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ISOSPECTRAL SETS FOR FOURTH-ORDER ORDINARY
DIFFERENTIAL OPERATORS∗
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Abstract. Let L(p)u = D4u − (p1u′)′ + p2u be a fourth-order differential operator acting on
L2[0, 1] with p ≡ (p1, p2) belonging to L2

R
[0, 1] × L2

R
[0, 1] and boundary conditions u(0) = u′′(0) =

u(1) = u′′(1) = 0. We study the isospectral set of L(p) when L(p) has simple spectrum. In particular
we show that for such p, the isospectral manifold is a real-analytic submanifold of L2

R
[0, 1]×L2

R
[0, 1]

which has infinite dimension and codimension. A crucial step in the proof is to show that the
gradients of the eigenvalues of L(p) with respect to p are linearly independent: we study them as
solutions of a non-self-ajdoint fifth-order system, the Borg system, among whose eigenvectors are the
gradients.

Key words. inverse spectral problem, ordinary differential equations

AMS subject classifications. 34A55, 34L20
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1. Introduction. This paper initiates a study of isospectral sets of coefficients
for self-adjoint, fourth-order ordinary differential operators, in Liouville–Green nor-
mal form, on the finite interval [0, 1]. Such operators are labelled by a pair of coef-
ficients p = (p1, p2). Our motivation is twofold: first, we would like to understand
the inverse spectral problem for fourth-order operators such as the Euler–Bernoulli
operator of mechanics; second, we would like to develop techniques of analysis which
are systematic in nature and are therefore likely to be useful in the study of other
singular and higher order ordinary differential operators. Our goal is to understand
the set of coefficients isospectral to a given pair p = (p1, p2) as a Hilbert submanifold
of a suitable Hilbert space of coefficients, in analogy to the analysis of the second-
order Sturm–Liouville problem carried out by Trubowitz and his collaborators (see
[11, 18, 19, 26, 27], and see [10] for more recent results).

As in the work of Trubowitz et. al., we use methods of global analysis to study
the isospectral manifold as a level set of the direct spectral map from coefficients
to spectra. For the class of operators we consider, the gradient gn(x; p) of a given
eigenvalue λn(p) is an ordered pair consisting of an eigenfunction square and the
square of its derivative, and so the gradient of the mapping from coefficients to spectra
is the infinite sequence of all such ordered pairs. A crucial part of the analysis is to
show that these ordered pairs form a linearly independent set.

Our approach differs from the approach to the Sturm–Liouville problem taken
in [11, 18, 19, 26, 27] in two respects. First of all, we use resolvent perturbation
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techniques rather than integral equations and complex analysis to obtain the nec-
essary eigenvalue and eigenfunction asymptotics: see the thesis of the third author
[29], where these techniques are developed at greater length. Secondly, we study
orthogonality properties of the gradients, not using special identities, but rather by
studying an associated non-self-adjoint, fifth-order system, the Borg system, among
whose eigenvectors are exactly the gradients gn(x, p). Our system is the analogue, for
fourth-order differential operators, of a third-order non-self-adjoint eigenvalue prob-
lem introduced by Borg [9] in his study of completeness of eigenfunction squares in
the Sturm–Liouville problem. We believe this technique to be a powerful one which
admits generalization to other inverse spectral problems involving ordinary differential
operators.

To describe our results in detail, we first specify the class of fourth-order operators
which we will study. In order to study the isospectral set as a Hilbert manifold, we
wish to study operators L(p) where p ranges over a Hilbert space of coefficients; here
L(p) is the operator

L(p)u = D4u−D(p1Du) + p2u(1.1)

on L2[0, 1], where p = (p1, p2). In what follows, we will impose “double Dirichlet”
boundary conditions u(0) = u′′(0) = u(1) = u′′(1) = 0, although our methods can be
used to treat other separated, self-adjoint boundary conditions.

A natural choice for the Hilbert space of coefficients is E ≡ L2
R
[0, 1] × L2

R
[0, 1],

where L2
R
[0, 1] denotes real-valued, square-integrable, measurable functions on [0, 1].

