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AN INVERSE PROBLEM IN THERMAL IMAGING*
KURT BRYAN! AND LESTER F. CAUDILL, JR.}

Abstract. This paper examines uniqueness and stability results for an inverse problem in
thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux
and measuring the induced temperature on the boundary of the sample. The problem is studied in
both the case in which one has data at every point on the boundary of the region and the case in
which only finitely many measurements are available. An inversion procedure is developed and used
to study the stability of the inverse problem for various experimental configurations.

Key words. inverse problems, nondestructive testing, first-kind integral equations

AMS subject classifications. 35A40, 35J25, 35R30

1. Introduction. Thermal imaging is a technique of wide utility in nondestruc-
tive testing and evaluation. To apply this procedure one uses a heat source (e.g.,
lasers or flashlamps) to apply a heat flux to the boundary of an object and observes
the resulting temperature response on the object’s surface. From this information
one attempts to determine the internal thermal properties of the object, the pres-
ence of cracks or voids, or the shape of some unknown portion of the boundary.
Thermal imaging has been significantly investigated as a method for detecting dam-
age or corrosion in aircraft. Additionally, the method has found broad applications
in industrial nondestructive testing, ranging from composite materials to electronics
[6, 16]. Thermal imaging has been successfully applied alone as well as in parallel
with other evaluation techniques (e.g., thermoacoustics and vibrothermography) [6].
See also [15] for an account of the technology and techniques that are employed and
additional references.

To date, the primary mathematical considerations of thermal imaging have fo-
cused on the development of inversion algorithms (see, e.g., [12, 14, 7], and the refer-
ences therein). In [13], cértain fundamental factors limiting the use of thermography
are discussed in the context of a simple one-dimensional example. In [7] the quality
of images obtained using thermal imaging is discussed; typically, the images obtained
are blurred due to the diffusive nature of the heat equation. The authors in [7] present
several examples with real data and discuss an algorithm for improving the images
obtained with thermal imaging.

One of the most common uses of thermal imaging is for the detection of so-called
“back surface” corrosion and damage. Briefly, one attempts to determine whether
some inaccessible portion of an object’s boundary has corroded and therefore changed
shape. In this paper we investigate the inverse problem of determining changes in the
boundary profile of a two-dimensional sample by using thermal imaging. We consider
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716 KURT BRYAN AND LESTER F. CAUDILL, JR.

a certain portion of the surface of a sample to be accessible for measurements and the
remainder of the surface, which may be corroded, inaccessible. This problem has been
considered by others [3, 4] with an emphasis on recovering estimates of the unknown
surface by using a least-squares method.

We examine both a continuous and finite data version of the inverse problem.
The continuous version assumes that one has data at every point on the accessible
portion of the object’s surface. The finite data version assumes that only finitely
many measurements have been made. Our goals are

e to examine uniqueness and continuous dependence results for the continuous
version of the inverse problem, and what they imply for the finite data inverse
problem;

e to examine how various experimental parameters affect stability and resolu-
tion for the finite data inverse problem, especially the effect of measurement
locations on stability;

e to incorporate a priori information or assumptions into the finite data inverse
problem.

Our main focus is not to develop inversion algorithms, but in the course of exam-
ining the problem we derive an inversion procedure for the finite data inverse problem.
This algorithm allows the easy incorporation of a priori assumptions into the inver-
sion process. We apply the algorithm to several simulated data sets to illustrate our
conclusions. Our study of the stability of the inverse problem reduces to studying the
invertibility of a certain matrix, which we do with a singular value decomposition. We
do not make any explicit finite-dimensional parameterization of the unknown surface.

We should note that a very similar approach has been used in (8] to study resolu-
tion and stability for the inverse conductivity problem. Isaacson, Cheney, and others
[10, 11] have also carried out similar sensitivity studies related to the inverse conduc-
tivity problem, especially the effect of finitely many measurements on the inversion
process.

The outline of the paper is as follows. In §2 we present the mathematical for-
mulation of the continuous and finite data versions of the inverse problem. In §3 we
derive a linearized version of the continuous problem, and in §4 we show how this leads
(as thermal inverse problems often do) to a first kind integral equation that must be
inverted. In §5 we use the integral equation formulation to examine uniqueness and
stability results for the linearized version of the inverse problem. In §6 we consider
an algorithm for solving the finite data version of the inverse problem and how this
approach can be used to quantify the stability of the problem. In the last section we
present a variety of numerical studies to examine the effects that various experimental
parameters have on the stability and resolution of the inversion process and the effect
of incorporating a priori assumptions into the inversion procedure.

2. The inverse problem. Consider a sample to be imaged as a two-dimensional
region 2 lying between the two surfaces zo = S(z;) and z2 = 1 as illustrated in
Figure 1. We will refer to the surface 3 = 1 as the “top” or “front” surface and x5 =
S(z1) as the “back” surface. We assume that the ends of the sample are sufficiently far
away that they can be ignored, so for our purposes the sample is unbounded in the z;
direction. The top surface is assumed to be accessible for inspection or measurements,
but the back surface 2 = S(x1) is inaccessible. This is the portion of the sample to
be inspected for corrosion. The ideal uncorroded case is a flat back surface S(z1) = 0.
In the corroded case above S(z1) > 0 for some values of ;. We will assume that
the function S belongs to H2(IR), although this assumption will later be relaxed. In
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FI1G. 1. Sample geometry.

particular, since H2(R) C C!(IR), there is a continuous unit normal vector field on
the back surface. The goal is to determine the back surface or the function S by
taking measurements only on the front surface.

