

University of Richmond UR Scholarship Repository

Math and Computer Science Faculty Publications

Math and Computer Science

6-1996

An Inverse Problem in Thermal Imaging

Kurt Bryan

Lester Caudill University of Richmond, lcaudill@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications Part of the <u>Partial Differential Equations Commons</u>

Recommended Citation

Bryan, Kurt, and Lester F. Caudill, Jr. "An Inverse Problem in Thermal Imaging." SIAM Journal on Applied Mathematics 56, no. 3 (June 1996): 715-35. doi: 10.1137/S0036139994277828

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.

AN INVERSE PROBLEM IN THERMAL IMAGING*

KURT BRYAN[†] AND LESTER F. CAUDILL, JR.[‡]

Abstract. This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied in both the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.

Key words. inverse problems, nondestructive testing, first-kind integral equations

AMS subject classifications. 35A40, 35J25, 35R30

1. Introduction. Thermal imaging is a technique of wide utility in nondestructive testing and evaluation. To apply this procedure one uses a heat source (e.g., lasers or flashlamps) to apply a heat flux to the boundary of an object and observes the resulting temperature response on the object's surface. From this information one attempts to determine the internal thermal properties of the object, the presence of cracks or voids, or the shape of some unknown portion of the boundary. Thermal imaging has been significantly investigated as a method for detecting damage or corrosion in aircraft. Additionally, the method has found broad applications in industrial nondestructive testing, ranging from composite materials to electronics [6, 16]. Thermal imaging has been successfully applied alone as well as in parallel with other evaluation techniques (e.g., thermoacoustics and vibrothermography) [6]. See also [15] for an account of the technology and techniques that are employed and additional references.

To date, the primary mathematical considerations of thermal imaging have focused on the development of inversion algorithms (see, e.g., [12, 14, 7], and the references therein). In [13], certain fundamental factors limiting the use of thermography are discussed in the context of a simple one-dimensional example. In [7] the quality of images obtained using thermal imaging is discussed; typically, the images obtained are blurred due to the diffusive nature of the heat equation. The authors in [7] present several examples with real data and discuss an algorithm for improving the images obtained with thermal imaging.

One of the most common uses of thermal imaging is for the detection of so-called "back surface" corrosion and damage. Briefly, one attempts to determine whether some inaccessible portion of an object's boundary has corroded and therefore changed shape. In this paper we investigate the inverse problem of determining changes in the boundary profile of a two-dimensional sample by using thermal imaging. We consider

^{*}Received by the editors December 1, 1994; accepted for publication (in revised form) June 5, 1995.

[†]Department of Mathematics, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803. This research was partially carried out while this author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681, which is operated under National Aeronautics and Space Administration contract NAS1-19480.

[‡]Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027. Current address: Department of Mathematics, University of Richmond, Richmond, VA 23173. The research of this author was supported by the Commonwealth of Kentucky and the National Science Foundation EPSCoR program.

a certain portion of the surface of a sample to be accessible for measurements and the remainder of the surface, which may be corroded, inaccessible. This problem has been considered by others [3, 4] with an emphasis on recovering estimates of the unknown surface by using a least-squares method.

We examine both a continuous and finite data version of the inverse problem. The continuous version assumes that one has data at every point on the accessible portion of the object's surface. The finite data version assumes that only finitely many measurements have been made. Our goals are

- to examine uniqueness and continuous dependence results for the continuous version of the inverse problem, and what they imply for the finite data inverse problem;
- to examine how various experimental parameters affect stability and resolution for the finite data inverse problem, especially the effect of measurement locations on stability;
- to incorporate a priori information or assumptions into the finite data inverse problem.

Our main focus is not to develop inversion algorithms, but in the course of examining the problem we derive an inversion procedure for the finite data inverse problem. This algorithm allows the easy incorporation of a priori assumptions into the inversion process. We apply the algorithm to several simulated data sets to illustrate our conclusions. Our study of the stability of the inverse problem reduces to studying the invertibility of a certain matrix, which we do with a singular value decomposition. We do not make any explicit finite-dimensional parameterization of the unknown surface.

We should note that a very similar approach has been used in [8] to study resolution and stability for the inverse conductivity problem. Isaacson, Cheney, and others [10, 11] have also carried out similar sensitivity studies related to the inverse conductivity problem, especially the effect of finitely many measurements on the inversion process.

The outline of the paper is as follows. In §2 we present the mathematical formulation of the continuous and finite data versions of the inverse problem. In §3 we derive a linearized version of the continuous problem, and in §4 we show how this leads (as thermal inverse problems often do) to a first kind integral equation that must be inverted. In §5 we use the integral equation formulation to examine uniqueness and stability results for the linearized version of the inverse problem. In §6 we consider an algorithm for solving the finite data version of the inverse problem and how this approach can be used to quantify the stability of the problem. In the last section we present a variety of numerical studies to examine the effects that various experimental parameters have on the stability and resolution of the inversion process and the effect of incorporating a priori assumptions into the inversion procedure.

2. The inverse problem. Consider a sample to be imaged as a two-dimensional region Ω lying between the two surfaces $x_2 = S(x_1)$ and $x_2 = 1$ as illustrated in Figure 1. We will refer to the surface $x_2 = 1$ as the "top" or "front" surface and $x_2 = S(x_1)$ as the "back" surface. We assume that the ends of the sample are sufficiently far away that they can be ignored, so for our purposes the sample is unbounded in the x_1 direction. The top surface is assumed to be accessible for inspection or measurements, but the back surface $x_2 = S(x_1)$ is inaccessible. This is the portion of the sample to be inspected for corrosion. The ideal uncorroded case is a flat back surface $S(x_1) \equiv 0$. In the corroded case above $S(x_1) > 0$ for some values of x_1 . We will assume that the function S belongs to $H^2(\mathbb{R})$, although this assumption will later be relaxed. In

FIG. 1. Sample geometry.

particular, since $H^2(\mathbb{R}) \subset C^1(\mathbb{R})$, there is a continuous unit normal vector field on the back surface. The goal is to determine the back surface or the function S by taking measurements only on the front surface.

A time-dependent heat flux $g(x_1, t)$ is applied to the top of the sample $x_2 = 1$. We will assume that the sample material is homogeneous with thermal diffusivity κ and thermal conductivity α , both known constants. We will use T(x, t) to denote the resulting temperature induced in Ω , where $x = (x_1, x_2)$. The direct thermal diffusion problem will be modeled by the standard heat equation

(2.1)
$$\begin{aligned} \frac{\partial T}{\partial t} - \kappa \bigtriangleup T &= 0 \text{ in } \Omega, \\ \alpha \frac{\partial T}{\partial \nu} &= g(x_1, t) \text{ on } x_2 = 1, \\ \alpha \frac{\partial T}{\partial \nu} &= 0 \text{ on } x_2 = S(x_1), \\ T(x, 0) &= T_0(x), \end{aligned}$$

for t > 0, where $\frac{\partial}{\partial \nu}$ denotes the outward normal derivative on the boundary of Ω . The function $T_0(x)$ is the initial temperature of the region Ω at time t = 0. Note that the back surface is assumed to block all heat conduction.