For such singular coefficients it is convenient to define the operator L(p) by the method
of sesquilinear forms (see, for example, Kato [17, Chapter 6]). Since we wish to
study real analyticity of various maps on E, it will also be convenient to introduce
EC ≡ L2

C
[0, 1] × L2

C
[0, 1] and define L(p) for p ∈ EC. To this end, we introduce the

sesquilinear form

q(u, v) =

∫ 1

0

u′′(x)v′′(x) + p1(x)u′(x)v′(x) + p2(x)u(x)v(x) dx(1.2)

with the form domain

Q(q) = {u ∈ H2[0, 1] : u(0) = u(1) = 0}

for p ∈ EC. It is not difficult to see that the form q with p = 0 is a closed positive
form. Using this fact and simple perturbative estimates, one can show that the form
q with 0 6= p ∈ EC is also closed and sectorial, i.e., that the set

{q(u, u) : u ∈ Q(q), ‖u‖L2[0,1] = 1}

is contained in a sector of the complex plane of the form <(z) ≥ −c, |=(z)| ≤ (<(z)+c).
Here c depends only on ‖p‖E ; a complete proof is given in [29, section 5.2].

It follows from the form representation theorem (see, for example, Theorem VI.2.1
of [17]) that there is a unique sectorial operator L(p), i.e., a unique closed operator
with numerical range in a sector, associated with the sesquilinear form q. It follows
from the same theorem that for all p ∈ EC, the domain of L(p) is contained in the
H3[0, 1] functions with u(0) = u′′(0) = u(1) = u′′(1) = 0. Thus L(p) is an operator
with compact resolvent, and its spectrum consists of an infinite sequence, {λn(p)},
of discrete eigenvalues. Using the form representation theorem, one can also show
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that if p ∈ C1([0, 1]; C2), then L(p) is the operator (1.1). For more singular p the
action of L(p) may be understood in terms of the quasi-derivatives associated with
the operator L(p): see Naimark [25] for the general theory and Schueller [29, section
5.3] for its application to fourth-order operators.

We wish to study isospectral sets of L(p) for p = (p1, p2) ∈ E. In order to
apply techniques of global analysis, we need to realize the direct spectral map from
coefficients to spectral data as a map between Hilbert spaces. To this end, we set

µ0(p) = p1 =

∫ 1

0

p1(x) dx

and

µn(p) =
λn(p) − λn(0) − n2π2p1

n2π2 .

We will show that the sequence {µn(p)}∞n=0 belongs to the Hilbert space F ≡ `2(0∪N).
The direct spectral map is the mapping µ : E → F defined by µ(p) = {µn(p)}. The
isospectral set M(p) of a given p ∈ E is the set of all q ∈ E with µ(q) = µ(p). We
will say that p ∈ E has simple spectrum if the sectorial operator L(p) has only simple
eigenvalues. First of all, we will prove the following theorem.

Theorem 1.1. The set of p ∈ E with simple spectrum is open and dense in E.
Denote this set by E . There are physically relevant families of fourth-order prob-

lems, such as the Liouville–Green normal forms of the Euler–Bernoulli equation, which
are known to have simple spectrum (see, e.g., [14]). Thus, restricting attention to
p ∈ E is not unreasonable for many problems of physical interest. Our main result is
as follows.

Theorem 1.2. For each p ∈ E, M(p) ∩ E is a real-analytic submanifold of E of
infinite dimension and infinite codimension.

We can quantify the “size” of M(p) more precisely by introducing some auxiliary
boundary value problems associated with the formal differential operator L(p). To
define these auxiliary boundary value problems, we introduce the closed sesquilinear
forms q1 and q2 which are given by the expression (1.2) defined on the respective
domains

Q1 = {u ∈ H2[0, 1] : u(0) = 0, u′(1) = 0}

and

Q2 = {u ∈ H2[0, 1] : u(0) = 0, u(1) = u′(1) = 0}.