A time-dependent heat flux g(x;,t) is applied to the top of the sample z; = 1.
We will assume that the sample material is homogeneous with thermal diffusivity «
and thermal conductivity a, both known constants. We will use T'(z,t) to denote the
resulting temperature induced in 2, where z = (21, z2). The direct thermal diffusion
problem will be modeled by the standard heat equation

oT :
(21) —a—t—-nAT—Om Q,
or
ags = g(z1,t) on zo =1,
or
ags = 0 on zg = S(z1),

T(z,0) = To(x),

for t > 0, where 5‘9; denotes the outward normal derivative on the boundary of €.
The function Tp(z) is the initial temperature of the region Q at time ¢t = 0. Note that
the back surface is assumed to block all heat conduction.

We will also assume that the heat flux g(z1,t) is periodic, of the form Re[g(z1)e?]
with w > 0. For simplicity, we also take the constants x and a equal to one. Under
these assumptions the solution to (2.1) is given as T'(z,t) = Re[e™*u(z)], where u(z)
satisfies

(2.2) Ay —iwu=0 in Q,
0
5}5 =g(x,) on zp =1,
0
5% =0 on z2 = S(x1),

at least after transients from the initial condition have died out. The main case of
interest is that in which g(z;) is constant, corresponding to uniform heating of the
outer surface. This is typically the case when heat or flash lamps are used to provide
the input flux g. For the moment, however, we will not restrict g.

There are two versions of the inverse problem to be considered.

Continuous version. Given measurements of u(z) at all points on the top sur-
face 2 = 1, determine the function S(z1).
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Finite data version. Given measurements of u(z) on the top surface zo =1 at
points 1 = a1, as, ..., a,, estimate the function S(z).

The finite data version corresponds to the case in which one has actual measure-
ments. The data need not be actual point measurements of the temperature u, but
this is the most common situation. Of particular interest are the following questions.

1. Can the function S(z;) be uniquely determined by knowing u(z,) for all z;
on the top surface?

2. If S(z1) is uniquely determined by u(z;), how sensitive is S(x1) to perturba-
tions in the data? What kinds of features in the back surface z; = S(z1) can
or cannot be easily determined from the data?

3. Since any practical application falls under the finite data formulation, how
stable is the estimate of S(x;) based on finitely many pieces of data? What
factors influence stability in this case, and is there an inversion procedure to
produce a reasonable estimate of S(z1) using finitely many measurements?

The first question is easily answered “yes” by a standard argument. This is the content
of the following result.

THEOREM 2.1 (Uniqueness). Let u(zq,x2;S) denote the solution to (2.2) with
back surface S and nonzero flur g. If u(x1,1;S1) = u(z1,1; S2) for each (x1,1) in an
open subset C of the top surface of Q, then S1 = Ss.

Proof. Suppose S; # S2. Using the shorthand notation u; = u(z1,z2; S;), we
have that u; and ug have the same Cauchy data on C and, by unique continuation,
agree on any connected domain on which both are defined, provided that that domain
contains an open portion of C. Assume that S; and S2 are not equal and denote by ;
the region bounded by z2 = 1 and x5 = S;(z1). S1 # S2, so there is some nonempty
connected component D of Q3 \ Q2 or Q5 \ Q5. Let us suppose the latter so that the
region D is bounded by x5 = Si(z1) and z2 = S2(z1). On z2 = Sz(z1) we know
that the normal derivative of uy is identically zero; on zo = S;(z1) we know that
the normal derivative of u; is zero (from inside ;) and, since uz = u; and ug is
smooth across zo = S;(x;), conclude that the normal derivative of uz vanishes on the
boundary of D. This forces us = 0 inside D. Standard elliptic regularity arguments
force up = 0 inside 9, which implies that the flux g is identically zero, a contradiction.
Thus we must have S; = S; and so the back surface S(z1) is uniquely determined by
the boundary data on any open portion of the top surface. |

The second and third questions will be examined in the next few sections by
considering a linearization of the original problem.

3. A linearization. We now linearize the original direct problem given by (2.2)
with respect to the function S. Let ug(z) denote the solution to (2.2) with S = 0.
The surface 3 = 0 is the point at which we will linearize, since this represents the
uncorroded or ideal profile from which we hope to detect any deviation.

Let Qo denote the region {(z1,22) : 0 < zz < 1} in R?. For any S € H*(R) C
C(R), let us construct the map ¢ from 2 to Q by

#(z1,22) = (ml’ %ﬁl) '

If |S(z1)| < 1, then it is easy to check that ¢ is invertible on €y. This map fixes
the top boundary of £ and maps the bottom surface to zo = 0. Let y = ¢(z) and

(y) = u(¢~(y)) = u(zx). Under such a change of coordinates V, = (D¢)TV, and
31/, = 6‘9 where ny = (D¢)vg, (D¢) is the derivative of ¢, and (Dd))T is the transpose.
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Under this change of coordinates the boundary value problem (2.2) becomes

3.3 V- -kVv—- —— =0 in Q,
ov
377 =g(z1) on zo =1,
ov
—67) =0 on z3 =0,

T
where k = (22 D§¢) . The vector 7 can be written as

n { 9 ] onzx 1 n ! 8 =) 2| onze =0
= 1 2 =1, = e (S"(z1)) 2=0.
1-S(x, V 1 + (Sl(xl))z l—g(z1 —11

This change of coordinates removes the unknown S from the definition of the boundary
of 2 and puts S into the coefficients of the heat operator and boundary conditions.

