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Abstract 
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Caudill Jr, L.F. and B.D. Lowe, On the construction of a potential from Cauchy data, Journal of Computa­
tional and Applied Mathematics 47 (1993) 323-333. 

We investigate the problem of recovering a potential q(y) in the differential equation: 
- Llu + q(y)u = 0, (x, y)E(O, l)x(O, 1), 
u(O, y)=u(l, y)=u(x,0)=0, 
u(x, l)= f(x), u/x, 1)= g(x). 

The method of separation of variables reduces the recovery of q( y) to a nonstandard inverse Sturm-Liouville 
problem. An asymptotic formula is developed that suggests that under appropriate conditions on the Cauchy 
pair (f, g ), q( y) is uniquely determined up to the mean. Moreover, the recovery of q( y) is comparable to 
finding a function from its polynomial moments. A reconstruction scheme is suggested and numerical 
examples are considered. 

Keywords: Undetermined coefficient; inverse problem; overposed boundary data. 

1. Introduction 

For the domain {}, = (0, 1) X (0, 1), consider the problem of determining the potential 
q(y) E L00(0, 1) in 

-Llu+q(y)u=O, (x,y)Eil, 

u(O, y) = u(l, y) = u( x, 0) = 0, (1.1) 

u(x, l)=f(x), uy(x, l)=g(x). 

The functions f and g are assumed to be given and f satisfies the condition f(O) = f(l) = 0. 
For a general bounded domain {}, c !Rn with smooth boundary, it is known that q(x) in the 

Correspondence to: Prof. B.D. Lowe, Department of Mathematics, Texas A&M University, College Station, TX 
77843-3368, United States. e-mail: lowe@math.tamu.edu. 

0377-0427 /93 /$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved 



324 L.F. Caudill Jr, B.D. Lowe / Construction of a potential from Cauchy data 

differential operator -Ll + q(x) is uniquely determined by complete knowledge of the Dirich­
let to Neumann map 

aVJ I Aq(f) =a;; an' (1.2) 

where fEH 112(a[l) and VJEH 1(D) satisfies 

- Ll VJ + q ( x) VJ = 0, x E D, VJI an = f (1.3) 

[15]. The map (1.2) is well-defined provided that 0 is not a Dirichlet eigenvalue of -Ll + q(x). 
More precisely, when n;;,, 3, (1.2) uniquely determines q(x) E L00(D) [9], and in two dimensions, 
uniqueness holds, provided that q(x) is smooth and sufficiently close to zero [13]. Recently, it 
has been shown that uniqueness holds in a large class of smooth functions [11]. 

The inverse potential problem (1.2), (1.3) is intimately related to the Impedance Tomography 
Problem: to determine the scalar conductivity y(x) > 0 in 

from complete knowledge of the Dirichlet to Neumann map 

autl Ay(f) =y- . 
an an 

(1.4) 

(1.5) 

Uniqueness for the Impedance Tomography Problem was first shown in [6] for analytic 
conductivities and then extended to the case of piecewise analytic conductivities [7]. Unique­
ness for C00(D) conductivities in n ;;,, 3 was proved in [14]. Subsequent work has shown that this 
regularity assumption can be relaxed [1,9]. A determination of the information contained in 
partial knowledge of the Dirichlet to Neumann map has also been analyzed [2-5,10]. For a 
survey of the Impedance Tomography Problem, the reader is referred to [15). 

The connection between (1.2), (1.3) and (1.4), (1.5) is made by setting q = Ll{Y / fY and 
VJ= y- 112u1, giving 

ay 
A = - 1/2A - 1/2 + _!_ - I -

q 'Y y 'Y 2 'Y an . (1.6) 

Consequently, if Aq, y I an and (ay ;an) I an are known, then so is AY. Conversely, AY deter­
mines Aq. 

The goal of this paper is two-fold: to quantify the information that is contained in a single 
Cauchy data pair (f, g) in (1.1) and to provide a reconstruction algorithm to extract this 
information. There is strong evidence to suggest that under appropriate conditions, a single 
pair ( f, g) determines q( y) up to the mean. In practice, it will be shown that only a limited 
class of q( y) can be numerically reconstructed, for only a limited class of f and g pairs will 
give usable numerical information. Of course, since the data is given in a direction that is 
perpendicular to the dependence of q, difficulty is to be expected in this worst-case situation. 