We will also assume that the heat flux $g(x_1, t)$ is periodic, of the form $\operatorname{Re}[g(x_1)e^{i\omega t}]$ with $\omega > 0$. For simplicity, we also take the constants κ and α equal to one. Under these assumptions the solution to (2.1) is given as $T(x,t) = \operatorname{Re}[e^{i\omega t}u(x)]$, where u(x)satisfies

(2.2)
$$\Delta u - i\omega u = 0 \text{ in } \Omega,$$
$$\frac{\partial u}{\partial \nu} = g(x_1) \text{ on } x_2 = 1,$$
$$\frac{\partial u}{\partial \nu} = 0 \text{ on } x_2 = S(x_1),$$

at least after transients from the initial condition have died out. The main case of interest is that in which $g(x_1)$ is constant, corresponding to uniform heating of the outer surface. This is typically the case when heat or flash lamps are used to provide the input flux g. For the moment, however, we will not restrict g.

There are two versions of the inverse problem to be considered.

Continuous version. Given measurements of u(x) at all points on the top surface $x_2 = 1$, determine the function $S(x_1)$.

Finite data version. Given measurements of u(x) on the top surface $x_2 = 1$ at points $x_1 = a_1, a_2, \ldots, a_n$, estimate the function $S(x_1)$.

The finite data version corresponds to the case in which one has actual measurements. The data need not be actual point measurements of the temperature u, but this is the most common situation. Of particular interest are the following questions.

- 1. Can the function $S(x_1)$ be uniquely determined by knowing $u(x_1)$ for all x_1 on the top surface?
- 2. If $S(x_1)$ is uniquely determined by $u(x_1)$, how sensitive is $S(x_1)$ to perturbations in the data? What kinds of features in the back surface $x_2 = S(x_1)$ can or cannot be easily determined from the data?
- 3. Since any practical application falls under the finite data formulation, how stable is the estimate of $S(x_1)$ based on finitely many pieces of data? What factors influence stability in this case, and is there an inversion procedure to produce a reasonable estimate of $S(x_1)$ using finitely many measurements?

The first question is easily answered "yes" by a standard argument. This is the content of the following result.

THEOREM 2.1 (Uniqueness). Let $u(x_1, x_2; S)$ denote the solution to (2.2) with back surface S and nonzero flux g. If $u(x_1, 1; S_1) = u(x_1, 1; S_2)$ for each $(x_1, 1)$ in an open subset C of the top surface of Ω , then $S_1 = S_2$.

Proof. Suppose $S_1 \neq S_2$. Using the shorthand notation $u_i \equiv u(x_1, x_2; S_i)$, we have that u_1 and u_2 have the same Cauchy data on C and, by unique continuation, agree on any connected domain on which both are defined, provided that that domain contains an open portion of C. Assume that S_1 and S_2 are not equal and denote by Ω_i the region bounded by $x_2 = 1$ and $x_2 = S_i(x_1)$. $S_1 \neq S_2$, so there is some nonempty connected component D of $\Omega_1 \setminus \Omega_2$ or $\Omega_2 \setminus \Omega_1$. Let us suppose the latter so that the region D is bounded by $x_2 = S_1(x_1)$ and $x_2 = S_2(x_1)$. On $x_2 = S_2(x_1)$ we know that the normal derivative of u_2 is identically zero; on $x_2 = S_1(x_1)$ we know that the normal derivative of u_1 is zero (from inside Ω_1) and, since $u_2 \equiv u_1$ and u_2 is smooth across $x_2 = S_1(x_1)$, conclude that the normal derivative of u_2 unishes on the boundary of D. This forces $u_2 \equiv 0$ inside D. Standard elliptic regularity arguments force $u_2 \equiv 0$ inside Ω_2 , which implies that the flux g is identically zero, a contradiction. Thus we must have $S_1 \equiv S_2$ and so the back surface $S(x_1)$ is uniquely determined by the boundary data on any open portion of the top surface.

The second and third questions will be examined in the next few sections by considering a linearization of the original problem.

3. A linearization. We now linearize the original direct problem given by (2.2) with respect to the function S. Let $u_0(x)$ denote the solution to (2.2) with $S \equiv 0$. The surface $x_2 \equiv 0$ is the point at which we will linearize, since this represents the uncorroded or ideal profile from which we hope to detect any deviation.

Let Ω_0 denote the region $\{(x_1, x_2) : 0 < x_2 < 1\}$ in \mathbb{R}^2 . For any $S \in H^2(\mathbb{R}) \subset C^1(\mathbb{R})$, let us construct the map ϕ from Ω to Ω_0 by

$$\phi(x_1, x_2) = \left(x_1, \frac{x_2 - S(x_1)}{1 - S(x_1)}\right).$$

If $|S(x_1)| < 1$, then it is easy to check that ϕ is invertible on Ω_0 . This map fixes the top boundary of Ω and maps the bottom surface to $x_2 = 0$. Let $y = \phi(x)$ and $v(y) = u(\phi^{-1}(y)) = u(x)$. Under such a change of coordinates $\nabla_x = (D\phi)^T \nabla_y$ and $\frac{\partial}{\partial \nu_x} = \frac{\partial}{\partial \eta_y}$ where $\eta_y = (D\phi)\nu_x$, $(D\phi)$ is the derivative of ϕ , and $(D\phi)^T$ is the transpose. Under this change of coordinates the boundary value problem (2.2) becomes

(3.3)
$$\nabla \cdot \kappa \nabla v - \frac{i\omega v}{|D\phi|} = 0 \text{ in } \Omega_0,$$
$$\frac{\partial v}{\partial \eta} = g(x_1) \text{ on } x_2 = 1$$
$$\frac{\partial v}{\partial \eta} = 0 \text{ on } x_2 = 0,$$

where $\kappa = \frac{(D\phi)(D\phi)^T}{|D\phi|}$. The vector η can be written as

$$\eta = \begin{bmatrix} 0\\ \frac{1}{1-S(x_1)} \end{bmatrix} \text{ on } x_2 = 1, \qquad \eta = \frac{1}{\sqrt{1+(S'(x_1))^2}} \begin{bmatrix} S'(x_1)\\ \frac{1+(S'(x_1))^2}{S(x_1)-1} \end{bmatrix} \text{ on } x_2 = 0.$$

This change of coordinates removes the unknown S from the definition of the boundary of Ω and puts S into the coefficients of the heat operator and boundary conditions.