Now we linearize the problem with respect to S about S = 0 by assuming that
S = €S for some function S, where € is some small real number. Let u denote the
solution to (3.3) for a general S and ug the solution to (3.3) for S = 0. Suppose that
the resulting perturbation in uy can be represented as u = ug + €vg. If we substitute
these relations into (3.3), use the fact that ug satisfies (3.3) with S = 0, and drop
all quadratic € terms, then we obtain the following linearized version of the direct
problem

(34) Avg — twyy = -V - [RVU()] - in(’yl)Uo in Qp,
0 ~
—3%0 = —S(y1)g(y1) on y2 =1,
(9'00

I o/ aU() —
v =-=5 (yl)ayl on yz = 0,

where #(y) is the matrix

R(y) = [ —S’(y}) (y2 __l)gl(yl)
(y2=1)S'(y1)  S(y)
In particular, we are interested in the special case g = 1 corresponding to spatially

uniform periodic heating of the top surface. Under this condition the function ug
depends only on z3 and (3.3) for uy becomes a two-point boundary value problem

(3.5) ug —iwug =0 on (0,1),
UB(O) =0,
up(l) = 1.

If we now use u rather than vy to denote the temperature perturbation satisfying
(3.3), then, with (3.5), the linearized version of the problem for g = 1 becomes

(3.6) Au —iwu = (1 — z2)uy(z2)S" (21) — 2ugy (z1)S(z1) on o,
o
B_Z = —-S(z1) on z =1,
B_U =0 on x93 =
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For simplicity, this is the version of the problem we will examine, although the
more general linearized version (3.4) can be examined using similar techniques. Note
that the linearized problem is defined on the domain Qo which does not depend on S.

4. An integral identity. Let the function d(a) = u(a, 1) denote the top surface
data from the direct problem (3.6). Given that the relation between S and d is linear,
it seems reasonable that this relationship can be expressed by an integral operator

aw = [ ” 6u®)S(w) du,

where ¢, is some function that depends on the particular point a. Such a relationship
does exist and we can say quite a bit about the function(s) ¢,, as we now demonstrate.
Let L = A — iw. By Green’s second identity

B ou  O¢ ou 0¢
/Qo(rbLu —uL¢)dz = /:tz:l <¢5; - ua;) dzi + /x2=0 (d)—a—l; uau) dzq,

where ¢ is any sufficiently regular function defined on 2. Assume that u is a solution
to (3.6) and that ¢ is a function that satisfies L¢ = 0 on ©p and %g = 0 on the surface
z9 = 0. Then the above equation becomes

/Q $(@)((1 = z2)ul(22)S" (31) — 2ull(z1)S (1)) der + / ” b(z1,1)S(z1) day

(e o]

= — %(xl,l)d(wl)dwl.

Let us now complete the specification of ¢ by requiring %‘5 = §, on the top surface,
where 6, denotes a delta function on the surface zo = 1 at the point z; = a. If we
write ¢, to denote the dependence of ¢ on a, then we obtain

/Q <15a(ﬂc)((1—962)%(5132)S"(ﬂlh)—2%'(-"31)5(961))0l96+/_oo $a(21,1)5(21) dzy = —d(a).

(4.7
Note that this equation involves no unknown quantities except S on the left side.
It is worth saying a few words about the function ¢, that satisfies

(4.8) Dpg — iwde =0 in Qy,
O¢a ~
ey =6, on T3 =1,
O _
w 0 on o =0.

Let I'(xx) be a Green’s function for the operator A —iw on IR?; such a function is given
by

I(z) = ;—;(ker(r\/'w) + ikei(ry/)) ,

where r = |z| = /22 + 22 and ker() and kei() are the Kelvin functions (see [1, §9.9]).
The function ker(r) has a —In(r) singularity as r approaches zero, while kei(r) is
bounded. Both functions and their derivatives are smooth away from zero and rapidly
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decreasing as r tends to infinity, where “rapidly decreasing” means faster than any
power of 1. If we define 1, (z) = —2I'(z — z,) where z, is the point (a,1) on the top
surface, then standard potential theory arguments [9, Chap. 3] show that

(4.9) Athg — iwhg =0 in Qo,
0,
de)/ =6, on 9 =1.
It is not true that
o
81{)/“ =0 on z5=0.
However, if we take v, € H!(Q2) to satisfy
(4.10) Avg —iwve, =0 in Q,
v,
-E/_ =0 on To = 1,
Ov, O, _
o ¢ 22 =0,

then ¢q = g + v,. Since the Neumann data for v, on the bottom surface is —%%,
which is in H°(IR) (the singularity for v, lies on the top surface, and away from this
singularity 1, is smooth and rapidly decreasing), one can show that v, is in H* ().
As a result, the function ¢,(x) has a —1 In|x| singularity near x = 0 and otherwise
is smooth and rapidly decreasing in |z|, along with its derivatives of all orders.

