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A direct method for the inversion of physical systems 
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t Mathematics Department, K q  University, Istinye-Istanbul 80860, Turkey 

Received 7 March 1994 

Abstract. A general algorithm for the direct inversion of data to yield unknown functions 
entering physical systems is presented. Of particular interest are linear and non-linear dynamical 
systems. The potentia! broad applicability of this method is examined in the context of a number 
of coefticient-recovery problems for partial differential equations. Stability issues are addressed 
and a stabilization approach, based on inverse asymptotic tracking, is proposed. Numerical 
examples for a simple illustration are presented demonstrating the effectiveness of the algorithm. 

1. Introduction 

Consider a physical system governed by an operator equation of the form 

A(V,  u(V)) = 0 (1) 

where, for each choice of the function V, (1) is uniquely solvable for U, the forward solution. 
The notation u(V) is used to indicate that U depends on V. Of particular interest are systems 
governed by evolution-type equations, such as 

a u  
- = T ( V ,  u(V)) at 

I > 0 
(1') 

U = U0 t = 0. 

The inverse problem of interest is to determine the function V by data measurements 
d = (d j } ,  which are related to V through equations of the form 

L(uj ,  V )  = fj(d,, u j )  j = 1,2,. . . (2) 

where each L(uj ,  V) is an operator, possibly non-linear, acting on uj and V. We shall 
assume here that L is a linear operator in V. In the context of evolution systems such as 
(l'), each dj may represent a data signal as a function of time. The solution method proposed 
in the present paper involves inverting the coupled equations (1) and (2) to determine V 
from d. The key point is that these equations may he formally decoupled to yield a useful 
algorithm for inversion. 

In practice, one typically solves an inverse problem of the type (1). (2) by using a 
least-squares minimization criterion (see, e.g. [l] and the references therein). The present 

Current address: Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA. 

0266-5611/94/051099+16$19.50 @ 1994 IOP Publishing Ltd 1099 



1100 L F Caudill Jr et a1 

method significantly differs in this regard in that the inversion is direct, eliminating the need 
for computationally expensive iterative searching procedures. 

The development of the present method was motivated by the important quantum 
dynamics problem of determining potential energy surfaces from laboratory data. There 
have been a number of algorithms which seek to invert time-independent data (e.g. scattering 
and spectral data, etc). With the emergence of new ultrafast pumpprobe laser techniques, 
laboratory data measurements can be performed on the time scales of the dynamical events 
themselves [Ill.  The proposed algorithm has been designed to take advantage of these new 
developments, although it may also be adapted to treat timeindependent measurements. 
Some precedent for this approach exists in a recently proposed inverse scattering algorithm 
[U]. A direct procedure of limited applicability for the inversion of temporal data has been 
proposed by Bemstein and Zewail [2] and Gruebele eta1 171. In addition, this latter approach 
does not lend itself to use in inverse problems from other disciplines. The application of 
the present algorithm to the problem of potential surface determination is introduced in 
section 3 of this work, and will be explored more fully elsewhere. 

The primary goal of the present paper is to establish a first step in an alternative means 
for the inversion of physical systems. This is accomplished by presenting a new general 
algorithm for direct inversion, and ilhstrating its use, including a proposed stabilization 
method, through a simple example. The character of this work is formal, and certain 
mathematical issues, such as characterizing admissible data, are not addressed. 

This paper is organized as follows. The inversion algorithm is presented in section 2. 
In section 3 the logic of the algorithm is considered for representative inverse problems 
from the areas  of^ heat conduction, population dynamics and quantum-mechanical systems. 
The latter example is explored in more detail in section 4, where a stabilization scheme is 
proposed. The paper concludes with numerical examples, testing the effectiveness of the 
inversion scheme in a simple quantum mechanical illushtion, in section 5. 