Now we linearize the problem with respect to S about $S \equiv 0$ by assuming that $S = \epsilon \tilde{S}$ for some function \tilde{S} , where ϵ is some small real number. Let u denote the solution to (3.3) for a general S and u_0 the solution to (3.3) for $S \equiv 0$. Suppose that the resulting perturbation in u_0 can be represented as $u = u_0 + \epsilon v_0$. If we substitute these relations into (3.3), use the fact that u_0 satisfies (3.3) with S = 0, and drop all quadratic ϵ terms, then we obtain the following linearized version of the direct problem

(3.4)
$$\Delta v_0 - i\omega v_0 = -\nabla \cdot [\tilde{\kappa}\nabla u_0] - i\omega S(y_1)u_0 \text{ in } \Omega_0,$$
$$\frac{\partial v_0}{\partial \nu} = -\tilde{S}(y_1)g(y_1) \text{ on } y_2 = 1,$$
$$\frac{\partial v_0}{\partial \nu} = -\tilde{S}'(y_1)\frac{\partial u_0}{\partial y_1} \text{ on } y_2 = 0,$$

where $\tilde{\kappa}(y)$ is the matrix

$$\tilde{\kappa}(y) = \begin{bmatrix} -\tilde{S}(y_1) & (y_2 - 1)\tilde{S}'(y_1) \\ (y_2 - 1)\tilde{S}'(y_1) & \tilde{S}(y_1) \end{bmatrix}.$$

In particular, we are interested in the special case $g \equiv 1$ corresponding to spatially uniform periodic heating of the top surface. Under this condition the function u_0 depends only on x_2 and (3.3) for u_0 becomes a two-point boundary value problem

(3.5)
$$u_0'' - i\omega u_0 = 0 \text{ on } (0,1),$$

 $u_0'(0) = 0,$
 $u_0'(1) = 1.$

If we now use u rather than v_0 to denote the temperature perturbation satisfying (3.3), then, with (3.5), the linearized version of the problem for $g \equiv 1$ becomes

(3.6)
$$\Delta u - i\omega u = (1 - x_2)u'_0(x_2)S''(x_1) - 2u''_0(x_1)S(x_1) \text{ on } \Omega_0, \\ \frac{\partial u}{\partial \nu} = -S(x_1) \text{ on } x_2 = 1, \\ \frac{\partial u}{\partial \nu} = 0 \text{ on } x_2 = 0.$$

For simplicity, this is the version of the problem we will examine, although the more general linearized version (3.4) can be examined using similar techniques. Note that the linearized problem is defined on the domain Ω_0 which does not depend on S.

4. An integral identity. Let the function d(a) = u(a, 1) denote the top surface data from the direct problem (3.6). Given that the relation between S and d is linear, it seems reasonable that this relationship can be expressed by an integral operator

$$d(a) = \int_{-\infty}^{\infty} \phi_a(y) S(y) \, dy,$$

where ϕ_a is some function that depends on the particular point *a*. Such a relationship does exist and we can say quite a bit about the function(s) ϕ_a , as we now demonstrate.

Let $L = \triangle - i\omega$. By Green's second identity

$$\int_{\Omega_0} (\phi \mathrm{L}u - u \mathrm{L}\phi) \, dx = \int_{x_2=1} \left(\phi \frac{\partial u}{\partial \nu} - u \frac{\partial \phi}{\partial \nu} \right) \, dx_1 + \int_{x_2=0} \left(\phi \frac{\partial u}{\partial \nu} - u \frac{\partial \phi}{\partial \nu} \right) \, dx_1,$$

where ϕ is any sufficiently regular function defined on Ω . Assume that u is a solution to (3.6) and that ϕ is a function that satisfies $L\phi = 0$ on Ω_0 and $\frac{\partial \phi}{\partial \nu} = 0$ on the surface $x_2 = 0$. Then the above equation becomes

$$\begin{split} \int_{\Omega_0} \phi(x)((1-x_2)u_0'(x_2)S''(x_1) - 2u_0''(x_1)S(x_1))\,dx + \int_{-\infty}^{\infty} \phi(x_1,1)S(x_1)\,dx_1 \\ &= -\int_{-\infty}^{\infty} \frac{\partial\phi}{\partial\nu}(x_1,1)d(x_1)\,dx_1. \end{split}$$

Let us now complete the specification of ϕ by requiring $\frac{\partial \phi}{\partial \nu} = \delta_a$ on the top surface, where δ_a denotes a delta function on the surface $x_2 = 1$ at the point $x_1 = a$. If we write ϕ_a to denote the dependence of ϕ on a, then we obtain

$$\int_{\Omega_0} \phi_a(x)((1-x_2)u_0'(x_2)S''(x_1) - 2u_0''(x_1)S(x_1))\,dx + \int_{-\infty}^{\infty} \phi_a(x_1,1)S(x_1)\,dx_1 = -d(a).$$
(4.7)

Note that this equation involves no unknown quantities except S on the left side.

It is worth saying a few words about the function ϕ_a that satisfies

(4.8)
$$\Delta \phi_a - i\omega \phi_a = 0 \text{ in } \Omega_0,$$
$$\frac{\partial \phi_a}{\partial \nu} = \delta_a \text{ on } x_2 = 1,$$
$$\frac{\partial \phi_a}{\partial \nu} = 0 \text{ on } x_2 = 0.$$

Let $\Gamma(x)$ be a Green's function for the operator $\triangle -i\omega$ on \mathbb{R}^2 ; such a function is given by

$$\Gamma(x) = rac{-1}{2\pi} (\ker(r\sqrt{w}) + i \mathrm{kei}(r\sqrt{w})) \, ,$$

where $r = |x| = \sqrt{x_1^2 + x_2^2}$ and ker() and kei() are the Kelvin functions (see [1, §9.9]). The function ker(r) has a $-\ln(r)$ singularity as r approaches zero, while kei(r) is bounded. Both functions and their derivatives are smooth away from zero and rapidly

decreasing as r tends to infinity, where "rapidly decreasing" means faster than any power of $\frac{1}{r}$. If we define $\psi_a(x) = -2\Gamma(x-x_a)$ where x_a is the point (a, 1) on the top surface, then standard potential theory arguments [9, Chap. 3] show that

(4.9)
$$\Delta \psi_a - i\omega\psi_a = 0 \text{ in } \Omega_0, \\ \frac{\partial \psi_a}{\partial \nu} = \delta_a \text{ on } x_2 = 1.$$

It is not true that

$$\frac{\partial \psi_a}{\partial \nu} = 0 \quad \text{on} \quad x_2 = 0.$$

However, if we take $v_a \in H^1(\Omega)$ to satisfy

(4.10)
$$\Delta v_a - i\omega v_a = 0 \text{ in } \Omega_0,$$
$$\frac{\partial v_a}{\partial \nu} = 0 \text{ on } x_2 = 1,$$
$$\frac{\partial v_a}{\partial \nu} = -\frac{\partial \psi_a}{\partial \nu} \text{ on } x_2 = 0,$$

then $\phi_a = \psi_a + v_a$. Since the Neumann data for v_a on the bottom surface is $-\frac{\partial \psi_a}{\partial \nu}$, which is in $H^{\infty}(\mathbb{R})$ (the singularity for ψ_a lies on the top surface, and away from this singularity ψ_a is smooth and rapidly decreasing), one can show that v_a is in $H^{\infty}(\Omega_0)$. As a result, the function $\phi_a(x)$ has a $-\frac{1}{\pi} \ln |x|$ singularity near x = 0 and otherwise is smooth and rapidly decreasing in |x|, along with its derivatives of all orders.