We denote the associated sectorial operators by L1(p) and L2(p), and their corre-
sponding eigenvalues by σn(p) and τn(p), respectively. For p ∈ C∞

0 ([0, 1]; C2), these
operators carry the following boundary conditions:

L(p) : u(0) = u′′(0) = u(1) = u′′(1) = 0,(1.3)

L1(p) : u(0) = u′′(0) = u′(1) = u′′′(1) = 0,(1.4)

L2(p) : u(0) = u′′(0) = u(1) = u′(1) = 0.(1.5)
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We conjecture that for p ∈ E and q in a dense and open subset of M(p), the
three sets of eigenvalues {λn(q)}, {σn(q)}, {τn(q)} give local coordinates for M(p).
We expect to prove this in a subsequent paper.

Theorem 1.2 involves a study of the differential of the direct spectral map µ. We
will first study µ on a dense subset D of E consisting of functions p ∈ C∞

0 ((0, 1); R2)
such that the spectra of each of the three boundary value problems is simple and
the intersection of the sets {λn(p)}, {σn(p)}, and {τn(p)} is empty. We show that
the set D is dense in E in Theorem 3.1. We will also show that eigenvalues and
eigenfunctions associated with operators L(q) with q ∈ E can be well approximated
by those associated with operators L(p) with p ∈ D.

To show that the isospectral manifold is real-analytic, we wish to apply the real-
analytic implicit function theorem (see, for example, [26, p. 154]). Theorem 1.2 follows
from Theorem 1.3.

Theorem 1.3. The direct spectral map µ is a real-analytic mapping from E to
F . For p ∈ E and each q ∈ M(p), there is an orthogonal decomposition TqE =
Ev(q) ⊕ Eh(q) such that dµ(p) is a linear isomorphism of Ev(q) onto F and Eh(q) has
infinite dimension.

We will prove Theorem 1.3 by showing that (1) the map µ is real-analytic as a map
from E into F , (2) the differential dµ(q) for an arbitrary q ∈ E is well approximated
by the differential dµ(p) of a “nearby” p ∈ D, and (3) the differential dµ(p) has the
required mapping properties for p ∈ D.

To explain steps (2) and (3) more fully, let zn(·; p) be the normalized eigenfunction
corresponding to eigenvalue λn(p). (Note that since p ∈ E , this eigenfunction is unique
up to a phase.) Let 〈· , ·〉E denote the inner product on E. A short calculation shows
that for p ∈ D, the differential dµ(p) is given by

dµ(p)(v1, v2) = {〈gn( · ; p), v〉E}∞n=0 ,(1.6)

where the gradients gn are given by

g0(x; p) = (1, 0)

and

gn(x; p) =

(
z′n(x; p)2

n2π2
− 1,

zn(x; p)2

n2π2

)
, n ≥ 1 .(1.7)

We wish to take Ev to be the span of the gn and Eh to be its orthogonal comple-
ment, the kernel of dµ. If ζ =

∑
j cjgj and c denotes the sequence {cj}, then ‖ζ‖2

E =
〈c, A(q)c〉, where A is the operator on F with matrix 〈gi, gj〉E . If A is a bounded in-
vertible operator, then the gj form a Riesz basis [8] for Ev, and the operator T : Ev → F
defined by Tζ = c, is boundedly invertible. Moreover, S(q) = dµ(q) ◦ T−1 ∈ B(F, F )
has matrix A(q) and so is a linear isomorphism. In step (2), we show that for any
ε > 0 and each q ∈ E , there is a p ∈ D such that ‖S(q)− S(p)‖B(F,F ) < ε. In step (3)
we show that S(p) is boundedly invertible for each p ∈ D by proving that A(p) has
the same property. In order to do so we show that A(0) is boundedly invertible, and,
by perturbation estimates and linear independence of the gn, that the same holds true
for A(p) if p ∈ D. Since the boundedly invertible operators are open in B(F, F ), this
shows that A(q), and hence S(q), is boundedly invertible for any q ∈ E .