2. The algorithm 

The proposed algorithm consists of three steps: 

(i) Formally invert the system (2) to express the unknown V in terms of the data d and 
the (unknown) forward solution U 

V = V [ d ,  U]. (3) 

(ii) Input (3) into equation (1) and solve the resulting system for U. 
(iii)The solution U obtained in step (ii) is substituted into the right-hand side of expression 

The existence of the inverse for the available values of U in  (3) is tantamount to assuming 
that the data is complete. Regions of singularity of (3) thus indicate those parts of V that 
cannot be determined by the particular set of data. In practice a regularized form of (3) 
would probably be employed to deal with the latter situation when it arises. Assuming that 
the solution in (3) exists, then the steps (i)-(iii) are strictly identities, and thus provide a 
rigorous foundation for the algorithm. The key issues are the introduction of stabilization 
and regularization in the presence of incomplete and noisy data A full exploration of these 
matters is beyond the scope of the present work, but some examination of these points will 
be made. 

(3), thus determining V explicitly in terms of the data d. 
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Step (i) of this algorithm begins by expanding the unknown V as 

where the set {&] forms a basis in the space in which V is presumed to lie. The basis 
{&] might have either global or local support. The coefficients (ap ]  are to be determined. 
Substitution of (4) into equation (2) yields the system of equations 

which can be written.more compactly as 

M . a = f  

j = 1 , 2 ,  ... 

where a is the vector of coefficients up.  and 

W ) j p  = L j # p  V i  P. 

If the linear operator M is invertible in some suitable sense, then (5) and (4) yield the 
expression 

corresponding to (3). Substituting (6) into (1) and solving the resulting (highly non-linear) 
equation will yield U and complete step (ii). Finally, this U will be substituted into the 
right-hand side of (6) to determine the desired V .  In the case of an evolution system of the 
form (l'), one can in principle perform step (ii) by direct time integration of the non-linear 
system, thus avoiding computationally expensive iterative schemes. 

Remark 1. As mentioned above, it is important to recognize that the data d m y  contain 
only partial information concerning  the function V .  Erroneous conclusions can arise by 
attempting to invert such a data set onto the entire V .  This type of occurrence will 
manifest itself in the existence of a non-trivid nullspace for the linear operator M of 
equation (5). Procedures for determining the particular solution a of (5) to be used in the 
subsequent inversion steps should have their own built-in safeguards, based on properties of 
the underlying physical system (e.g. smoothness of V ) ,  regarding the extraction of erroneous 
results from the data. 

3. Examples 

 in^ order to illustrate the potential broad applicability of these ideas, the present method 
is used to reformulate inverse problems from three distinct fields. Only the last of the 
examples will be numerically explored here. 



1102 

3.1. Heat conduction 

Consider the inverse problem of determining the unknown source function V = V ( x )  in 
the parabolic boundary value problem 

L F Caudill Jr et al 

U,(& t )  = ux*(x, t )  + V ( x ) u ( x ,  t )  (7a) 

u ( x ,  0) = no@) O < X < L  (7b) 

U@, 0 = t z o  ( 7 4  

u ( L  t )  = hL(t) t > O  ( 7 4  

0 < x 4 L ,  t > 0 

from the data 

U ( X ,  t*) = d(x) 0 < x L (7e) 

where t* z 0 is a fixed point in time. 

equation (7a) 
A relation of the form (2) can be obtained by setting t = t* in the differential 

ut(x', t") = u,(x, 2') -t V(x)u(x ,  f*) 

or, in light of (7b) and (7e) 

V ( x ) d ( x )  = u,(x,  t*) - d"(x). 

If d(x) is never zero, then q can be written as 

= V[d,  U]. (8) 

Note that there is no need for the basis expansion (4) in this problem. This leads to the 
auxiliary boundary value problem 

which is to be solved for U. The function V is then obtained from (8). The reformulated 
problem (9), a special case s of the present method, is an example of what is known as a 
trace-type functional problem 131. 
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3.2. Age-structured population dynamics 

Let p(a, t )  represent the population density of a species as a function of age a and time f. 
One possible model for the dynamics of this population is known as the Lot&-vorz Foerster 
model [13] 

p r ( a , r ) + p , ( a , t ) + V ( a ) p ( a , t ) = F ( a , t , p )  O c a  C L ,  t > O  

O < a < L  

t > O  

where L is an upper bound on the maximum lifespan of the species, and F is a source term 
reflecting births, migration, harvesting, etc. Consider the inverse problem of determining the 
death rate V in this first-order hyperbolic equation from a knowledge of the total populations 
{dj(i)}, where 