If we write the integrals in (4.7) with limits, we find that S must satisfy

$$\int_{-\infty}^{\infty} (p_a(x_1)S''(x_1) + q_a(x_1)S(x_1)) \, dx_1 = -d(a),$$

where

(4.11)
$$p_a(x_1) = \int_0^1 \phi_a(x_1, x_2) u_0'(x_2) (1 - x_2) \, dx_2,$$

(4.12)
$$q_a(x_1) = -2 \int_0^1 \phi_a(x_1, x_2) u_0''(x_2) \, dx_2 + \phi_a(x_1, 1).$$

One can check that the integral in $q_a(x_1)$ is continuous as a function of x_1 , smooth away from $x_1 = a$, and rapidly decreasing in x_1 . Also, since $\phi_a(x_1, 1)$ has a logarithmic singularity at $x_1 = a$, so does q_a . Moreover, q_a is an L^2 function. The function $p_a(x_1)$ is also clearly smooth away from $x_1 = a$ and rapidly decreasing in x_1 . The singularity of $\phi_a(x_1, x_2)$ looks like the singularity of ker $|x - x_a|$, and one can use this fact to expand the function $\phi_a(x_1, x_2)$ near the singularity to show that the function $p_a(x_1)$ is actually in $H^2(\mathbb{R})$. Since both $p_a(x_1)$ and $q_a(x_1)$ tend rapidly to zero as $|x_1| \to \infty$ we can integrate by parts twice to find that

$$\int_{-\infty}^{\infty} p_a(x_1) S''(x_1) \, dx_1 = \int_{-\infty}^{\infty} p_a''(x_1) S(x_1) \, dx_1.$$

Equation (4.9) can now be written

(4.13)
$$\int_{-\infty}^{\infty} c_a(x_1) S(x_1) \, dx_1 = d(a),$$

722

(4.14)
$$c_a(x_1) = -p''_a(x_1) - q_a(x_1) \in L^2(\mathbb{R}).$$

Given the translation invariance of this problem in the x_1 direction and the fact that the flux $g(x_1) \equiv 1$ does not depend on x_1 , it is clear that $c_a(x_1) = c(x_1 - a)$ for some function c.

LEMMA 4.1. The function $c(x_1) = u_0(0)i\omega\phi_0(x_1,0)$, where ϕ_0 satisfies (4.8) with a = 0 and u_0 satisfies (3.5).

In proving this result, we will make use of the following simple fact.

Remark 4.1. If f(t) and g(t) are functions defined on [0, 1] with f'(0) = f'(1) = 0and g'(0) = 0, g'(1) = 1, and $g'' = i\omega g$, then

$$\int_0^1 f''(t)g'(t)(1-t)\,dt = f(1) - 2i\omega \int_0^1 f(t)g(t)\,dt + i\omega f(0)g(0) + i\omega \int_0^1 (1-t)f(t)g'(t)\,dt$$

To see that this identity requires only a few applications of integration by parts, $\int u dv = uv - \int v du$. Take u = g'(t)(1-t), dv = f''(t) dt to obtain

$$\int_0^1 f''(t)g'(t)(1-t)\,dt = \int_0^1 f'(t)g'(t)\,dt - i\omega \int_0^1 f'(t)g(t)(1-t)\,dt$$

where we have made use of $g'' = i\omega g$. Integrate the first integral by parts with u = g'and dv = f' dt; integrate the second integral by parts with u = (1-t)g and dv = f' dt. After a number of cancellations, the remark follows immediately.

Proof of Lemma 4.1. From (4.11), (4.12), and (4.14) we obtain

$$c(x_1) = -\int_0^1 ((1-x_2)\frac{\partial^2 \phi_0}{\partial x_1^2} u_0'(x_2) - 2\phi_0 u_0''(x_1)) \, dx_2 - \phi_0(x_1, 1).$$

Recall that u_0 is a function of x_2 only and that $u_0'' = i\omega u_0$ with $u_0'(0) = 0$ and $u_0'(1) = 1$. Since $\Delta \phi_0 - i\omega \phi_0 = 0$, we have $\frac{\partial^2 \phi_0}{\partial x_1^2} = i\omega \phi_0 - \frac{\partial^2 \phi_0}{\partial x_1^2}$. With this substitution and $u_0'' = i\omega u_0$

$$c(x_1) = -\int_0^1 \left[i\omega(1-x_2)\phi_0 u_0'(x_2) - (1-x_2)u_0'\frac{\partial^2\phi_0}{\partial x_2^2} - 2i\omega\phi_0 u_0 \right] \, dx_2 - \phi_0(x_1,1).$$

To finish the proof, use Remark 4.1 with $f = \phi_0$ and $g = u_0$. After a few cancellations the statement of the lemma follows.

Lemma 4.1 implies a number of things about the function $c(x_1)$, in particular, that c is in $H^{\infty}(\mathbb{R})$. It is important to note that $u_0(0)$ is never zero, for u_0 satisfies the two-point boundary value problem (3.5) and one easily finds that

$$u_0(x_2) = \frac{e^{\alpha x_2} + e^{-\alpha x_2}}{\alpha(e^{\alpha} - e^{-\alpha})}$$

where $\alpha = (1+i)\sqrt{\omega/2}$. In particular,

$$u_0(0) = \frac{2}{\alpha(e^\alpha - e^{-\alpha})}.$$

The numerator above is never zero, hence $u_0(0) \neq 0$. As a result the function $c(x_1)$ will not be identically zero for any $\omega > 0$.

There is one more fact that will be extremely useful. Defining the Fourier transform $\hat{f}(y)$ of a function f(x) of a single variable by

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-ixy} f(x) \, dx,$$

we have the following result.

LEMMA 4.2. For c given by Lemma 4.1,

$$\hat{c}(y) = rac{2i\omega u_0(0)}{lpha(e^lpha-e^{-lpha})},$$

where $\alpha = \sqrt{y^2 + i\omega}$. Also, the function $\hat{c}(y)$ is never equal to zero.