The required perturbation estimates on the gn show that∑
n

‖gn( · ; p) − gn( · ; 0)‖2
E
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is finite. In order to obtain these estimates, we exploit the observation that the
functions z2

n and (z′n)2 can be recovered from the respective residues of the operators
(L(p)−z)−1 and D(L(p)−z)−1D at z = λn(p). We use resolvent perturbation theory
to estimate the differences zn( · ; p)2 − zn( · ; 0)2 and z′n( · ; p)2 − z′n( · ; 0)2.

To prove that the gn are linearly independent for any p ∈ D, we introduce an
auxiliary fifth-order differential system, the Borg system, satisfied by the gn(p). An
analogous third-order equation was used by Borg [9] in his study of eigenfunction-
squares in the Sturm–Liouville problem. The Borg system for a fourth-order operator
takes the form

M(p)g = λB(p)g

for matrix-valued differential operators M(p) of fifth order and B(p) of third order.
For p ∈ D, the generalized resolvent

R(λ) = (M(p) − λB(p))−1

has simple poles, among which are the eigenvalues λn(p), with corresponding gener-
alized eigenfunctions

ĝn(x; p) =
(
zn(x; p)2, z′n(x; p)2

)
The remaining poles are associated with the two auxiliary boundary value problems;
since p ∈ D, these are distinct from the poles λn(p), and, as we shall see, all of the
poles of the generalized resolvent are simple. Using the simplicity of poles, we can then
construct a biorthogonal set from the rank-one residues of the generalized resolvent
R(λ); this proves linear independence of the ĝn(p). The linear independence of the
gradients gn(p) is an easy consequence. The residues of the Borg operator furnish
tangent vectorfields to the isospectral manifold; we expect, but have not yet proved,
that they are a basis for its tangent space.

We note that the eigenvalue equation

D2
(
r(x)D2y

)
= µρ(x)y

for the Euler–Bernoulli beam can be transformed, by means of a Liouville transform,
into Liouville–Green normal form for smooth coefficients (see, e.g., [5]). Thus our
results apply to Euler–Bernoulli problems with suitable boundary conditions.

A number of results exist in the literature regarding the inverse spectral problem
for fourth-order differential operators. Barcilon [1, 2, 3, 4, 5, 6, 7] proved that the
density and bending stiffness of an Euler–Bernoulli beam can be recovered from three
sets of spectra, showed that fewer than three spectra do not uniquely determine these
coefficients, and also proved some general results on inverse spectral problems for dif-
ferential equations of nth order in Liouville normal form. He also showed that three
sequences of eigenvalues corresponding to certain distinct boundary conditions contain
the same information as one sequence of eigenvalues together with two sets of norming
constants [3]. McLaughlin developed a Gel’fand–Levitan-type reconstruction algo-
rithm for smooth coefficients from one spectrum and two sequences of norming con-
stants [21, 22, 23, 24]. In McLaughlin’s papers [20, 21] it is shown that the isospectral
set for the operator L(0) with boundary conditions u(0) = u′(0) = u(1) = u′(1) = 0
is infinite-dimensional with infinite codimension and that the isospectral set for the
operator L(p) with the same boundary conditions is also infinite dimensional, with



940 L. F. CAUDILL, P. A. PERRY, AND A. W. SCHUELLER

infinite codimension, provided that the eigenvalues satisfy certain asymptotic forms.
Gladwell gave necessary and sufficient conditions on spectral data to produce an
Euler–Bernoulli beam with strictly positive (i.e., physical) density and bending stiff-
ness [13] and carried out numerical reconstructions of Euler–Bernoulli beams from
finite spectral data [15, 16].

Our results appear to be the first systematic study of the isospectral manifold for
fourth-order differential operators. It should be noted that an operator very similar
to our “Borg operator” in the constant coefficient case appears in Barcilon’s analysis
[3] of the inverse spectral problem.