L 
dj(t)  = 1 p'(a, t )  da j = 1,2, .  . . (11) 

and the index j denotes the densities resulting from different source terms Fj in (IO). 

fashion of equation (2). To this end, (1 1) can be differentiated to obtain, using (10) 
To apply the above algorithm, one must relate the unknown V to the data [dj( t ) ]  in the 

corresponding to (5). The resulting expression 

j = 1,2, . . 

is substituted into (IO), which is then solved for [ p j ] .  Finally, V ~~ calculated from [ p j }  

through (13). 
It is interesting to note that, in this example, M and f are functions of i ,  while V is 

time independent. Thus, in the absence of errors, the time dependencies must cancel to have 
V = V ( a )  only. If errors are introduced into the problem, the time dependencies may not 
cancel, resulting in a V which also depends on time. This phenomenon will be encountered 
again in the next example, and addressed in detail later. 
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3.3. Molecular dynamics 

Basic to much of chemistry is the inversion of laboratory data to give underlying fundamental 
molecular infomiation: A central problem in this regard is determining a given molecule's 
intramolecular potential energy surface. The relevant evolution law is the time-dependent 
Schrodinger equation 

L F Caudill Jr et a1 

The wavefunction +(x, t )  is complex vdued. The function dt),  representing an extemal 
(e.g. laser) field applied to the system, and the function p(x), the dipole moment operator, 
are assumed known. The inverse problem is to determine the potential V = V ( x )  in (14) 
from laboratory measurements. Other variants of this problem also arise, but the one posed 
here suffices to illustrate the methodology. 

Denote by (.I.) the usual complex L2-inner product on !2 

where f' is the complex conjugate of  f. Laboratory data derives from expectation values 
of a Hermitian operator with respect to +; that is, if d is a measurable quantity, then there 
exists a Hermitian operator 0 such that 

d = d ( t )  = (+IO+). (15) 
.~ 

This operator obeys the Heisenberg equation of motion 

fi(0,) = KO, KI)  + ( [ O , ~ V l )  +CO). ([0,~1) t > 0 (16) 

where, for an operator A, (A) Also, 
[A, B ]  = A B  - B A  denotes the commutator of A with B .  

Now, suppose the system in question is exposed to a sequence of extemal fields 
(cj(t)};=,, resulting in a sequence of wavefunctions [+j};=l obeying (14) for E ,= ~ j .  The 
corresponding data streams 

($]A+) denotes the expected value of, A. 

dj = dj(t) = ( 0 ) j  j = 1, . . . , J 

where the subscript j denotes expectation values with respect to +j, are available for 
inversion to give the potential V .  If 0 does not commute with V ,  a relation of the form 
(2) between the unknown V and the data can be obtained from (16) 

- ( [ O , V ] ) j  h = d j ( t ) + ~ ( [ O , K l ) j + j ; ~ j ( t ) . ( [ O , / ~ l ) j  j = l ,  ..., J .  (17) 
-1 1 I 
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Expanding V as in (4) 

n 

the system (17) leads to a matrix equation for the coefficients a = (al.. . . , 

M . a =  f 

where the J x P matrix M and the J-vector f are given by 

-i 
( W j p ' =  ~ { [ o ,  @ p l ) j  

i 1 

A 
f , -8. - ,CO + p. K 1 ) j  + - € j ( t )  . (CO, P l ) j  

1105 

and all expectation values in (18) are understood to be taken with respect to the 
wavefunctions from the system (20) below. With due attention to the meaning of M-' . f, 
one has 

Substitution of V into (14) yields the coupled system 

which is to be integrated to obtain e, and, through (19), the unknown V. 
Before closing this section on examples, it is important to note that, while the 

reformulations of these inverse problems are almost identical, the actual implementation 
of the formal algorithm will depend heavily, in each case, on the specifics of the particular 
problem and the physical system it models. For example, the precise meaning of the 
expression (13) in the presence of a singular or near-singular A must be addressed. 