Proof. Let $\hat{\phi}_0(y_1, x_2)$ denote the Fourier transform of $\phi_0(x_1, x_2)$ with respect to x_1 only, where ϕ_0 satisfies equation (4.8) with a = 0. Then

$$\hat{\phi}_0(y_1, x_2) = \int_{-\infty}^{\infty} \phi_0(x_1, x_2) e^{-ix_1y_1} dx_1.$$

If ϕ_0 is sufficiently rapidly decreasing (as in our case), then $\frac{\partial}{\partial x_2}$ and the Fourier transform operator commute. Fourier transforming both sides of the boundary value problem (4.8) with respect to x_1 yields a two-point boundary value problem for $\hat{\phi}_0(y_1, x_2)$ in the x_2 variable as

$$\begin{aligned} \frac{d^2 \hat{\phi}_0}{dx_2^2} - (y_1^2 + i\omega) \hat{\phi}_0 &= 0, \\ \frac{d \hat{\phi}_0}{dx_2} (1) &= 1, \\ \frac{d \hat{\phi}_0}{dx_2} (0) &= 0, \end{aligned}$$

(4.15)

where we have used $\hat{\delta_0} = 1$. The solution is

$$\hat{\phi}_0(y_1, x_2) = \frac{e^{\alpha x_2} + e^{-\alpha x_2}}{\alpha (e^{\alpha} - e^{-\alpha})},$$

where $\alpha = \sqrt{y_1^2 + i\omega}$. On the bottom surface $x_2 = 0$,

$$\hat{\phi}_0(y_1,0) = \frac{2}{\alpha(e^\alpha - e^{-\alpha})},$$

which, combined with Lemma 4.1, yields the conclusion. The fact that $\hat{c}(y)$ is never zero follows from $\omega > 0$ and $u_0(0) \neq 0$. \Box

5. The linearized inverse problem. In this section we will examine the continuous version of the linearized inverse problem. Suppose that we have top surface data $d(x_1) = u(x_1, 1)$ where u satisfies (3.6). Based on (4.13) and the above noted fact that $c_a(x_1) = c(x_1 - a)$ we conclude that S and d satisfy the relationship

$$\int_{-\infty}^{\infty} S(y_1) c(y_1 - x_1) \, dy_1 = d(x_1)$$

or

(5.16)
$$\int_{-\infty}^{\infty} S(y_1)\phi(x_1 - y_1) \, dy_1 = S * \phi = d(x_1)$$

where $\phi(x_1) = c(-x_1)$ and "*" denotes convolution. With $d(x_1)$ considered known this becomes a first kind integral equation for the unknown function S. The kernel ϕ is known, or can be determined, according to Lemma 4.1. First kind integral equations have been extensively studied [17, 18] and are well known to be unstable; small perturbations in the right-hand side d(x) can lead to arbitrarily large changes in the solution S. However, this formulation of the inverse problem as an integral equation will allow us to obtain uniqueness and stability estimates for the linearized version of the inverse problem.

THEOREM 5.1 (Uniqueness). If the data d(x) is an L^2 function and if there exists a solution $S \in L^2(\mathbb{R})$ to the linearized inverse problem, then S is unique.

Proof. Suppose S_1 and S_2 are L^2 functions that both give rise to data d. Let $S = S_1 - S_2$. Linearity implies that the data for S is identically zero. Fourier transform both sides of the equation $S * \phi = 0$. By the convolution theorem and the fact that $\hat{\phi} = \overline{c}$ if $\phi(x) = c(-x)$ (where the overbar denotes complex conjugation) we obtain $\hat{\phi}S = 0$. Lemma 4.2 implies that $\hat{\phi} = \overline{c} \neq 0$ and we conclude that

$$\hat{S}=0.$$

so that $S \equiv 0$ or $S_1 = S_2$. \Box

Remark 5.1. In the preceding proof, we assumed a priori that S is in $L^2(\mathbb{R})$. In general, for an arbitrary $d \in L^2(\mathbb{R})$ we cannot find a function S in L^2 that gives rise to data d via equation (5.16).

The convolution equation (5.16) also provides information on continuous dependence. Since the function $\hat{\phi}_0$ is smooth and never equal to zero, we can define the space of functions $L^2_*(\mathbb{R})$ with the norm

$$\|f\|_*^2 = \int_{-\infty}^{\infty} \left| \frac{\hat{f}(z)}{\hat{\phi}_0(z)} \right|^2 dz$$

From Lemma 4.2 it follows that $\frac{1}{\hat{\phi}_0(z)}$ grows like ze^z . The norm $\| \|_*$ thus puts a heavy penalty on high frequencies; the functions in this space are very smooth. We can Fourier transform both sides of (5.16), divide by $\hat{\phi}_0$, and take the L^2 norms of both sides to obtain the following theorem.

THEOREM 5.2 (Continuous Dependence). If a back surface $x_2 = S(x_1)$ generates front surface data d(x) for the linearized problem (3.6), then

$$||S||_{L^2} \le C ||d||_*,$$

where C is independent of d.

Estimates of S from data d will thus be extremely sensitive to any noise because the inversion process weights a frequency f in the data by a factor proportional to fe^f . Lemma 4.2 and the structure of the convolution operator mapping S to the data d make it clear that it will be difficult to estimate the high spatial frequency components in the Fourier decomposition of S, for these components are heavily damped out by the forward mapping.

724

6. The case of finitely many measurements. Suppose that we have point estimates $d(a_i) = u(a_i, 1)$ of the temperature on the top surface at n distinct points. How can we construct a reasonable estimate of the function $S(x_1)$? How can we quantify the stability of the reconstruction with respect to errors in the data, and how does the choice of measurement locations a_i affect the stability? Let us assume that we seek an estimate $S \in L^2(\mathbb{R})$. Physical considerations make it desirable to obtain an estimate with more regularity, but this will be a consequence of the proposed reconstruction procedure. Based on the convolution equation (5.16) we know that S must satisfy the n constraints

(6.17)
$$\langle S, c_i \rangle = \int_{-\infty}^{\infty} S(x_1) \bar{c}_i(x_1) \, dx_1 = d(a_i), \quad i = 1, \dots, n,$$

with $c_i(x_1) \equiv \bar{c}(a_i - x_1)$ where $c(x_1)$ is the function from Lemma 4.1 and $\langle f, g \rangle = \int_{\mathbb{R}} f\bar{g}$ is the usual L^2 inner product. Note that since c_i is an L^2 function, $S \mapsto \langle S, c_i \rangle$ is a bounded linear functional on L^2 . The set (6.17) is a horribly underdetermined set of equations. We can expect to find an entire translated subspace of functions of codimension n in $L^2(\mathbb{R})$ that satisfy the given conditions, and any such function "solves" the inverse problem in the sense that it gives rise to the measured data.

One practical method for specifying a unique function in L^2 that solves the inverse problem is to seek that element in L^2 that satisfies the given conditions and has minimal norm. That such an element exists follows from the fact that the relations (6.17) define a closed convex subset of L^2 , and hence this subset has a unique element of minimal norm. This idea has been used before [8] to construct a "pseudoinverse" for the finite measurement case and to characterize the stability and information content for the inverse conductivity problem and has also been used for reconstruction from partial information in tomographic problems [5]. The approach has several merits. In the present case it leads to an exceptionally easy and efficient inversion algorithm that allows us to study the conditioning of the inverse problem independent of any explicit finite-dimensional parameterization of the unknown S. By weighting the L^2 space appropriately we can also incorporate a priori assumptions into the reconstruction procedure and examine the effect these assumptions have on stability. Also, given the continuous dependence result from Lemma 5.2 and the fact that data is invariably noisy, we know that any inversion procedure will tend to give extraneous high-frequency components in any estimate of S; choosing the estimate of minimal norm should help to damp out spurious components in the estimate. In this sense the procedure may be viewed as a form of regularization.