The plan of this paper is as follows. In section 2 we prove some basic results about
the spectra of L(p) and the two associated boundary value problems. In section 3
we prove Theorem 1.1. In section 4 we show that the sequence of functions {gn(q)}
is stable, in `2(N;E)-sense, under small perturbations of q ∈ E and that the map µ
has its range in F . In section 5, we prove that the map µ is an analytic mapping
from E into F . In section 6, we introduce and analyze the Borg system and use it
to prove linear independence of the vectors gn(p) for each fixed p ∈ D. Finally, in
section 7 we give the proofs of Theorems 1.2 and 1.3. In Appendix A, we collect some
important estimates on the integral kernels of the resolvents, at p = 0, of each of the
three boundary value problems considered. In Appendix B, we discuss the boundary
conditions on the Borg system and prove some technical domain results needed for
section 6.

The results in sections 2 and 4 are proved for a number of separated self-adjoint
boundary conditions in the Ph.D. thesis of the third author [29].

2. Spectra. In this section we prove some basic results about the spectra of the
operators L(p), L1(p), and L2(p) for p ∈ E. The symbol L#(p) will denote one of the
operators L(p), L1(p), or L2(p), and λ#

n (p) will denote the nth eigenvalue of L#(p).
Similarly, q# denotes one of the three sesquilinear forms q, q1, or q2.

The spectra of L(0), L1(0), and L2(0) are given by explicit transcendental equa-
tions (see, for example, [29]). From these, we easily deduce that λn(0) = n4π4,
σn(0) = (n + 1

2 )4π4, and |τn(0)1/4 − (n + 1
4 )π| ≤ 4e−nπ. We expect the eigenvalues

of L#(p) for p 6= 0 to approach these values asymptotically so that the three sets of
spectra “separate” for n large. We will use resolvent perturbation theory to show this
is the case.

The following technical lemma will enable us to prove certain resolvent estimates
for coefficients p ∈ C∞

0 ((0, 1),C2) and extend them by continuity to p ∈ EC. Recall
that a mapping f from an open subset of a Banach space E into a Banach space F is
called compact if f(pn) converges strongly to f(p) in F whenever pn converges weakly
to p in E.

Lemma 2.1. For any fixed z with <(z) sufficiently negative, the mapping p 7→
(L(p) − z)−1 is a compact mapping from E into the bounded operators on L2[0, 1].

Proof. Suppose that pn → p weakly in E. It is easy to verify that the sesquilinear
forms qn# associated with pn converge to the sesquilinear form q# associated with p so
that L#(pn) converges to L#(p) in the strong resolvent sense (see Kato [17, Theorem
VIII.3.6]). It is also easy to check that there is a fixed c, depending only on sup ‖pn‖E ,
such that <qn#(u, u) ≥ −c + 1 and that the operators (L#(0) + 1)1/2(L#(pn) + c)−1

are bounded uniformly in n. Let Rn = (L#(pn) + c)−1 − (L#(p) + c)−1 and let PN

project onto the first N eigenvectors of L#(0). We may estimate

‖Rn‖ ≤ ‖PNRn‖ + ‖(I − PN )Rn‖
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≤ ‖PNRn‖ + ‖(I − PN )(L#(0) + c)−1/2‖ ‖(L#(0) + c)1/2Rn‖.
The second right-hand term goes to zero as N → ∞ uniformly in n, and the first
right-hand term goes to zero as n → ∞ for each fixed N by the compactness of PN

and the fact that Rn converges strongly to zero.
Note that the same proof works if z is only required to lie in the common resolvent

set of the operators L(pn) and L(p).
Let ρ(L#(p)) denote the resolvent set of the operator L#(p). The remarks in

the proof of Lemma 2.1 show that there is a fixed half-plane <(z) < −c so that
(L#(p) − z)−1 exists for any z in this half-plane and any p ∈ EC with ‖p‖EC

≤ M .
Thus the set

SM = ∩{ρ(L#(p)) : ‖p‖EC
≤ M}

has nonempty interior; we will shortly show that it includes the complement of a
countable union of discs whose size depends on M and which are centered at the
eigenvalues of L#(0). In what follows, denote by BM (0) the set {p ∈ E : ‖p‖E < M}.