If we write the integrals in (4.7) with limits, we find that S must satisfy

/ " (Pa(@1)S"(21) + qa(21)S(21)) dos = —d(a),

where
1
(4.11) Pa(21) = /0 Pa(1, T2)up(22)(1 — 2) dizg,
1
(4.12) qa(z1) = “‘2/0 Ga(z1, T2)ug (T2) dT2 + Pa(1,1).

One can check that the integral in g,(x1) is continuous as a function of z;, smooth
away from z; = a, and rapidly decreasing in ;. Also, since @,(z1,1) has a logarithmic
singularity at x; = a, so does q,. Moreover, g, is an L? function. The function p,(x;)
is also clearly smooth away from z; = a and rapidly decreasing in ;. The singularity
of ¢a(z1,22) looks like the singularity of ker|z — z,|, and one can use this fact to
expand the function ¢, (1, z2) near the singularity to show that the function ps(z1)
is actually in H2(IR). Since both p,(x1) and g,(z1) tend rapidly to zero as |z;| — oo
we can integrate by parts twice to find that

o 9) o0
/ Pa(z1)8" (21) dzy =/ Pl (x1)S(z1) dzx1.
—00 —00

Equation (4.9) can now be written

(4.13) /oo co(21)S(21) dzq = d(a),

— 00
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where
(4.14) ca(21) = —pg (1) — ga(z1) € L*(R).

Given the translation invariance of this problem in the z; direction and the fact
that the flux g(z;) = 1 does not depend on z, it is clear that c,(z1) = c¢(z1 — a) for
some function c.

LEMMA 4.1. The function c(z1) = uo(0)iwgo(x1,0), where ¢g satisfies (4.8) with
a =0 and ug satisfies (3.5).

In proving this result, we will make use of the following simple fact.

Remark 4.1. If f(t) and g(t) are functions defined on [0, 1] with f/(0) = f'(1) =
and ¢'(0) =0, ¢’(1) = 1, and ¢g” = iwg, then

1 1 1
/ f(®)g' #)A-t)dt = f(1)—2iw / f()g(t) di+iwf(0)g(0)+iw / (1-t) f(t)g'(¢) dt.
0 0 0

To see that this identity requires only a few applications of integration by parts,
J udv = uv — [vdu. Take u = ¢'(t)(1 —t), dv = f"(t) dt to obtain

1 1 1
/ F(6)g 61 - t) dt = / F()g'(t) dt — iw / F(Hgt)(1 —t)dt,
0 0 0

where we have made use of g’ = iwg. Integrate the first integral by parts with u = ¢’
and dv = f’ dt; integrate the second integral by parts with u = (1—t)g and dv = f’ dt.
After a number of cancellations, the remark follows immediately.

Proof of Lemma 4.1. From (4.11), (4.12), and (4.14) we obtain

o) = = [ (1~ 205 i a2) — 200 (21) s — du(as, 1),

Recall that wy is a function of z2 only and that uy = iwug with ug(0) = 0 and
2 2

up(1) = 1. Since Agp —iwde = 0, we have %3’%9 = fweo — %—:?9. With this substitution

and ug = fwug

1 2
c(zy) = —/0 [iw(l — z2)poug(z2) — (1 — z2) Oaad; — 2iwgoug | dzxe — ¢o(r1,1).

To finish the proof, use Remark 4.1 with f = ¢ and g = ug. After a few cancellations
the statement of the lemma follows. ]

Lemma 4.1 implies a number of things about the function ¢(z;), in particular,
that c is in H*°(R). It is important to note that u(0) is never zero, for ug satisfies
the two-point boundary value problem (3.5) and one easily finds that

eazg + e—azg

uo(xz) = m )

where o = (1 + 4)y/w/2. In particular,

2
aler —e~)’

up(0) =

The numerator above is never zero, hence uo(0) # 0. As a result the function c(z;)
will not be identically zero for any w > 0.
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There is one more fact that will be extremely useful. Defining the Fourier trans-
form f(y) of a function f(z) of a single variable by

~ w .
= [ i@,
—00
we have the following result.

LEMMA 4.2. For ¢ given by Lemma 4.1,

where a = \/y? + iw. Also, the function é(y) is never equal to zero.
Proof. Let ¢o(y1,22) denote the Fourier transform of ¢o(z1,z2) with respect to
x7 only, where ¢y satisfies equation (4.8) with a = 0. Then

o o]
®o(y1,72) =/ do(z1, 2)e "V diy.
— 00

If ¢ is sufficiently rapidly decreasing (as in our case), then % and the Fourier trans-
form operator commute. Fourier transforming both sides of the boundary value prob-
lem (4.8) with respect to z; yields a two-point boundary value problem for ¢¢(y1, z2)
in the x5 variable as

~

d2¢o .2

"&Z‘{ = (12 +iw)do = 0,
deo
d.’l?z (1) - 1?
déo .\
'(E(O) =0,

(4.15)

where we have used 50 = 1. The solution is

N 6012 +e—aa:2
’m = 7 N
Go(y1,22) a(e® — =)

where @ = /3% + iw. On the bottom surface zz = 0,

2

Bo(y1,0) = ales —e=ay’

which, combined with Lemma 4.1, yields the conclusion. The fact that é(y) is never
zero follows from w > 0 and u(0) # 0. o