4. Stability 

Consider a system evolving in time, so that the dynamics are given by a model of the 
form (1'). As is typical with inverse problems for evolving systems, one must address 
the stability of a proposed inversion algorithm with respect to errors. Although a general 
stability analysis for the abstract system in equations (1) and (2) could be undertaken, 
definite conclusions will be difficult to draw. Here, a special case of the last example is 
analysed for stability with respect to small errors in the data. 
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4.1. Stabiliry analysis 

Consider the inverse problem for the Schradinger equation discussed in the previous section, 
for the case of a diatomic molecule (so that R" = R in (14)). Suppose that V in (14) is 
known to be the potential of a harmonic oscillator 

L F Carrdill Jr et a1 

~ ( x )  = ax2 

where the constant a is to be determined. Although this latter assumption is of limited 
validity for realistic systems, it serves to illustrate the basic stability issues that will arise. 
The above representation for V may be viewed as an expansion of the form (4). where the 
basis set {& J consists of a single element @ = xz. As a special case of data of the form 
(15). in principle one can measure the average internal energy E of the system as a function 
of time 

E = E @ )  = ( ( K )  + (V))/(@l@) t > 0 

so that (18) takes the form 

a(xZ) = ( ~ j ~ ( t )  - ( K ) .  

This results in the non-linear equation 

where 

Nominally, (@I@) = 1, but we must include this term as we will need to consider variations 
@ + @ + S@ below. 

Suppose the data E@)  is contaminated with random noise that is small compared to 
the true data. The effect of the distribution of this noise on the statistics of the resulting 
a = a(t) is unclear, given the implicit non-linear dependence of A on E through relation 
(22). Thus, it is not surprising that the inversion scheme given by (21), (22) may be subject 
to instabilities with respect to data measurement errors. To reveal the issues involved, we 
make use of first-order perturbation theory and assume the data signal Eh = Edam@) is 
in error by a quantity SE = 6E( t )  which is small relative to the true signal 

Edam = Erme + 6E.  (234  

Here, Eme represents the energy generated by the true potential Vme = auucx2 

Em = Em"@) = ( K  + V)'"'e/(@l@)rme = (@""l(K + V"')@@"') 
. ,  

where = 1 is employed. Let ai"" = ai"'@) and denote the coefficient and 
wavefunction, respectively, obtained by applying the inversion scheme (21). (22) to the 
noisy data Edam. The errors in (23a) induce corresponding errors in ai'" and 

aiov awe +Sa *inv = *me + S@. (23b) 
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Substitution of (23) into (21) yields, to first order, the following initial value problem for 
S* 

w 3- = H 6 $ +  6,2@."e 
6t 

S*(x, 0) = 0 

where 

H = Ho + c . p = K +amex' + E .  p 

is the true molecular Hamiltonian of the system. From (22), Sa, to first order, is given by 

Sa = Sa(@mP, S@; Erme, 6E)  

SA 6A 
J* SE 

x -($bm, Eme; 69) + -(*me, Erne; 6E) 

where 

Defining an operator S by 

(24) becomes 

W X ,  0) = 0. 

Thus, noting that H is Hermitian (and thus has a real spectrum), if o(S) represents the 
spechum of S at time t ,  then (25) will be stable if 

for all t sufficiently large. To determine CT (S) at a particular time t ,  note first that 

Range(S) G { r ~ ~ * ~ ~  : r E RI. 

Thus, if E C and 6 satisfy 
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then @ must have the form 

L F Cuudill Jr et a1 

@ = 4 J e = a x  2 * vue 

with a = ai +iaz, ai and a2 being real. It is sttaightforward to show that the corresponding 
eigenvalue h, is given by 

and 

-2az 
Imh - [ (Ho)me Re(ax2)mc - Re(Hoax2)"') - (x2)yorp 

- - 2 
[a1a2(Re(&x2)"' - (Ho)me(~2)we) - ( 0 r 2 ) ~ I m ( H ~ x  2 ) me ). 

(x2)melff12 

(26) 

Since I*'"'"), HO and x 2  are independent of a, it is clear from (26) that there may exist 
values of CY for which Im h, > 0. Consequently, the inversion algorithm (21), (22). is not 
unconditionally stable with respect to errors in the data measurements. A robust solution to 
this problem needs to be developed, and some factors contributing to the possible instability 
are addressed below. 