Lemma 2.2. Fix M > 0 and let U be the interior of the set SM . The mapping
Ψ(z, p) = (L#(p)−z)−1 is a compact analytic mapping from U×BM (0) to the bounded
operators on L2[0, 1].

Proof. Compactness is an immediate consequence of Lemma 2.1 and the first
resolvent formula. The resolvent identity

(L#(p) − z)−1 − (L#(q) − z)−1

= (L#(q) − z)−1(D(q1 − p1)D + (q2 − p2))(L#(p) − z)−1

holds, where D(q1 −p1)D+(q2 −p2) is understood as a sesquilinear form on the form
domain of L#(0). This shows that Ψ is norm continuous. A short calculation with
difference quotients shows that (L#(p) − z)−1 is differentiable in the complex sense
and that

dΨz,p(w, h) = w(L#(p) − z)−2 + (L#(p) − z)−1(Dh1D + h2)(L#(p) − z)−1.

For numbers R > 3 and α ∈ (2, 3), we define a region C#
R,α of C as follows. Let

N be an integer obeying the bounds

(8R)
1

3−α < N < (16R)
1

3−α ,(2.1)

let

D#
N = {z ∈ C : |z| < λ#

N (0) + RNα}
be a disc containing the first N eigenvalues of L#(0), and let

E#
n = {z ∈ C : |z − λ#

n (0)| < Rnα},
a disc containing the nth eigenvalue of L#(0). We set

C#
R,α = DN ∪ (∪∞

n=N+1En

)
.

Thus, the set C#
R,α is the union of a large disc containing the first N eigenvalues of

L#(0) and infinitely many small discs each containing exactly one of the remaining
eigenvalues (see Figure 2.1). We will show that this region still contains the spectrum
of L#(p) for R sufficiently large, depending on ‖p‖E .
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α
Rm

D N

E EmN+1

λ  (0)m

Fig. 2.1. The set CR,α (not drawn to scale).

It is easy to check the following purely geometric properties of C#
R,α.

Lemma 2.3.
(i) Fix one set of boundary conditions. For any R > 3, α ∈ (2, 3), and m > N ,

the regions D#
N and E#

m are mutually disjoint.

(ii) Let E
(1)
n and E

(2)
n be the regions En associated with two distinct sets of bound-

ary conditions. Then E
(1)
n and E

(2)
m are disjoint for n ≥ N+1 and m ≥ N+1.

Proof. (i) The discs Em have radii Rmα, while λ#
m+1(0) − λ#

m(0) ≥ m3 if m ≥ 2.
Thus the discs will be separate if 2R(m+1)α < m3. This is true if m > N . The regions

D#
N and E#

N+1 will be disjoint so long as λ#
N+1(0)−R(N+1)α−(λ#

N (0)+RNα) > 0 or
N3 > RNα+R(N +1)α. This is guaranteed by the choice of N . (ii) Note that, by the
mean value theorem, (x+ 1

4 )4−x4 ≥ x3. Since the fourth roots of any two eigenvalues
of the three operators are separated by a distance of at least 1/4, it follows that the
eigenvalue λ#

m(0) associated with any one of the boundary conditions is separated
from the closest eigenvalue associated with any of the three boundary conditions by
at least (m− 1)3. Thus, it suffices to show that (m− 1)3 > Rmα + R(m− 1)α. This

will be true if
(
m−1
m

)3
m3−α > R(1 + (m−1

m )α). But m > 1 and m3−α > N3−α > 8R
by the choice of N .

We can now state our rough bounds on the location of λ#
n (p).