5. The linearized inverse problem. In this section we will examine the con-
tinuous version of the linearized inverse problem. Suppose that we have top surface
data d(z;) = u(z;,1) where u satisfies (3.6). Based on (4.13) and the above noted
fact that c,(z1) = c(z1 — a) we conclude that S and d satisfy the relationship

/—°° S(y1)e(yr — 1) dyy = d(x1)
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or
(5.16) /_oo S(y1)o(x1 —y1) dyr = S * ¢ = d(21)

where ¢(z1) = ¢(—z1) and “4” denotes convolution. With d(z;) considered known
this becomes a first kind integral equation for the unknown function S. The kernel
¢ is known, or can be determined, according to Lemma 4.1. First kind integral
equations have been extensively studied [17, 18] and are well known to be unstable;
small perturbations in the right-hand side d(z) can lead to arbitrarily large changes
in the solution S. However, this formulation of the inverse problem as an integral
equation will allow us to obtain uniqueness and stability estimates for the linearized
version of the inverse problem.

THEOREM 5.1 (Uniqueness). If the data d(x) is an L? function and if there exists
a solution S € L2(R) to the linearized inverse problem, then S is unique.

Proof. Suppose S; and S; are L? functions that both give rise to data d. Let
S = §1—9;. Linearity implies that the data for S is identically zero. Fourier transform
both sides of the equation S * ¢ = 0. By the convolution theorem and the fact that
é = ¢ if ¢(z) = c(—z) (where the overbar denotes complex conjugation) we obtain

~

#8 = 0. Lemma 4.2 implies that ¢3 = ¢ # 0 and we conclude that

A~

S =0,

so that S=0or S; = S,. O

Remark 5.1. In the preceding proof, we assumed a priori that S is in L?(IR). In
general, for an arbitrary d € L?(R) we cannot find a function S in L? that gives rise
to data d via equation (5.16).

The convolution equation (5.16) also provides information on continuous depen-
dence. Since the function ¢y is smooth and never equal to zero, we can define the
space of functions L2(IR) with the norm

2= [ Z e

From Lemma 4.2 it follows that ﬁ grows like ze?. The norm || ||. thus puts a

heavy penalty on high frequencies; the functions in this space are very smooth. We
can Fourier transform both sides of (5.16), divide by ¢, and take the L? norms of
both sides to obtain the following theorem.

THEOREM 5.2 (Continuous Dependence). If a back surface xo2 = S(x1) generates
front surface data d(x) for the linearized problem (3.6), then

2

OIS

ISllz2 < Clidll.,

where C is independent of d.

Estimates of S from data d will thus be extremely sensitive to any noise because
the inversion process weights a frequency f in the data by a factor proportional to fef.
Lemma 4.2 and the structure of the convolution operator mapping S to the data d
make it clear that it will be difficult to estimate the high spatial frequency components
in the Fourier decomposition of S, for these components are heavily damped out by
the forward mapping.
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6. The case of finitely many measurements. Suppose that we have point
estimates d(a;) = u(a;, 1) of the temperature on the top surface at n distinct points.
How can we construct a reasonable estimate of the function S(z1)? How can we
quantify the stability of the reconstruction with respect to errors in the data, and
how does the choice of measurement locations a; affect the stability? Let us assume
that we seek an estimate S € L2(R). Physical considerations make it desirable to
obtain an estimate with more regularity, but this will be a consequence of the proposed
reconstruction procedure. Based on the convolution equation (5.16) we know that S
must satisfy the n constraints

(617) <S, Ci> = /_oo S(:l‘l)éi(ilfl) d.'Bl = d(ai), 1= 1, R (N

with ¢;(z1) = €(a; — z1) where ¢(z1) is the function from Lemma 4.1 and (f,g) =
Jg f§ is the usual L? inner product. Note that since c; is an L? function, S — (S, ¢;)
is a bounded linear functional on L2. The set (6.17) is a horribly underdetermined
set of equations. We can expect to find an entire translated subspace of functions
of codimension n in L?(R) that satisfy the given conditions, and any such function
“solves” the inverse problem in the sense that it gives rise to the measured data.

One practical method for specifying a unique function in L? that solves the inverse
problem is to seek that element in L? that satisfies the given conditions and has
minimal norm. That such an element exists follows from the fact that the relations
(6.17) define a closed convex subset of L2, and hence this subset has a unique element
of minimal norm. This idea has been used before [8] to construct a “pseudoinverse”
for the finite measurement case and to characterize the stability and information
content for the inverse conductivity problem and has also been used for reconstruction
from partial information in tomographic problems [5]. The approach has several
merits. In the present case it leads to an exceptionally easy and efficient inversion
algorithm that allows us to study the conditioning of the inverse problem independent
of any explicit finite-dimensional parameterization of the unknown S. By weighting
the L? space appropriately we can also incorporate a priori assumptions into the
reconstruction procedure and examine the effect these assumptions have on stability.
Also, given the continuous dependence result from Lemma 5.2 and the fact that data
is invariably noisy, we know that any inversion procedure will tend to give extraneous
high-frequency components in any estimate of S; choosing the estimate of minimal
norm should help to damp out spurious components in the estimate. In this sense the
procedure may be viewed as a form of regularization.