Uniqueness results for univariate conductivies have been proved. Kohn and Vogelius [7] have 
shown that a finite set of Cauchy pairs uniquely determines a layered conductivity y(x, y) = 
y( y) on an infinite strip - oo < x < oo, 0 < y < 1. Their method involves reducing the problem to 
a classical inverse Sturm-Liouville problem, where uniqueness is known. Recently, Sylvester 
[12] proved that a radial conductivity y( r) on the unit circle is uniquely determined by the 
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Dirichlet to Neumann map. The problem of this paper, while similar in many respects, is 
fundamentally different. Our data provides no information about the mean q = f0

1q(y) dy and 
the question of uniqueness up to the mean reduces to a nonstandard inverse Sturm-Liouville 
problem. 

This paper is organized as follows. In Section 2 the method of separation of variables is used 
to reduce the uniqueness question to the aforementioned nonstandard inverse Sturm-Liouville 
problem. The information contained in a Cauchy data pair (f, g) is determined through the 
derivation of an asymptotic formula. In Section 3 a numerical scheme for the recovery of q is 
proposed. The numerical examples and the asymptotics show that reconstructing q from such 
data is similar to finding a function from its moments. 

2. Reduction to Sturm-Liouville form 

Using the following expansions for Uf and the known functions f and g: 

n=l 
00 

f(x) = L fn sin(Tinx), 
n=l 

00 

g(x) = L gn sin(Tinx), 
n=l 

it is easily verified that Uf satisfies 

n=l 

where Yn is the solution of the Sturm-Liouville problem 

-Y,,"(y) +q(y)Y,,(y) = -n2,..2yn(Y), 

Y,,(O) = Y,,' (1) - /3nYn(l) = 0, 

(2.la) 

(2.lb) 

(2.lc) 

(2.2) 

(2.3) 

with /3n = gn/fn when fn =I= 0. Equation (2.3) is a pathological version of the inverse Sturm­
Liouville problem. For each n, the boundary condition at y = 1 is modified and a single 
negative eigenvalue of q is being specified. In the classical inverse Sturm-Liouville problem, 
for a given boundary condition, a complete spectrum is specified. In general, additional data is 
then specified to uniquely determine q E L 2. In our modified problem, when q = 0, it is easily 
verified that /3n =Tin coth( Tin) and the resulting eigenfunctions are sinh( Tiny). The ill-posed­
ness in recovering q( y) is manifested in the exponential growth of these eigenfunctions. 

At first glance, it may seem that a single data pair should carry very little information about 
q. However, when the fn in (2.lb) are nonzero for all n, the "partial" Dirichlet to Neumann 
map 

(2.4) 
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where uf is the solution of 

-LlU1 +q(y)U1 =0, (x, y) Efl, 

U1(0, y) = U1(1, y) = U1(x, 0) = 0, 

is known. The /3n are just the eigenvalues of Aq: 

Aq(sin(irnx)) =/3n sin(irnx), n ~ 1. 

U1(x, 1) = f(x), 
(2.5) 

(2.6) 

The information carried in the sequence {/3n} about the unknown function q( y) is quantified in 
Theorem 4. We begin by proving some preliminary lemmas. In what follows, C denotes a 
generic constant that is independent of n. 

Lemma 1. For q E L00(0, 1), let w be the solution of 

-w'' + qw = -ir 2n2 w, w(O) = 0, w'(O) = 1. (2.7) 

Then for each y E [O, 1], 

I 
sinh( irny) I C 

w(y)- ,,;;:; 2 sinh(irny). 
irn n 

Proof. The solution w of (2.7) has the representation 

sinh( irny) 1 Y 
w(y) = + -j sinh(irn(y-t))q(t)w(t) dt. (2.8) 

irn irn o 

Letting if!( y) = ir nw( y) /(sinh( ir ny )), it follows that if!( y) satisfies the integral equation 