Theorem 2.4. Fix M > 0 and let p ∈ EC with ‖p‖EC
< M . There is a number

R > 3 depending only on M so that:
(i) The spectrum of L#(p) is contained in C#

R,α.
(ii) The operators L#(p) have exactly N eigenvalues in the region DN .
(iii) The eigenvalues of L#(p) with index n ≥ N + 1 are all simple.
(iv) The sets {λn(p)}∞n=N+1, {σn(p)}∞n=N+1, and {τn(p)}∞n=N+1 have empty in-

tersection.
Proof. The operators L#(p) are sectorial with spectrum contained in a half-plane

<(λ) > −C(M), where C(M) is a positive constant depending only on M [29]. We
will construct the resolvents (L#(p) − z)−1 perturbatively from (L#(0) − z)−1 and

estimate ‖(L#(p)−z)−1‖ uniformly in p with ‖p‖E < M and z 6∈ C#
R,α for sufficiently

large R. This will give (i); (iv) will then follow from Lemma 2.3(ii) and the following
argument. Observe that for p = 0, the region DN contains exactly N eigenvalues, and



ISOSPECTRAL SETS FOR DIFFERENTIAL OPERATORS 943

the regions Em each contain one eigenvalue. Analyticity of the resolvents as operator-
valued analytic functions of p ∈ E with ‖p‖E < M will imply analyticity of the

projections onto the eigenspaces of eigenvalues contained in D#
N and E#

n ; by standard
perturbation theoretic arguments (see, for example, [28, section XII.2], and especially
the lemma following Theorem XII.7), the corresponding spectral multiplicities must
be stable under perturbation from 0 to p. This gives (ii) and (iii).

We now turn to the perturbative estimates that prove (i). We will use strong

estimates on the integral kernel G#
0 (x, y; z) for the operator (L#(0) − z)−1 in order

to estimate (L#(p)− z)−1 in operator norm. By Lemma 2.1, it suffices to prove these
operator norm estimates for p ∈ C∞

0 ((0, 1),C2). This assumption allows us to bypass
domain questions which might arise if the coefficients were more singular.

We begin by noting the resolvent equations, true for <(z) sufficiently negative,

(L#(p) − z)−1 = (L#(0) − z)−1 − (L#(0) − z)−1(Dp1D + p2)(L#(p) − z)−1.

Since (L#(p)− z)−1 maps into H3[0, 1] and p1 and p2 are smooth, the composition of
Dp1D+ p2 with (L#(p)− z)−1 is well defined. From this equation it is easy to derive
the useful identity

(L#(p) − z)−1 = A(z) + B(z)(L#(p) − z)−1 ,(2.2)

where

A(z) = (L#(0) − z)−1

− (L#(0) − z)−1Dp1(I + C(z))−1D(L#(0) − z)−1,
(2.3)

B(z) = (L#(0) − z)−1Dp1(I + C(z)−1D(L#(0) − z)−1p2

− (L#(0) − z)−1p2,
(2.4)

and

C(z) = D(L#(0) − z)−1Dp1.(2.5)

These equations are valid whenever ‖C(z)‖ < 1/2. Using Lemma A.4(e), we see

that this holds for z 6∈ C#
R,α so long as CR−1/2(lnR)1/2‖p1‖L2 < 1/2, where C is a

numerical constant; we can ensure this by choosing a sufficiently large R depending
only on M . We wish to show that, by increasing R if necessary, we can make ‖B(z)‖ <

1/2 for z 6∈ C#
R,α and then show that ‖A(z)‖ ≤ CR−1 for a constant C. We can then

use standard analytic continuation arguments to conclude that ‖(L#(p) − z)−1‖ is

bounded for z 6∈ C#
R,α for sufficiently large R depending on M .

First, we show how to choose R depending on M so that ‖B(z)‖ < 1/2 for

z 6∈ C#
R,α. From Lemma A.4(b), (d), and (e), we see that ‖B(z)‖ ≤ CR−1 for a

constant C depending on M so that ‖B(z)‖ < 1 for R sufficiently large. The estimates
in Lemma A.4 also show that

‖A(z)‖ ≤ C

R
+

C

R2 (1 + ‖p1‖L2),

which gives an estimate of the desired form.
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3. Approximation. First of all, we give the proof of Theorem 1.1. It is not
difficult to see that the set E is open, since all eigenvalues λn(p) with n > N are
simple, and for each of the eigenvalues λn(p) with 1 ≤ n ≤ N , there is a neighborhood
Un in E of any q ∈ E such that λn(p) is simple for all p ∈ Un. Taking U = ∩N

n=1Un

we obtain an open neighborhood of q contained in E .