4.2. Asymptotic trucking of datu 

Observe that the relation (22) forces the potential coefficient ai"" = ui""(t) to agree with the 
(noisy) data Ed"@) ut each time t .  In an effort to improve the stability properties of the 
algorithm, one may consider relaxing this condition by requiring only that the coefficient 
U'""@) generates energies Ei""(t) which approach the data at a prescribed rate in 
time. Mathematically 

d 
-[E'""(t) dt - Edua(t)}  = -C(t)[Einv(t)  - EdaW(t)) (27) 

where the function c ( t ) ,  with c( t )  > 0, Vt,  controls the rate of tracking. This idea is 
inspired by the technique of asymptotic tracking, as applied to non-linear control theory 
(see, e.g. [lo]). Related techniques have been employed recently in the context of learning 
control of robotics [SI and inverse quantum-mechanical control [6]. 

Such behaviour can be effected by replacing the functional relation (22) by starting with 
the relation 

(28) 
Einv = (K)inv + ~ i w ( ~ 2 ) i n v  

where iinv represents the inverse solution resulting from the algorithm to be developed in 
this section (equation (30) below). The relation (28) is then substituted for E'""(t) in the 
right-hand side of (27) to obtain 
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where the overdot denotes time differentiation. Note that in the case of noise-free data, 
E'""(t) = Ed"'"(t), so that (29) reduces to the original relation (22). 

The Heisenberg equation (16) can be combined with (28) to obtain 

.. 1 E'nv(t) = e(xx2P - -C(t)([K, 
A 

so that (29) becomes 

a ;in" + c(t)lii"" = - (XZ)inv 1 {p(r) - j t ( r ) ( [ K .  p j ) i n v ]  + c(t)[Ed"(t) - ( ~ ~ 1 1 .  
(30) 

The inversion algorithm now proceeds by solving (21) and (30) as a coupled system of 
differential equations. 

4.3. Tracking time averages of data 

Going a step further, in the case where the data is contaminated with mean-zero random 
noise, it may be more desirable to track the statistical mean of the data as a function of 
time. Such an average acts as a filter to help remove the noise in the data. Denoting the 
time average of a function f ( t )  by 

it follows that 

Beginning with the relation 

d 
dt 
--(e@) -Ed"'"@)} = - c ( t ) { P ( t )  - Ed"'"(t)} 

analogous to (27), equation (30) is replaced by the integral equation 

A suitable form for the damping function c( t )  must be specified, and there is considerable 
flexibility in this choice. To this end, let (tj tja1 be a discretization of the time variable t ,  
and suppose the data is given by [ET = Ed"(fj)]j2,. The desirability of tracking the 
average of the data rather than the data values themselves is based on the strong law of 
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large numbers, which asserts that the statistical mean of the noise converges to its theoretical 
mean, which is assumed to be zero. Thus, if the noise is uncorrelated, then 

(33) 

permitting the algorithm to track a 'signal' which converges to the true signal. If p Y ( t )  
is tracked too fast (e.g. before the noise has sufficiently averaged away), then the algorithm 
is once again tracking noisy data, and the same instability issues arise. Consequently, the 
damping function ~ ( t )  should be chosen to produce a tracking rate which is slower than 
the rate that the statistical mean of the noise converges to zero. However, the law of large 
numbers gives no information on this convergence rate. The definitive result in this regard is 
the law of the iterated logarithm from classical probability theory. A proof of the following 
version of this result can be found in the monograph by Chung [4, p 2321. 

Theorem. Law of the iterated logarithm. Let ( X j  : j > 11 be a sequence of independent 
identically distributed mean-zero random variables with common variance U', and assume 
each X j  has a finite second moment. Let 

L F Caudill Jr et a1 

lim ( p Y @ )  - ,-e (0) = 0 
1-m 

Then, with probability one 

47% 
IjZ = 1 lim sup 

J-m [2u2 l og log (ao ) ]  

and 

= -1. fi%J ~ 

lim inf 

, with probability one, %J converges to zero on the or 

as J --f CO. 

r of 

(34) 

Hence, c(t)  should effect the convergence in (33) at a rate slightly slower than (34). For 
any 01 E (0, l), this can be achieved by selecting c(t) to be 

