 + y2ws);
D1a = (L+ Xy (1 + YL+ x3y2) (1 + x2y?w1) (1 + X2y?w) (1 + Xw3);
Dis = (1 4+ XY (1 + X2y)(1 + x3y2) (1 + x2y?w1) (1 + X2y?w,) (1 + X2y?ws)

In the groupZes x Z4 x Z3, if gis an element of order 64 so thgif = x, then the RDS
is D = U®,g'D;. This is an RDS in a group of rank 6, and the best that could be done

with previous constructions was rank 7 (start witfl@24 32, 1024 32) RDS in a group

of rank 10 and mod out the forbidden subgroup by a subgroup of order 8). The exponent

of the group we have chosen is as big as the exponent bound allows; any other group of

order 4096, rank 6, and exponent less than 64 will have a RDS by using these basic blocks.
]

3. Theb = 3Case

We will use the same basic pattern as in the last section. We first define a basic building
block for a(22+10, 8, 22+10 2r+7y RDS. This basic block will be a subset of a subgroup
isomorphic toH = Z3 x Z)™ wherex* = y* = = w? =2 =’ =t? = = ... =

s? = 1 (note that the forbidden subgroup in this case willkg y?, 7%)).

Do = A+x)A+y)A+2(1+ xyw)(A+ xzu(1+ yzv)
I+xyzh(1+s)l+)---(1+s)

LEMMA 3.1 Any character of orded on H will have character sum of modul@st> or 0
on Dy. Any character of orde? on H will have character sum @ on Dy.

The reason for this is the same as for Lemma 2.1, but in this case for every character of
order 4 there will be 4 terms of the fortd + /—1).

We need to determine where to modify this basic block to get the character sums to work
out correctly. The Simplex code is used here to determine the pattern fof, it andz?.
We will only do the case whene > 1 here: the = 0 andr = 1 cases will be explained
in the example following the theorem. Choose a basjsx, . . ., o135 for the codeC of
dimensionr + 3. We will use thay; to determine which of the blocks to put tké in for
the terms (inorder)1 +y), (1+2), 1+ yzw), 1+ %), ..., (1+ ). For the next phase
we will use the basigy, + a; 43, a1, @y, ..., ar 4o to determine which of the blocks to put
the y? in for the terms (in orderjl + x), (1 4+ 2), 1+ xzW, (1+s),..., (1 +5). To
determine where to put the, we use the basis,, as, . .., o 43, 01 + o 12 + a3 for the
terms (in order1+ x), 1+ VY), (1 + xyw), 1+ ), ..., (1+ ). Those three patterns
will make the blocks work for the characters that are of order 4 on (respectivelyy,just
justy, and justz. Once these three are established, most of the rest of the bases that are
required are combinations of these basic three ordered bases.

The following tables show how to fill out the rest of the bases. In the “how chosen”
column of the table, most of the vectors are forced on us by choices made in previous bases
(those are indicated by “from . bases for..."). There are two choices in the first table,
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two choices in the second table, and one choice in the third table. These choices are made
with two goals: first, they have to complete a basis for the vector space so that the characters
listed at the top of the table will have the proper character sum. Second, they have to be
chosen so that the combination with a vector from another table will be the appropriate
vector in a later table. The last table does not have any choices because all of the vectors
are simply combinations of previously chosen vectors, and we had to make those choices
so that the last table would be a basis.

Whenx andy are sent tak/—1
Term vector how chosen
1+2 o1+ o from first and second bases fdr+ z)
14+ xyw) | a1 chosen to avoid basis vectors,
other(1 + xyw) term (usey?)
1+ xyzd | o3 chosen to avoid basis vectors (18
1+s) o3+ og from first and second bases fdr+ s;)
1+s) o+ os from first and second bases fdr+ s,)
1+s) ary2 + a3 | from first and second bases fdr+ )
Whenx andz are sent tat/—1
Term vector how chosen
1+y a1+ a3 from first and third bases fdd + y)
A+xzu | oy chosen to avoid basis vectors,
other(1 + xzu) term (usez?)
1+ xyzh | apifrisodd chosen to avoid basis vectors
ap +azif riseven| (usez?)
1+9) o+ as from first and third bases fafl + s;)
1+s) os + ag from first and third bases fdll + s,)
1+s-1) | ory2+orqs from first and third bases fafl + s _1)
1+s) 42+ 0 from first and third bases fafl + s)
Wheny andz are sent tak/—1
Term vector how chosen
1+x) o+ g+ a3 from second and third bases fdr+ x)
1+ yz) oy chosen to avoid basis vectors,
other(1+ yzv) term (usez?)
(14 xyzh | ax+ azifrisodd | from fourth and fifth bases fail + xyz?
ap if 1 is even
1+s) a3+ os from second and third bases fdr+ s;)
1+s) g+ o from second and third bases fdr+ s,)
L4+s-1) | ory1+ orys from first and third bases fdd + s _1)
1+s) o3+ o from second and third bases fdr+ s )
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Whenx, y, andz are sent tat+/—1