It is an easy application of Lagrange multipliers to verify that the unique element of L^2 with minimum norm that satisfies the constraints (6.17) must be of the form

(6.18)
$$S(x_1) = \sum_{k=1}^n \lambda_k c_k(x_1)$$

for some $\{\lambda_k\}_{k=1}^n \subseteq \mathbb{C}$. The constants λ_k can be determined by substituting (6.18) into (6.17) and solving the resulting $n \times n$ system. The system is of the form $M\lambda = d$ where $M = [m_{ij}]$ is an n by n matrix, λ is the n vector $(\lambda_1, \ldots, \lambda_n)^T$, and d is an n vector $(d(a_1), \ldots, d(a_n))^T$. The entries of M are given by

(6.19)
$$m_{ij} = \int_{-\infty}^{\infty} c_i(x_1) \bar{c}_j(x_1) \, dx_1 = \int_{-\infty}^{\infty} \bar{c}(x_1 - a_i) c(x_1 - a_j) \, dx_1.$$

The matrix M is clearly Hermitian and, in fact, is always invertible. To see this, suppose we can find some vector $\lambda \neq 0$ with $M\lambda = 0$. Then $\bar{\lambda}^T M\lambda = 0$ and we conclude that

$$\int_{-\infty}^{\infty} \sum_{i,j} c(x_1 - a_i) \lambda_i \bar{c}(x_1 - a_j) \bar{\lambda}_j \, dx_1 = \int_{-\infty}^{\infty} \left| \sum_{i=1}^n \lambda_i c(x_1 - a_i) \right|^2 \, dx_1 = 0$$

This implies

$$\sum_{j=1}^n \lambda_j c(x_1 - a_j) \equiv 0.$$

Fourier transform both sides and use the basic properties of the Fourier transform to obtain

(6.20)
$$\hat{c}(y)\sum_{j=1}^{n}\lambda_{j}e^{-ia_{j}y} \equiv 0$$

The functions $f_i(y) = e^{ia_i y}$ are linearly independent for distinct a_i and analytic, so $f(y) = \sum_{j=1}^n \lambda_j e^{-ia_j y}$ has isolated zeroes. Based on (6.20) we conclude that $\hat{c}(y) = 0$ in $L^2(\mathbb{R})$, contradicting Lemma 4.2. Therefore M must be invertible. This inversion procedure thus always produces a unique estimate of S if the measurement locations are distinct.

We can also "solve" the inverse problem by choosing the unique function S that satisfies (6.17) and has minimal norm in a weighted L^2 space $L^2_{\delta}(\mathbb{R})$ with norm defined by the inner product

$$\langle f,g \rangle_{\delta} = \int_{-\infty}^{\infty} f(x_1) \bar{g}(x_1) \frac{1}{\delta(x_1)} \, dx_1,$$

where $\delta(x_1)$ is some real-valued nonnegative function on \mathbb{R} . In this case, we have

$$\int_{-\infty}^{\infty} S(x_1)c_i(x_1)\,dx_1 = \int_{-\infty}^{\infty} S(x_1)c_i(x_1)\delta(x_1)\frac{1}{\delta(x_1)}\,dx_1,$$

where we must assume that S = 0 wherever $\delta = 0$. Thus the integral is understood to be taken only over that set where δ is nonzero. Equations (6.17) now take the form

(6.21)
$$\langle S, c_i \delta \rangle_{\delta} = d_i$$

and the minimal norm solution is of the form

(6.22)
$$S(x_1) = \delta(x_1) \sum_{i=1}^n \lambda_i c_i(x_1)$$

The idea is to choose $\delta(x_1)$ to have the same general form as $S(x_1)$ and so incorporate a priori information into the reconstruction based on (6.22) by forcing it to have the same general form. For example, if we know that S is supported in the interval [-b, b]we can choose $\delta(x) \equiv 1$ on [-b, b] and $\delta(x) \equiv 0$ elsewhere. The optimal estimate of S becomes

$$S(x) = \chi_{[-b,b]} \sum_{i=1}^{n} \lambda_i c_i(x),$$

where $\chi_{[-b,b]}$ is the characteristic function of the interval [-b,b] and the λ_i are found by solving

$$\sum_{i=1}^{n} \left(\int_{-b}^{b} c_i(x) \bar{c}_j(x) \, dx \right) \lambda_i = d_j$$

for j = 1 to n.

Whether we use a priori information or choose a uniform weighting on L^2 , the reconstruction procedure is as follows. Compute the matrix M defined by (6.19) and "measure" the data d_i at the corresponding points $x_1 = a_i$ on the top surface. Solve the system $M\lambda = d$ to obtain $\lambda_1, \ldots, \lambda_n$ and then compute an estimate of $S(x_1)$ from (6.18) or (6.22). The stability of the finite data inversion is thus determined by the nature of the matrix M and, specifically, of its inverse. We can quantify the stability of the finite data inverse of the inverse of M in various situations. This is done in the following section by studying the singular values of the matrix M.

7. Numerical experiments. We will now examine the inverse problem by using the results of the previous sections, with an eye toward quantifying the stability and resolution of back surface estimates with respect to various experimental parameters, specifically, the frequency of the input heat flux and the distribution of the measurement locations along the top surface of the sample. We also demonstrate how a priori assumptions about the nature of the corrosion can be incorporated into the inversion procedure and the effects such assumptions have on stability and resolution.

There are a few points worth mentioning before we present the numerical results. The estimate of S constructed using (6.18) lies in $H^{\infty}(\mathbb{R})$ and so the graph $x_2 = S(x_1)$ makes sense as a curve in \mathbb{R}^2 , except that the estimate will usually be complex-valued. This is not surprising, for a complex-valued S makes perfect sense in the linearized version of the problem on which the inversion procedure is based. Estimates of S, especially in the presence of noise or the linearization error, will almost certainly have nonzero imaginary part. However, for those S of "small" norm the linearized problem accurately reflects the full nonlinear direct problem and so the estimate of S should have a small imaginary component. This is indeed the case. A physically meaningful estimate of the true back surface $x_2 = S(x_1)$ can be provided by either dropping the imaginary component or taking the modulus of the estimate. We choose the latter.

In the examples that follow we generate simulated test data using the full direct problem (2.2) with heating $g(x) \equiv 1$. The direct problem is solved by converting it into a boundary integral equation. This results in a second kind Fredholm equation that is solved using Nyström's method (see [2]) with appropriate quadrature rules. The boundary integral approach is exceptionally fast and accurate and provides estimates of the solution only on the boundary of Ω_0 , the only place that we need the solution.

All of the following examples use a back surface described by the function

$$S(x) = \frac{e^{-(x-1)^2}}{10} + \frac{e^{-(x+2)^2/2}}{5}.$$

We assume that the temperature is measured at 21 equally spaced points on the top surface; the 21 by 21 matrix M is computed using (6.19).