(35) 
01 

c( t )  = C ( t J )  = -. 
2 J  

To see this, first note that, from (31) 
E'"Y(tJ) - Ed"(tJ) = 0 (I-") 

where 

and likewise for EdUn(tJ). It only remains to show that J-" converges to zero at a slower 
rate than that indicated in (34). Indeed, L'H8pital's rule shows that for any a, 0 < 01 < 1 

lim J~-' log log J = o 
J+CC 

and hence proves the assertion on the rate of convergence. 
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5. Numerical example 

The practical implementation of the present algorithm will, of course, depend on the 
complexity of the physical system under consideration. It is not our intention here to test 
the limits of its applicability, but rather to demonstrate its use in one particular case. As a 
simple illustrative example, consider the harmonic oscillator inverse problem introduced in 
the previous section. The particular model system studied represents a diatomic molecule. 
We seek to recover the potential curve from the data [E? = Ed"Q(rj)] by employing.the 
stabilized inversion algorithm (21), (32). The potential curve V ( x )  to be recovered is taken 
to have the form 

V ( X )  = $"x2 (36) 

where m is the reduded mass of the system and w is the frequency of the oscillator. For 
the purposes of this simulated inversion, the dipole moment function p(x)  of the system is 
chosen to be 

P(X) = P1X (37) 

and the external field ~ ( t )  is taken as 

~ ( t )  = O(t)Lsin(ot) (38) 

where 0 is a smooth cut-off function which simulates the external field ~ ( t )  being turned 
off after a certain time. In the present example, @(t) is chosen to be the C'-function given 
by 

1 O < t < r ,  

O(t)  = 0.5(1+ cos[n(t - tl)/(t2 - rdl) r1 < t c rz l o  t 2 T2 

where r~ = 10000 and r2 = 20000 in atomic units. The following values for the constant 
parameters appearing in (36) and (37) were obtained from [9, p 3401, and are given in atomic 
units 

m = 5.05 x lo4 w = 0.001 7509 jq = 0.488. 

The period T of the harmonic oscillator is 

T = 3588.55. 

The parameters for the external field e @ )  in (38) are chosen to be 

L = 0.001 U = w = 0.001 7509. 

From (36), the coefficient a to be recovered bas the value 

a =ame = $i" = 0.0774077. 
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Figure 1. The normalized inverse solution n'"s(r)/n'"c as a function of time. 

Synthetic data Eme(t) are generated from atrue using the split operator method of Feit et a1 
[5]. The data is then contaminated with 10% mean amplitude Gaussian noise. 

The inversion proceeds by propagating (21) and (32) as a coupled system, taking c( t )  in 
(32) to have the form (35) with OL = 0.9. The solution of (32) requires an initial value no for 
a@), taken here to be Q =U'-. It is worth noting that, after many numerical experiments 
in which a number of different values of uo were used, it was determined that the algorithm 
can tolerate a certain level of uncertainty in the value of ao. This is a result of the relatively 
short transient involved, during which time the wavefunction does not change appreciably. 

The system is propagated for approximately 28 periods of the true potential, or l00ooD 
atomic time units. Because of the probabilistic nature of the algorithm, this simulated 
inversion is repeated, using a number N of different noisy data sets (N = 50 in this case). 
The inverted coefficients {an = ~ ~ ( t ) ] t = ~ ,  resulting from these individual runs, are then 
combined to produce an ensemble average a'"(t) of the inverted coefficients 

Figure 1 shows the normalized value aens(t)/uuue of this ensemble coefficient plotted against 
time. It is seen that the ensemble average coefficient aeoS converges to a value that is within 
0.4% of the hue value ame (ams FX 0.077 6781). In an effort to confirm the convergence 
in this simulation, the inversion algorithm was permitted to continue for another 300000 
time units. The value of aenS did not change significantly during this period. The ensemble 
standard deviation s ~ ( f ) ,  given by 
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was computed to be of the order of 3%. The energies generated by the final value of U"' 

were found to lie within 0.2% of the noise-free input data. 
The fact that, in this numerical example, the ensemble average coefficient aens converges 