1 y 

if!(y) = 1 + . ( ) j sinh(irn(y- t)) sinh(irnt)q(t)ifl(t) dt. (2.9) 
irn smh irny o 

One concludes from (2.9) that 

1 
I if!(y) -1 I,,;;:; - II q lloo 111/1 lloo F(n, y), 

irn 

where 

1 y 

F(n, y) = . ( ) j sinh(irn(y- t)) sinh(irnt) dt. 
smh irny o 

In Lemma 2 we show that 

(2.10) 

(2.11) 

sup F(n,y),;;;C<oo, (2.12) 
n E N,y E [0,1) 

which, using (2.10) and (2.12), gives 

1 
111/1II00 < 1 - c II q II oo/( 1Tn) ,,;;:; 2, (2.13) 

for all n sufficiently large. The desired result follows from (2.10), (2.12) and (2.13). D 
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Lemma 2. The function (2.11) satisfies estimate (2.12). 

Proof. A direct integration gives 

F(n, y) = t[Y coth(1Tny)- :n ]. 

When 0 ~y ~ l/(1Tn), then 

1 
F ( n, y) ~ -- sup I z co th z - 1 \ ~ C, 

21Tn zE[0,1] 

and if l/('Tl'n) <y ~ 1, then limn-.ao coth(1Tn) = 1 gives 

F(n, y) ~ t(coth(1Tn) - 1Tln) ~ C. 

The result follows immediately. 0 

Lemma 3. If w solves (2.7), then 

lf1sinh(1Tn(l-t)) IC 
. ( ) q(t)w(t}dt ~-. 

o smh 1Tn n 

Proof. Writing 

327 

1
1 sinh(1Tn(l - t)) 

1
1 sinh(1Tn(l - t)) ( sinh(1Tnt)) 

. h( ) q(t)w(t) dt = . h( ) w(t)- q(t) dt 
o sm 1Tn o sm 1Tn 1Tn 

1
1 sinh(1Tn(l - t)) sinh(1Tnt) 

+ . q(t)dt 
o smh( 1Tn) 1Tn 

and using Lemmas 1 and 2, we obtain 

I 
1 sinh ( 1T n ( 1 - t ) ) I [ 1 1 ] C 1 . h( ) q(t)w(t)dt ~Cllqlloo -z+- F(n, 1)~-. 

o sm 1Tn n n n 
0 

Theorem 4. For q E L00(0, 1), 

1( sinh(1Tny) )
2 

( 1 ) 
/3n(q)=1Tn coth(1Tn)+l . ( ) q(y)dy+O 2. 

o smh 1Tn n 
(2.14) 

Proof. Using the integral representation (2.8), we have 

f3n(q) Jd sinh(1Tnt)q(t)w(t) dt 
---coth(1Tn)= _1 · 

1T n sinh2 
( 1T n )( 1 + [ sinh( 1T n)] f d sinh( 1Tn( 1 - t) )q( t )w( t) d t) 
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Consequently, 

where 

/3n(q) 1 1(sinh(7rnt))
2 

-- - coth(7rn) - -J . ( ) q(t) dt 
7Tn 7Tn o smh 7Tn 

A-B 
1 ' 

1 + [sinh(7rn)]-
1 j sinh(7rn(l-t))q(t)w(t) dt 

0 

1 1 [ sinh( 7T nt) l 
A= . 2 ( ) J sinh(7rnt)q(t) w(t)- dt, 

smh 7Tn o 7Tn 

B = 7Tn sin~3 ( 7Tn) ( f sinh
2

( 7Tnt )q( t) dt )( f sinh( 7rn(l - t ))q( t )w( t) dt). 

(2.15) 

Observing that by Lemma 3, the denominator of (2.15) remains bounded away from zero as 
n ~ oo, Lemmas 1 and 3 give 

/3n(q) 1 1(sinh(7rnt))
2 

C 
-- - coth( 7T n) - -J . ( ) q ( t) d t < 3 . 