Term vector how chosen

1+ xyw) | ar+ag from third and fourth bases f@f + xyw)
1+xzu | a1 +as from second and fifth bases f@t + xzu)
Q+yzv) | a1 +az from first and sixth bases f@f + yzv)
A+s) o3+ a4 + as from first, second, and third bases fdr+ s;)

1+s) g+ as + ag from first, second, and third bases far+ )

(14+s-1) | ory1+ a2 +arpz | fromfirst, second, and third bases far+ s _1)
A+s) oy from first, second, and third bases far+ s)

We will use these ordered bases for the Simplex code in the same way we did before to
define the rest of the blocks of the RDS. Thgwill have x?, y2, andz? in the blocks where
the appropriate basis vectordha 1 in thej ™" position, and they will not appear if there is a
0 in the jt" position. IfG is any abelian group of ordef2 2 with H as a subgroup, then
there are 2+13/2r+10 — 2r+3 cosets ofH in G. If {go, O, ..., Ox+s_1} iS @ set of coset
representatives, the = Ug; D; is the RDS.

THEOREM3.1 Let G be any abelian group of ord@f +13(r > 1) of rank at least r+7 and
a subgroup isomorphic to Z Then the set D defined above i§28' 710, 8, 22 +10 22 +7)
RDS in G relative to the subgroup, & Z, x Z, contained in 4 x Z4 x Z3.

The proof of this is similar to (but more complicated than) the proof of the theorem in
the previous section. It relies on the fact that the seven sets of codewords chosen above
are linearly independent. This would imply that they form a basis for the code, and when
they are put into the matrix form every possible column will show up exactly one time.

If this is true, then every character of order 4 will have a character sum of modtitis 2

for exactly one of theD; and will sum to O on all the other blocks. The other characters
will work out the same as they did dby, and the inversion formula will finish the proof.

The rank of the group here is one less than what was previously possible (start with a
(27 +10 2r+5 22r+10 2Z'+5) RDS in a group with rank 2+ and mod out the forbidden
subgroup by a group of ordef*2 yielding rankr + 8).

Example 3.1: Consider the case when = 1. Leta; = 000000001111111%k, =
000011110000111%3 = 001100110011001Janda, = 0101010101010101 as in Ex-
ample 2.1. The pattern of ordered bases that we will use for the 7 different types of char-
acters of order 4 are as followsu1, oz, az, as}; {aa, a1, oo, az}; {ao, as, aa, a1}; {ar +

az, o1, 03, 03 + aa}; {0 + a3, a1, @2, a1 + ag); {o2 + og, a1, a2 + a3, a1 + az); {og +

ag, 01 + ap, a1 + a3, a1 + a3 + a4}. The blocks are as follows:

Do = A+x)A+ L+ +xyw)(1+xzu(1+ yzv)
1+ xyzd(1 + s1);

D: = A+xyY)A+ )1+ 2L+ xyZw)(1+ xzu (1 + yzv)
(1+ xyzd (1 + x*sy);
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D, = 14+ x)A+ yA) A+ 2L+ xyw)(L+ xzu(1 + x’yzv)

L+ xy°’zt (1 + y*s);

Ds = 1+ xy)(1+yZ2) 1+ 21+ xyZw)(1+ xzu(1 + X*yzv)
1+ xy3zt) (1 + x2y?s));

Ds = 1+ XD+ y)A+ x°2)(1 + xyw) (1 + xy’zu)(1 + yzv)
(1+xyZt) (L + s1);