to a value which differs (slightly) from the true value urme has two likely sources. First is 
the practical matter that, since the noise corresponds to one particular finite set of mean-zero 
deviates, its contribution to the error need not average to zero itself. Second, and this is the 
main source, it must be remembered that the inversion procedure depends non-linearly on 
the system wavefunction @, which in tum depends on the value of the inverted coefficient 
ai""(t). Thus, if ai""@) differs from armrue, then @"" will differ from @""e. Furthermore, since 

enters non-linearly, one cannot expect the effects to cancel completely in the ensemble 
average. As a larger ensemble of data is included, one should find that the asymptotic result 

holds. 
To further illustrate the necessity of the stabilization procedure used in the development 

of the inversion scheme (21), (32), the unstabilized algorithm (21), (22) was implemented 
with the input data contaminated with 10% noise. The results of this exercise show that the 
unstabilized algorithm diverged after about 1.5000 time units. Thus it is clear that, even in 
this simple example, stabilization is an important issue for this inversion method. 

We close this example section by noting that, in practice, one would typically pre- 
average laboratory data signals, in an effort to minimize the effects of measurement 
imprecision. This is in contrast to the present example, in which the 'raw' data is used 
directly as input to the inversion algorithm, and the scheme is given the task of minimizing 
the effects of the noise. Thus, the present example can be considered as a stringent test for 
the algorithm, requiring more stability than may be needed in practice. In this regard, the 
remarkable stability inherent in the results of this example is encouraging. 

6. Conclusions 

In this paper we have presented a general algorithm for the inversion of physical 
systems. The potential broad applicability of this algorithm has been demonstrated through 
representative inverse problems from different scientific disciplines. The issue of stability 
in the presence of measurement imprecision was addressed in the context of an example 
problem from quantum dynamics. A stabilization procedure, based on asymptotic tracking, 
was proposed. Our results for this example problem show that the method is remarkably 
successful in producing a stable inverse solution for the potential that is consistent with the 
input data. A major advantage of our method is the fact that it produces a direct inversion 
of the data, in contrast to computationally expensive iterative schemes. This makes the 
method potentially quite attractive for the study of higher-dimensional systems, where the 
numerical computations are more expensive. A second advantage of this method is its 
potential broad applicability to a wide range of inverse problems. A much more thorough 
study of the method is needed, including further illustrations, to establish its full utility. At 
a minimum, with the methodology introduced in this paper, we hope to have established a 
first step in an alternative means for the inversion of physical systems. 

It should be noted that the model example presented in the last section only serves the 
purpose of illustration. In general, one cannot expect to know a priori the functional form 
of the unknown w of equation (1). Consequently, the choice of basis in the expansion (4) 
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becomes an issue, and one would expect different choices to lead to different performance 
characteristics in the implementation of the algorithm. For example, it may be advantageous 
in a particular application to expand w as a collection of delta functions, thereby effecting 
discretization. The issue of choosing the 'best' basis expansion for w should be addressed 
in the context of the particular application being considered. 

As with any general inversion scheme, the algorithm presented here should be applied 
with discretion and using physical and mathematical judgement. 

One cannot expect to determine the true w from arbitrary data, as this often leads to 
non-trivial nullspaces in the inversion. For example, in the quantum mechanical case it is 
known that, at any particular time, data of the form (15) contain no information on the 
unknown potential V ( x ) ,  except (possibly) in the regions where I+(x, t)lz is significant. 
Thus it is unrealistic to attempt to determine V ( x )  outside of these regions from the given 
data. Rather than a shortcoming of the present method, this is simply a reflection of the 
fact that for realiitic data, inverse problems are typically ill-posed. A useful inversion 
method should allow fo1 the retrieval of the relevant information that is contained in the 
data, while safeguarding against the extraction of erroneous results during the inversion 
process. Designing an algorithm to achieve the latter objective depends heavily on the 
special properties of the particular physical system under consideration. The inverse in 
equation (3) can be regularized by, for example, smoothness criteria on w to deal with 
singularities due to an inadequate data set. Such design concerns for the present algorithm, 
as applied to the quantum-mechanical example of section 3, will be explored in future work. 

L F Cuudill Jr et a1 
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