7Tn 7Tn o smh 7Tn n 

This concludes the proof of Theorem 4. o 

For each real number r, the set 

(~.,(y) = ( s:~:~~~"::i) n ~~! 
spans L;(o, 1) = {q E Lz(O, 1): ij = JJq(y) dy = r}, whenever 

00 1 
E -=oo. 
k=l nk 

To see this, extend q to be even on [ -1, 1]. Then 

1
1 1 1 

an = q(y) sinh2
( 7Tnky) dy = -J q(y) e2

,,.nky dy - ~r. 
k 0 4 -1 

Using the change of variables y ~ (27T)- 1 In x, one obtains 

1 Jez~ ( 1 ) an + ~r = - q - ln x x nk - I d x. 
k 87T e-h 27T 

(2.16) 

(2.17) 

(2.18) 

By the Mtintz-Szasz Theorem on the interval [e- 2 ,,., e 2
,,.] and the monotonicity of In x, q is 

uniquely determined in L;[O, 1] by the polynomial moments (2.18). 
Theorem 4 suggests that q E L;(O, 1) is uniquely determined by {f3n), whenever {nk} satisfies 

(2.17). The sequence {f3n) provides information on the Fourier coefficients of q in the 
spanning set (2.16). Equation (2.18) shows that the reconstruction of q in the expansion set 
(2.16) is comparable to finding a function from its polynomial moments. The graphs of 
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0.4 

Fig. 1. 

Table 1 

N 

2 
3 
4 
5 

Condition number 

40 
1422 

49128 
1672642 
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{ t/Jn( y )}~ ~ 1 are shown in Fig. 1. For the case n k = k, the condition number of the N X N matrix 
[A];,j = JJf/!;(y)f/!/Y) dy is given in Table 1. 

Consequently, measurement errors in f3n are profoundly magnified, and, realistically, only 
{f3n}~ ~ 1 provide usable numerical information for the reconstruction of q( y ). Of course, 
information given at y = 1 should only provide information about q( y) for y near 1. Conse­
quently, any approach that is used to determine q on (0, 1) must contend with the exponential 
propagation of errors into the interior. 

3. Reconstruction algorithm and numerical examples 

The reconstruction of q( y) from finite data is accomplished by a shooting method. This 
method was previously applied for the reconstruction of Sturm-Liouville potentials from finite 
spectral data [8]. Given the data {f3n}:'~ 1 , a potential q(y) = L,~~Iqkf/!k(y) in the span of a basis 
set {f/!k(y)Jk=l, ... ,N} is constructed that is compatible with the data {f3n}:'~i· This is 
accomplished by finding a zero of the map F : IR N ~ IR N given by 

Y 1' ( 1 ; q) - {3 1 Y 1 ( 1 ; q ) 

F(q) = 
Y{(l; q) - {3 2Y2(l; q) 

(3.1) 

0.4 0 .4 

0.2 

-0.2 

-0. 4 

-0.6 
-0.4 

Fig. 2. 
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0.4 0.4 

0.2 0.2 

-0.2 
-0.2 

-0. 4 

-0.6 -0.4 

-0.6 

Fig. 3. 

where ~( y) = Yn( y; q) is the solution of 

- ~"(y) + q(y )Yn(Y) = -n2 ir 2~(y ), ~(O) = 0, ~'(O) = 1, 

for n = 1, ... , N. The zero is found by the Newton scheme 

(3.2) 

(3.3) 
where the nm th entry of the Jacobian matrix F/qM) is the solution of the differential equation 

-w"(y) +q(y)w(y) = -n2 ir 2 w(y)-l/lm(Y)~(y), 

w(O) = 0, w' (0) = 0. 
(3.4) 

The following numerical examples illustrate the inherent ill-posedness of this problem. For 
convenience, we consider q(y) with zero mean and the reconstructions from the data {/3n}:~i 
employ either the set 

(( 
si~h(irny) ) 2 _11 ( si~h(irny) )

2

dy)N 
smh( irn) o smh( irn) n~ 

1 

(3.5) 

or a set consisting of cosine functions. 
Figure 2 shows the reconstruction of q( y) = ~ - y using the data {/3n}:~ 1 and the set (3.5). 

Essentially identical results are achieved in Fig. 3 by using a Fourier reconstruction of q in this 
same set. 