Stability. Of particular interest is the stability of the inversion procedure with respect to various experimental parameters, e.g., heating frequency and measurement

locations. The first task is to quantify the stability of the inverse problem. One way to do this is to perform a singular value decomposition on the matrix M defined by (6.19) and examine the magnitude of the singular values. When the singular values are small the inversion of $M\lambda = d$ magnifies small perturbations in d. Our goal in choosing experimental parameters is therefore to make the singular values of M as large as possible, within certain limits. We should remark that one can define the condition number of M as the ratio of the largest to smallest singular values and then attempt to quantify stability using this single number. This is not always a good approach in the present setting, as later examples will show.

We begin by examining how the stability of the inversion procedure depends on the spacing of the temperature measurements on the top surface. In the following examples we fix the heating frequency at $\omega = 1$ and take measurements of the resulting temperature at 21 equally spaced locations on the interval [-a, a] for several values of a. The resulting measurement locations are therefore of the form $a_i = -a + i \frac{a}{10}$ for $i = 0, \ldots, 20$. In each case the matrix M is computed and a singular value decomposition is performed. Let the singular values of M be denoted by α_i , $i = 1, \ldots, 21$, arranged in descending order. In Figure 2 we plot the quantity $\log_{10} |\alpha_i|$ versus i for the cases a = 1, 2, 3, 5, 10.

It is apparent that as the measurement locations become more spread out (larger a) the singular values decay more slowly and hence the inversion procedure becomes more stable. In light of Theorem 5.2 this is not surprising. When the measurement locations are close together we can resolve higher spatial frequencies in the data and so we can estimate higher frequencies in the Fourier decomposition of S. But according to Theorem 5.2, these are exactly the portions of S that are difficult to reconstruct—they are heavily damped out in the data. The graph reflects this, with a full 6 orders of magnitude variation for the smallest singular values between the cases a = 1 and a = 10.

Another way to look at the stability of the various experimental configurations is to suppose that we have an "error magnification tolerance" E and that in the inversion procedure we disregard all singular vectors whose singular values are less than $\frac{1}{E}$. This idea has been used in studying the stability for the impedance imaging problem [8]. The inversion procedure is then stabilized at the expense of rendering those components of S lying in the span of the corresponding functions invisible. Figure 3 shows the number of singular values of M that satisfy $\alpha_k > \frac{1}{E}$ versus $\log_{10}(E)$ for Efrom 1 to 10^{-9} .

As the measurement locations spread out, more singular values satisfy $\alpha_i > \frac{1}{E}$. The inversion procedure then admits more basis functions, presumably improving the

FIG. 2. $\log_{10} |\alpha_i|$ versus *i* for various values of *a*.

FIG. 3. Number of singular values with $\alpha_i > \frac{1}{E}$ versus $\log_{10}(E)$ for various values of a.

FIG. 4. Reconstruction of S(x) for 21 measurements on [-5, 5], tolerance $E = 10^2$.

fidelity of the reconstruction. In the two cases below we perform the actual reconstruction with E = 100 (so only singular values greater than 0.01 are admissible) and add a small amount of random noise to the data (equal to 10 percent of the maximum signal strength). We then perform a reconstruction that omits all basis vectors whose corresponding singular values are less than $\frac{1}{E}$. Figure 4 illustrates the case in which the measurements locations are equally spaced from -5 to 5; there are 9 admissible singular values. In Figure 5 we take the 21 measurements on the smaller interval [-1, 1], which yields only three admissible singular values. The reconstruction in Figure 5 is noticeably inferior to that of Figure 4, but we have only three admissible basis functions with which to construct S(x). Increasing the value of E to admit more basis functions is not successful. Figure 6 illustrates what happens if we take $E = 10^4$ with measurements on [-1, 1]. Now five singular values are admissible, but the reconstruction is overwhelmed by noise. The moral seems clear: for maximum stability with a fixed number of measurement locations, we should spread the measurements over as large a region as possible. There are limits to this approach, however. If we spread out the measurements we do gain stability, but we will no longer be able to estimate high frequencies in the Fourier decomposition of S. With regard to the distribution of the measurement locations, the reconstruction process involves a compromise between stability and resolution of small-scale features.

In Figure 7 we examine the dependence of the stability on ω , the frequency of the applied heat flux. We consider the cases $\omega = 0.01, 0.1, 1.0, 100, 100.0$. In each case we take 21 equally spaced temperature measurements on the interval [-5, 5]. Figure 7

FIG. 5. Reconstruction of S(x) for 21 measurements on [-1, 1], tolerance $E = 10^2$.

FIG. 6. Reconstruction of S(x) for 21 measurements on [-1, 1], tolerance $E = 10^4$.

FIG. 7. Number of singular values with $\alpha_i > \frac{1}{E}$ versus $\log_{10}(E)$ for various values of ω .

shows the number of singular values that exceed $\frac{1}{E}$ for E from 10^{-8} to 10^{15} , for each of the frequencies.

For E = 100 as before, $\omega = 10$ and $\omega = 100$ have no admissible singular values at all, so that the estimate of the back surface will be identically zero. The smaller singular values at higher frequencies are due to the fact that at higher frequencies the periodic heating penetrates very little into the sample and becomes more of a "skin effect." As a result very little energy reaches the back surface, and even less returns to

FIG. 8. Reconstruction of S(x) for 21 measurements on [-5,5], $\omega = 0.1$, tolerance $E = 10^2$.

be measured on the top surface. It is interesting to note that while higher frequencies produce smaller singular values, the condition number of M for $\omega = 100$ is only 10.3, but the condition number for $\omega = 0.01$ is 706.1. Clearly, though, it is not enough to make the condition number small. The singular values themselves must be large enough for the inversion procedure to be stable in the presence of a fixed noise level.

While lower frequencies make the inversion process more stable, there are limits to how small we can make ω and maintain resolution. Figure 8 illustrates a reconstruction based on $\omega = 0.1$. The parameters are otherwise identical to those that were used to produce Figure 4. All of the singular values are admissible. As when the measurement locations are very spread out, we lose resolution when the input flux has a low temporal frequency.

Incorporating a priori information. The preceding examples illustrate that the inversion procedure involves a compromise between stability and resolution. If the data points are too closely spaced, the inversion procedure is unstable. If the data points are too spread out, the inversion procedure becomes stable but resolution is lost. Variations in the input heating frequency give rise to a similar phenomena. How shall we find the "best" experimental parameters? One useful possibility is to incorporate a priori information or assumptions into the inversion procedure. We will illustrate the idea by examining the problem under the assumption that the defect or function S is supported in a known interval.

In the following examples we assume that the defect being imaged is supported in the interval [-2, 2]. The only modification to the inversion procedure is that the matrix M is computed in accordance with (6.21) and the function S is estimated using (6.22). We will study the stability of the inversion procedure with respect to the distribution of the measurement locations on the top surface.