It is an easy application of Lagrange multipliers to verify that the unique element
of L? with minimum norm that satisfies the constraints (6.17) must be of the form

(6.18) S(z1) =) Akck(z1)
k=1

for some {A;}r=; € €. The constants \; can be determined by substituting (6.18)
into (6.17) and solving the resulting n x n system. The system is of the form MA =d
where M = [m;;] is an n by n matrix, X is the n vector (A1,...,A,)T, and d is an n
vector (d(a1),...,d(ay))T. The entries of M are given by

(6.19) mij = /00 ci(x1)Ej(x1) dzy = /00 ¢(z1 — a;)c(z1 — aj) dzy.

—00 -0
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The matrix M is clearly Hermitian and, in fact, is always invertible. To see this,
suppose we can find some vector A # 0 with MA = 0. Then ATMX = 0 and we
conclude that

/ EC(-’IH — a;)\E(z1 — aj)/_\j dz, = / }:)\ic(xl - a;)
=00 5 i=1

2
d:L‘l = 0.

oo

—00 |, —

This implies
n
Z Aje(x1 —aj) = 0.
Jj=1

Fourier transform both sides and use the basic properties of the Fourier transform to
obtain

(6.20) &(y) > Nem Y =0.

Jj=1

The functions f;(y) = €% are linearly independent for distinct a; and analytic, so
f(y) = 371 Aje™*¥ has isolated zeroes. Based on (6.20) we conclude that é(y) =0
in L?(R), contradicting Lemma 4.2. Therefore M must be invertible. This inversion
procedure thus always produces a unique estimate of S if the measurement locations
are distinct.

We can also “solve” the inverse problem by choosing the unique function S that
satisfies (6.17) and has minimal norm in a weighted L? space LZ(IR) with norm defined
by the inner product

*° 1
(o= [ feate) g dar

where 6(z1) is some real-valued nonnegative function on R. In this case, we have

/_ ” S(e)e(a) day = /_ ~ S(xl)ci(:cl)é(xl)@ day,

where we must assume that S = 0 wherever § = 0. Thus the integral is understood to
be taken only over that set where § is nonzero. Equations (6.17) now take the form

(6.21) <S, Ci5>§ = di

and the minimal norm solution is of the form
(6‘22) S((L‘l) = 6(:171) Z /\,;Ci(xl).
i=1

The idea is to choose §(z1) to have the same general form as S(x1) and so incorporate
a priori information into the reconstruction based on (6.22) by forcing it to have the
same general form. For example, if we know that S is supported in the interval [—b, b]
we can choose 6(z) =1 on [—b,b] and 6(z) = 0 elsewhere. The optimal estimate of S
becomes

S(x) = X[-b,) Z Aici(z),
i=1
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where X[_p,) is the characteristic function of the interval [—b, b] and the \; are found
by solving

n b
Z </_b ci(x)c;(x) dx) Ai = d;

=1

for j =1 ton.

Whether we use a priori information or choose a uniform weighting on L?, the
reconstruction procedure is as follows. Compute the matrix M defined by (6.19) and
“measure” the data d; at the corresponding points £; = a; on the top surface. Solve
the system M A = d to obtain A,..., A, and then compute an estimate of S(z1) from
(6.18) or (6.22). The stability of the finite data inversion is thus determined by the
nature of the matrix M and, specifically, of its inverse. We can quantify the stability
of the finite data inverse problem by studying the conditioning of the inverse of M
in various situations. This is done in the following section by studying the singular
values of the matrix M.

7. Numerical experiments. We will now examine the inverse problem by us-
ing the results of the previous sections, with an eye toward quantifying the stability
and resolution of back surface estimates with respect to various experimental param-
eters, specifically, the frequency of the input heat flux and the distribution of the
measurement locations along the top surface of the sample. We also demonstrate how
a priori assumptions about the nature of the corrosion can be incorporated into the
inversion procedure and the effects such assumptions have on stability and resolution.

There are a few points worth mentioning before we present the numerical results.
The estimate of S constructed using (6.18) lies in H°°(IR) and so the graph x5 = S(z1)
makes sense as a curve in IR?, except that the estimate will usually be complex-valued.
This is not surprising, for a complex-valued S makes perfect sense in the linearized
version of the problem on which the inversion procedure is based. Estimates of S,
especially in the presence of noise or the linearization error, will almost certainly have
nonzero imaginary part. However, for those S of “small” norm the linearized problem
accurately reflects the full nonlinear direct problem and so the estimate of S should
have a small imaginary component. This is indeed the case. A physically meaningful
estimate of the true back surface o = S(x;) can be provided by either dropping the
imaginary component or taking the modulus of the estimate. We choose the latter.

In the examples that follow we generate simulated test data using the full direct
problem (2.2) with heating g(z) = 1. The direct problem is solved by converting it into
a boundary integral equation. This results in a second kind Fredholm equation that
is solved using Nystrom’s method (see [2]) with appropriate quadrature rules. The
boundary integral approach is exceptionally fast and accurate and provides estimates
of the solution only on the boundary of €y, the only place that we need the solution.