Ds = (1+xy*Z)(1+ y) 1+ x*2)(1+ xyZw)(1+ Xy*zu)
1+ yzv)(1 + xyZt) (1 + x3s1);
D = (L+xDA+ yD) A+ x?2)(1 + xyw) (1 + xy?’zu)
(14 xPyz) (L + xy’Z2) (L + y?s);
D; = (14+xy?’ZA) A+ y2) (1 + x*2) (1 + xyZw)(1 + xy?zu)
1+ x2yzv) (1 + xy*Z2t) (1 + x?y?sy);
Dg = (14 X1+ x2y)(1+ y?2)(1 + xy*w) (1 + xZu)
1+ yZv)(L+ xyzd(1+ Z°sy);
Dy = (14+xy)(1+ x2y)(1+ y?*2)(1 + xy*Z2w) (1 + xZu)
1+ yZv)(1 + xyzh (1 + x°2%s));
Dio = (1+X) 1+ x?yZ)(1+ y*2)(1+ xy’w) (1 + xZu)
1+ X2yZv)(L + xy’zt) (1 + y*Z°sy);
Din = 14+ xyY)(1+ x2yD) 1+ Y?2)(1L+ xy*Z2w)(1 + xZu)
1+ x2yZv) (1 + xy3zt) (1 + x?y?Z%s));
D, = (14X A+ x2y) (1 + x2y?2) (1 + xy*w) (1 + xy?Z°u)
1+ yZv) A+ xyZt) (1 + Zs);
D1z = (14 Xy’ (14 x2y)(1 + x3y?2)(1 + xy*Z2w) (1 + xy?Z’u)
1+ yZv) (1 + xyZt) (1 + x°2%sy);
Dy = (14+x2)A+ x2yD) A+ x2y?2) (1 + xy*w) (1 + xy*Z°u)
A+ x2yZv) A + xy*2)(1 + y?22s)):
Dis = (14 xy?Z2) (1 + x2yZ2)(1 + x2y?2)(1 + xy*Z°w) (1 + xy?Z°u)
1+ x2yZv) (A + xy*22t) (1 + x2y?Z%s))
If we consider the grou@es x Z2 x Z3, if g is an element of order 64 so thgif® = x,
thenthe RDS i = U-1509' D;. This has rank 8, and the best that could be done before was

i=
9. As before, there are a lot of other abelian groups of rank 8 that will have RDSs based on
this construction. O

There is a similar construction for the= 0 case. The only difference is the ordered sets
of vectors with 3 elements must be chosen so that they are linearly independent.
It is worth making several notes about this construction.

1. The involutionsu, v, w andt are needed here in order to make sure that the basic block
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does not have any coefficients other than 0 or 1. If there were coefficients of higher
orders, then this would be a RDS with repeated elements, which we are not allowed to
do. The same thing was true in the= 2 case, and in general we will needi2b — 1
involutions when there atedistinct generators of order 4.

2. There are other ways to choose the seven bases that are required to make this construction
work. The difficult part of making the choices is that each stage has implications on
later bases. For example, when we chesas the codeword associated 16t y) in the
first basis (for characters that just sentb ++/—1) andw, as the codeword associated
to (1 4 y) in the second basis (for characters that just setal++/—1), that forced
a1 + o to be the codeword associated 1o+ y) in the fourth basis (for characters that
sendx andz to ++/—1). The reason this is forced on us is thatdetermines where to
put x?, a, determines where to paf. Once these are placed, when just ona%énd
z2 appears in a term, the characgethat sends botk andz to 4-+/—1 will multiply the
y term by—1; if neitherx? nor z2 appear or both, then theterm will not be affected.

This situation is best described by adding the two codewords: when one component
has a 0 and the other has a 1, the sum is 1 (corresponding to multiplyirg gnd

when both components have either 0s or 1s, the sum is 0 (corresponding to multiplying
by +1). There are many dependence relationships like this.

3. We will need to use the notatiom, ..., a;, 3 for the first basishs, ..., b, 3 for the
second basis, up throudf, ..., g3 for the seventh basis. With this notation, the
most difficult of the choices to make are the following:

a. The codeword, mustbe chosensothatitisnotinthe hyperpl@hed,, ..., d 3, C3)
(those are all predetermined, amdcannot be dependent on any of the). Also,
d, cannot be in the coseg + (a4 + by + Cs4, ..., & 13 + bri3 + Cy3). There
are elements left to choose from by Lemma 1.1. The codeephés a similar
restriction.

b. The codewords; mustbe chosensothatitis notinthe hyperplgagee, e, ..., & 13).
It must also avoidds + (by + ¢1, b4 + C4, ..., bry3 + G4 3) SO thatfs = d3 + &3
will be linearly independent of the othedy.

c. The codewordf, must avoid the hyperplangi, fs, ..., fr13) and the coseds +
(Cg+dy,bs+e,a1+bs+Ca,...,a&4+3+ b3+ Gi3). Since both of these are
hyperplanes, we need to know that they are not the same hyperplane. This can be
done if we make a good choice ef. This choice is the reason that we did not
write the basis in the most general way possible. Lemma 1.1 helps with making
the choices.

4. This idea can be generalized to higher order forbidden subgroups. For example, if
we want to do this for a forbidden subgroup that is elementary abelian of order 16,
we need to use a basic block with 15 elements in it which include all possible ele-
ments of order 4. The subgroup will be Z x ZQ*”, and the parameters will be
(27 +22 16, 27 +22 22 +18) for abelian groups of rank+ 15. This rank can be obtained
through previously mentioned methods (start wit(R& 22, 2'+11 22+22 2r+11y gng
contract by a subgroup of order'Z yielding a group of ranki24+-22— (r +7) = r +15).
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