As in the previous cases, we choose measurement locations at $x_1 = a_i$ on the sample top surface, where $a_i = -a + i\frac{a}{10}$ for i = 0, ..., 20. The heating frequency is $\omega = 1$. We begin by examining the singular values of the inversion matrix M for a few choices of a. In Figure 9 we plot the number of allowable singular values $\alpha_i > \frac{1}{E}$ versus $\log_{10}(E)$ for different node spacings. The figure shows that the best conditioning for the inverse problem occurs at a = 2, when the measurement locations are distributed approximately in the same interval in which the defect is assumed to be supported. As before, closely spaced locations give rise to an ill-conditioned problem. However unlike the previous cases widely spaced nodes also result in poor conditioning. When M is computed using (6.21) those rows of M corresponding to measurement locations

FIG. 9. Number of singular values with $\alpha_i > \frac{1}{E}$ versus $\log_{10}(E)$ for various values of a.

FIG. 10. Reconstruction of S(x) for 21 measurements on [-2, 2], tolerance E = 300.

far from the support of S are very nearly set to zero since the function $c(x - a_i)$ is rapidly decreasing away from a_i .

It is useful to look at a few reconstructions based on this strategy. In the cases below we take E = 300 (so only singular values greater than $\frac{1}{300}$ are admissible) and add a small amount of random noise to the data. We then perform a reconstruction that omits all singular values less than $\frac{1}{E}$. The function defining the back surface is $S(x) = \frac{1}{10}e^{-2(x+1)^2} + \frac{1}{5}e^{-3(x-1)^2}$. Figure 10 illustrates the first case using a = 2, the best choice according to Figure 9. In this case seven singular values are admissible. For a = 10 we have four admissible singular values and the reconstruction shown in Figure 11, while a = 0.5 also yields four admissible singular values and the reconstruction shown in Figure 12.

The actual reconstructions confirm that a = 2 yields the most desirable results. Choosing a significantly smaller or larger than the support of S results in decreased stability and/or accuracy for the reconstruction.

Of course, the assumption that S is supported in a given interval should be detrimental to the reconstruction if that assumption turns out to be false. In Figure 13 we let $S(x) = \frac{1}{10}e^{-2(x+1)^2} + \frac{1}{5}e^{-3(x-4)^2}$ and perform the reconstruction under the assumption that S is supported in the interval [-2, 2].

8. Concluding remarks. In this paper we have investigated the inverse problem of recovering an unknown boundary of some object by applying a heat flux to an accessible portion of the boundary and measuring the resulting temperatures. We

FIG. 11. Reconstruction of S(x) for 21 measurements on [-10, 10], tolerance E = 300.

FIG. 12. Reconstruction of S(x) for 21 measurements on [-0.5, 0.5], tolerance E = 300.

FIG. 13. Reconstruction of S(x) for 21 measurements on [-2, 2], tolerance E = 300.

have linearized the problem and shown that it requires solving a first kind convolution integral equation for the unknown surface. The convolution kernel has a Fourier transform that dies rapidly at infinity, and so the inversion is very ill-posed. We performed a variety of numerical studies that show that the ill-posedness is directly reflected in the finite data version of the problem, in the rapid decay of the singular values of the matrix that governs the inversion process. This ill-posedness depends on a number of factors; in particular, the locations of the measurements have a large effect on the conditioning of the inverse problem. We have also considered the effect of including a priori assumptions in the finite data inversion procedure, by weighting appropriate Hilbert spaces in which the solution S resides. The inclusion of this information can help in determining the optimal locations for measurements on the top surface.

There are a number of interesting directions we could take from here. In our studies we used only the input flux whose magnitude is identically one on the top surface. Similar results can be obtained for more general fluxes, and this would allow studying the effect that the input heat flux has on sensitivity and resolution. The fully time-dependent case would also be of interest. The procedure presented in this paper would also work for a full three-dimensional problem, although qualitatively the results should be the same.

As mentioned earlier, the inversion process that chooses the function with minimal L^2 norm that is consistent with the measured data seems to act like a form of regularization for the inverse problem. It would be interesting to examine in what sense this is true and how it relates to more traditional forms of regularization. It is also possible (and not difficult) to carry out the same minimization process in higher Sobolev spaces, e.g., H^1 , and thus put a higher "penalty" on functions with oscillations. This too would make an interesting study. We would also like to examine conditions under which our inversion procedure is guaranteed to converge to the solution of the linearized inverse problem.

REFERENCES

- M. ABRAMOWITZ AND I. STEGUN, Handbook of Mathematical Functions, Appl. Math. Ser. 55, National Bureau of Standards, Washington, 1964; reprinted Dover Publications, New York, 1968.
- K. E. ATKINSON, A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.
- [3] H. T. BANKS AND F. KOJIMA, Boundary shape identification problems in two-dimensional domains related to thermal testing of materials, Quart. Appl. Math., 47 (1989), pp. 273–293.
- [4] H. T. BANKS, F. KOJIMA, AND W. P. WINFREE, Boundary estimation problems arising in thermal tomography, Inverse Problems, 6 (1990), pp. 897–922.
- [5] C. L. BYRNE AND R. M. FITZGERALD, Reconstruction from partial information with applications to tomography, SIAM J. Appl. Math., 42 (1982), pp. 933–940.
- [6] W. J. CANTWELL AND J. MORTON, The significance of damage and defects and their detection in composite materials: A review, J. Strain Anal., 27 (1992), pp. 29–42.
- [7] D. J. CROWTHER, L. D. FAVRO, P. K. KUO, AND R. L. THOMAS, Thermal wave detection and analysis of defects in structural composite materials, in Proc. Review of Progress in Quantitative Nondestructive Testing, UCSD, San Diego, CA, 1992, Plenum Press, New York, 1993, pp. 481-485.
- [8] D. DOBSON AND F. SANTOSA, Stability and resolution analysis of an inverse problem in electrical impedance tomography—dependence on the input current patterns, SIAM J. Appl. Math., 54 (1994), pp. 1542–1560.
- [9] G. B. FOLLAND, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, 1976.
- [10] D. G. GISSER, D. ISAACSON, AND J. C. NEWELL, Electric current computed tomography and eigenvalues, SIAM J. Appl. Math., 50 (1990), pp. 1623–1634.
- D. ISAACSON AND M. CHENEY, Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms, preprint, 1990.
- [12] A. J. KASSAB AND J. E. POLLARD, Automated algorithm for the nondestructive detection of subsurface cavities by the IR-CAT method, J. Nondestructive Eval., 12 (1993), pp. 175– 186.
- [13] A. KILLEY AND J. P. SARGENT, Analysis of thermal non-destructive testing, J. Phys. D: Appl. Phys., 22 (1989), pp. 216–224.
- [14] J. KRAPEZ AND P. CIELO, Thermographic nondestructive evaluation: data inversion procedures I, Res. Nondestructive Eval., 3 (1991), pp. 81–100.

- [15] P. M. PATEL, S. K. LAU, AND D. P. ALMOND, A review of image analysis techniques applied in transient thermographic nondestructive testing, Nondestructive Testing and Eval., 6 (1992), pp. 343-364.
- [16] K. V. PEARSON, Printed circuit board fault detection and isolation using thermal imaging techniques, in Thermal Imaging, I. R. Abel, ed., Proc. SPIE, 636 (1986), pp. 110-114.
- [17] F. G. TRICOMI, Integral Equations, Interscience, New York, 1957.
- [18] G. M. WING, A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.