All of the following examples use a back surface described by the function

e"'(z_l)2 e_($+2)2/2

S(x) = 10 + 5

We assume that the temperature is measured at 21 equally spaced points on the top
surface; the 21 by 21 matrix M is computed using (6.19).

Stability. Of particular interest is the stability of the inversion procedure with
respect to various experimental parameters, e.g., heating frequency and measurement
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locations. The first task is to quantify the stability of the inverse problem. One way
to do this is to perform a singular value decomposition on the matrix M defined by
(6.19) and examine the magnitude of the singular values. When the singular values
are small the inversion of M\ = d magnifies small perturbations in d. Our goal in
choosing experimental parameters is therefore to make the singular values of M as
large as possible, within certain limits. We should remark that one can define the
condition number of M as the ratio of the largest to smallest singular values and then
attempt to quantify stability using this single number. This is not always a good
approach in the present setting, as later examples will show.

We begin by examining how the stability of the inversion procedure depends
on the spacing of the temperature measurements on the top surface. In the following
examples we fix the heating frequency at w = 1 and take measurements of the resulting
temperature at 21 equally spaced locations on the interval [—a, a] for several values of

a. The resulting measurement locations are therefore of the form a; = —a+i{j fori =
0,...,20. In each case the matrix M is computed and a singular value decomposition
is performed. Let the singular values of M be denoted by «;, ¢ = 1,..., 21, arranged

in descending order. In Figure 2 we plot the quantity log;, |o;| versus i for the cases
a=1,2,3,5,10.

It is apparent that as the measurement locations become more spread out (larger
a) the singular values decay more slowly and hence the inversion procedure becomes
more stable. In light of Theorem 5.2 this is not surprising. When the measurement
locations are close together we can resolve higher spatial frequencies in the data and so
we can estimate higher frequencies in the Fourier decomposition of S. But according to
Theorem 5.2, these are exactly the portions of S that are difficult to reconstruct—they
are heavily damped out in the data. The graph reflects this, with a full 6 orders of mag-
nitude variation for the smallest singular values between the cases a = 1 and a = 10.

Another way to look at the stability of the various experimental configurations is
to suppose that we have an “error magnification tolerance” E and that in the inversion
procedure we disregard all singular vectors whose singular values are less than %
This idea has been used in studying the stability for the impedance imaging problem
[8]. The inversion procedure is then stabilized at the expense of rendering those
components of S lying in the span of the corresponding functions invisible. Figure 3
shows the number of singular values of M that satisfy ax > -}73 versus log;o(E) for E
from 1 to 107°.

As the measurement locations spread out, more singular values satisfy a; > 1_1;
The inversion procedure then admits more basis functions, presumably improving the

F1G. 2. logyg |a;| versus i for various values of a.
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FIG. 4. Reconstruction of S(x) for 21 measurements on [—5,5), tolerance E = 102.

fidelity of the reconstruction. In the two cases below we perform the actual recon-
struction with E = 100 (so only singular values greater than 0.01 are admissible)
and add a small amount of random noise to the data (equal to 10 percent of the
maximum signal strength). We then perform a reconstruction that omits all basis
vectors whose corresponding singular values are less than —IE Figure 4 illustrates the
case in which the measurements locations are equally spaced from —5 to 5; there are
9 admissible singular values. In Figure 5 we take the 21 measurements on the smaller
interval [—1,1], which yields only three admissible singular values. The reconstruc-
tion in Figure 5 is noticeably inferior to that of Figure 4, but we have only three
admissible basis functions with which to construct S(x). Increasing the value of FE to
admit more basis functions is not successful. Figure 6 illustrates what happens if we
take E = 10* with measurements on [—1,1]. Now five singular values are admissible,
but the reconstruction is overwhelmed by noise. The moral seems clear: for maxi-
mum stability with a fixed number of measurement locations, we should spread the
measurements over as large a region as possible. There are limits to this approach,
however. If we spread out the measurements we do gain stability, but we will no
longer be able to estimate high frequencies in the Fourier decomposition of S. With
regard to the distribution of the measurement locations, the reconstruction process
involves a compromise between stability and resolution of small-scale features.

In Figure 7 we examine the dependence of the stability on w, the frequency of the
applied heat flux. We consider the cases w = 0.01,0.1,1.0,10.0, 100.0. In each case we
take 21 equally spaced temperature measurements on the interval [—5,5]. Figure 7
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F1G. 7. Number of singular values with a; > -}3- versus log,o(E) for various values of w.

shows the number of singular values that exceed & for E from 1078 to 10'3, for each
of the frequencies.

For E = 100 as before, w = 10 and w = 100 have no admissible singular values
at all, so that the estimate of the back surface will be identically zero. The smaller
singular values at higher frequencies are due to the fact that at higher frequencies the
periodic heating penetrates very little into the sample and becomes more of a “skin
effect.” As a result very little energy reaches the back surface, and even less returns to



AN INVERSE PROBLEM IN THERMAL IMAGING 731

F1G. 8. Reconstruction of S(x) for 21 measurements on [—5,5], w = 0.1, tolerance E = 102.

be measured on the top surface. It is interesting to note that while higher frequencies
produce smaller singular values, the condition number of M for w = 100 is only 10.3,
but the condition number for w = 0.01 is 706.1. Clearly, though, it is not enough
to make the condition number small. The singular values themselves must be large
enough for the inversion procedure to be stable in the presence of a fixed noise level.