Fig. 4. 
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Table 2 Table 3 
Comparison between /3n for actual and reconstructed Comparison between /3n for actual and reconstructed 
q; absolute deviation q; absolute deviation 

n N=3 N=4 N=5 n N=3 N=4 

1 0 0 0 1 0 0 
2 0 0 0 2 0 0 
3 0 0 0 3 0 0 
4 5.9 · 10- 5 0 0 4 3.2. 10- 4 0 
5 1.1 . 10-s 1.5 · 10- 5 0 5 5.7. 10- 4 8.1·10- 5 

6 1.4 · 10-5 3.2 · 10- 5 4.0. 10- 6 6 7.3. 10- 4 1.7. 10- 4 

When N = 6, the reconstructions degrade significantly, with the introduction of large 
oscillations. The condition numbers encountered in Table 1 explain this phenomenon. Recon­
structions using the set {cos( 'Tr ny )},;1~ 1 are shown in Fig. 4. Predictably, the reconstructions 
degrade when moving from y = 1 to y = 0. Table 2 shows a comparison between {/Jn}~~ 1 of the 
actual q and the reconstructions in Fig. 4. It is observed that there is excellent agreement. 

When reconstructing q( y) = e Y
2 

- f de Y 2 
d y, similar behavior is encountered. The seemingly 

accurate reconstructions in Fig. 5 result because q and the elements in the set (3.5) have the 
same general form. The oscillations encountered in Fig. 6 when using a set of cosine functions 
are quite pronounced. However, Table 3 shows that {/3J~~i for the actual q and the 
reconstructions in Fig. 6 are very close. 

1. 25 
I. 25 

0. 75 
0.75 

0. 
0.5 

0.2 0 .25 

0.2 0.2 
-0.25 -0. 2 

-0.5 -0.5 

Fig. 5. 

Fig. 6. 
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4. Conclusions 

We have investigated the problem of recovering a potential q(y) in (1.1) on the unit square 
(0, 1) X (O, 1). The forward solution u in (1.1) satisfies homogenous Dirichlet conditions on 
three sides and a single Cauchy data pair (f, g) is prescribed along y = 1. This represents a 
worst-case situation, for the overposed data is given in a direction that is perpendicular to the 
dependence of q. Employing separation of variables, the recovery of q reduces to solving the 
nonstandard inverse Sturm-Liouville problem (2.3). The decomposition of f and g in (2.lb), 
(2. lc) transforms the overposed data ( f, g) into a data sequence {f3n}. When q is a perturba­
tion of 0, Lemma 1 shows that for all n a solution of (2.3) behaves like sinh( irny ). These 
exponential solutions are a consequence of the negative term on the right-hand side of the 
differential equation and cause a great deal of numerical difficulty. This is contrary to the 
situation which is encountered in a classical inverse Sturm-Liouville problem. For example, 
given Dirichlet eigenvalues and endpoint data for q near 0, the corresponding forward 
solutions are of the form sin( irny ). These functions are considerably more tractable in the 
context of numerics. The information that is contained in the sequence {f3n} is quantified in 
Theorem 4. Formula (2.14) shows that {/3n} does not contain any information about the mean of 
q. However, it does give a strong indication that when the mean of q is known and (2.17) is 
satisfied, then q is uniquely determined by {/3n } or equivalently (f, g ). The sequence {/3n } 

k - k 

provides information on the Fourier coefficients of q in the spanning set (2.16) of L~(O, 1). 
Equation (2.18), Fig. 1 and Table 1 emphasize that reconstructing q in the set (2.16) is 

comparable to the difficult numerical problem of finding a function from a Mi.intz-Szasz set of 
moments. The condition numbers encountered in Table 1 show that in the presence of noise, 
only {/3n}; ~ 1 realistically provide usable numerical data. Equivalently, only f in the span of 
{sin( ir nx )}; ~ 1 provide usable data. The numerical experiments illustrate a degradation in the 
reconstructions as one moves from the boundary y = 1 to the interior y = 0. This is clearly 
consistent with the overposed data being given at y = 1. 
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