While lower frequencies make the inversion process more stable, there are limits
to how small we can make w and maintain resolution. Figure 8 illustrates a recon-
struction based on w = 0.1. The parameters are otherwise identical to those that
were used to produce Figure 4. All of the singular values are admissible. As when the
measurement locations are very spread out, we lose resolution when the input flux
has a low temporal frequency.

Incorporating a priori information. The preceding examples illustrate that
the inversion procedure involves a compromise between stability and resolution. If
the data points are too closely spaced, the inversion procedure is unstable. If the
data points are too spread out, the inversion procedure becomes stable but resolution
is lost. Variations in the input heating frequency give rise to a similar phenomena.
How shall we find the “best” experimental parameters? One useful possibility is to
incorporate a priori information or assumptions into the inversion procedure. We will
illustrate the idea by examining the problem under the assumption that the defect or
function S is supported in a known interval.

In the following examples we assume that the defect being imaged is supported
in the interval [—2,2]. The only modification to the inversion procedure is that the
matrix M is computed in accordance with (6.21) and the function S is estimated
using (6.22). We will study the stability of the inversion procedure with respect to
the distribution of the measurement locations on the top surface.

As in the previous cases, we choose measurement locations at z; = a; on the
sample top surface, where a; = —a + iy for i = 0,..., 20. The heating frequency is
w = 1. We begin by examining the singular values of the inversion matrix M for a few
choices of a. In Figure 9 we plot the number of allowable singular values o;; > % versus
log,o(E) for different node spacings. The figure shows that the best conditioning for
the inverse problem occurs at ¢ = 2, when the measurement locations are distributed
approximately in the same interval in which the defect is assumed to be supported.
As before, closely spaced locations give rise to an ill-conditioned problem. However
unlike the previous cases widely spaced nodes also result in poor conditioning. When
M is computed using (6.21) those rows of M corresponding to measurement locations
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F1G. 9. Number of singular values with a; > —}5 versus log,o(FE) for various values of a.

F1G. 10. Reconstruction of S(z) for 21 measurements on [—2,2], tolerance E = 300.

far from the support of S are very nearly set to zero since the function ¢(z — a;) is
rapidly decreasing away from a;.

It is useful to look at a few reconstructions based on this strategy. In the cases
below we take F = 300 (so only singular values greater than %(—) are admissible) and
add a small amount of random noise to the data. We then perform a reconstruction

that omits all singular values less than % The function defining the back surface

is S(z) = %e‘z(”’“)z + %6"3(9”‘1)2. Figure 10 illustrates the first case using a = 2,
the best choice according to Figure 9. In this case seven singular values are admis-
sible. For a = 10 we have four admissible singular values and the reconstruction
shown in Figure 11, while a = 0.5 also yields four admissible singular values and the
reconstruction shown in Figure 12.

The actual reconstructions confirm that a = 2 yields the most desirable results.
Choosing a significantly smaller or larger than the support of S results in decreased
stability and/or accuracy for the reconstruction.

Of course, the assumption that S is supported in a given interval should be
detrimental to the reconstruction if that assumption turns out to be false. In Figure 13
we let S(z) = e 2=+D* 4 1e=3=9? and perform the reconstruction under the
assumption that S is supported in the interval [-2, 2].

8. Concluding remarks. In this paper we have investigated the inverse prob-
lem of recovering an unknown boundary of some object by applying a heat flux to
an accessible portion of the boundary and measuring the resulting temperatures. We
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F1G. 13. Reconstruction of S(z) for 21 measurements on [—2,2], tolerance E = 300.

have linearized the problem and shown that it requires solving a first kind convolution
integral equation for the unknown surface. The convolution kernel has a Fourier trans-
form that dies rapidly at infinity, and so the inversion is very ill-posed. We performed
a variety of numerical studies that show that the ill-posedness is directly reflected in
the finite data version of the problem, in the rapid decay of the singular values of the
matrix that governs the inversion process. This ill-posedness depends on a number
of factors; in particular, the locations of the measurements have a large effect on the
conditioning of the inverse problem. We have also considered the effect of including
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a priori assumptions in the finite data inversion procedure, by weighting appropriate
Hilbert spaces in which the solution § resides. The inclusion of this information can
help in determining the optimal locations for measurements on the top surface.

There are a number of interesting directions we could take from here. In our
studies we used only the input flux whose magnitude is identically one on the top
surface. Similar results can be obtained for more general fluxes, and this would allow
studying the effect that the input heat flux has on sensitivity and resolution. The
fully time-dependent case would also be of interest. The procedure presented in this
paper would also work for a full three-dimensional problem, although qualitatively
the results should be the same.

As mentioned earlier, the inversion process that chooses the function with min-
imal L? norm that is consistent with the measured data seems to act like a form of
regularization for the inverse problem. It would be interesting to examine in what
sense this is true and how it relates to more traditional forms of regularization. It
is also possible (and not difficult) to carry out the same minimization process in
higher Sobolev spaces, e.g., H!, and thus put a higher “penalty” on functions with
oscillations. This too would make an interesting study. We would also like to exam-
ine conditions under which our inversion procedure is guaranteed to converge to the
solution of the linearized inverse problem.
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