To see that E is dense, we will exploit analytic perturbation theory. Let p ∈ E
with ‖p‖ < M , and suppose that one or more of the eigenvalues of L(p) are degenerate.
Consider the family of operators M(t) = L(tp) where |t| < 2. By changing the values
of R and N as defined in section 2 if necessary, we may assume that the conclusions
of Theorem 2.4 hold for all tp with |t| < 2. Let

P (t) =
1

2πi

∫
∂DN

(M(t) − z)−1 dz ,

where DN is as defined in the previous section. For t real, P (t) is an orthogonal pro-
jection onto the first N eigenvalues of M(t), counted with multiplicity. By Theorem
XII.12 of [28], we can find an analytic family of holomorphically invertible operators
U(t) defined for |t| < 2 so that U(t) is unitary for t real and U(t)P (0)U(t)−1 = P (t).
The operator m(t) = U(t)−1M(t)U(t) commutes with P (0) and may be regarded, for
t real, as a Hermitian matrix acting on C

N ; the first N eigenvalues of L(tp) are simple
if and only if the eigenvalues of m(t) are simple. Observe that at t = 0, the first N
eigenvalues of L(0) are simple by explicit calculation, so the same holds for |t| small.
Moreover, the eigenvalues of m(t) are analytic functions of t ([17, Theorem II.6.1]).
Thus a given pair of eigenvalues of m(t) can be degenerate for at most finitely many
t between 0 and 1. Hence the same holds true of L(tp), so for each ε > 0 there is a
t ∈ (1− ε, 1) so that tp ∈ E . This shows that E is dense in E, and completes the proof
of Theorem 1.1.

Next, we prove Theorem 3.1.

Theorem 3.1. Let D be the set of p ∈ C∞
0 ((0, 1); R2) such that L#(p) has simple

spectrum and the spectra of L(p), L1(p), and L2(p) have empty intersection. Then D
is dense in E.

Proof. First we show how small perturbations may be used to make the spectra
of L1(p) and L2(p) simple, and the spectra of the three operators nonintersecting.
By Theorem 2.4, we need only show that the first N eigenvalues of each operator are
simple and that the union of the intersection of the three sets {λn}Nn=1, {σn}Nn=1, and
{τn}Nn=1 is empty. Let M(t) = L(tp), M1(t) = L1(tp), and M2(t) = L2(tp). By the
technique used above we may associate with these operators analytic, N ×N matrix-
valued functions m(t), m1(t), m2(t) whose eigenvalues depend holomorphically on
t with |t| < 2. By explicit calculation, the matrices m(0), m1(0), and m2(0) have
simple spectra with empty intersection, so the same is true for |t| small by analytic
perturbation theory. Analyticity of the eigenvalues implies that the spectra of m(t),
m1(t), and m2(t) must be simple and have empty intersection for all but a countable
set of t with no accumulation point in the region {t ∈ C : |t| < 2}. Thus, given p and ε
we can find a q with ‖p− q‖ < ε so that L(q), L1(q), and L2(q) have simple spectrum
and the three spectra have empty intersection. Since C∞

0 ((0, 1); R2) is norm dense
in E and the simplicity and empty intersection properties involve only finitely many
eigenvalues, there is an r with ‖r − q‖ < ε and r ∈ E ∩ C∞

0 ((0, 1); R2) so that L(r),
L1(r), and L2(r) have simple spectra and their spectra have empty intersection. It
follows that D is dense in E , as asserted.
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4. Stability estimates. For m > N , let zm( · ; p) denote the normalized
eigenfunction of L(p) corresponding to the eigenvalue λm(p), and let um(·) denote the
corresponding eigenfunction of L(0). We wish to derive C[0, 1]-norm estimates on the
differences z2

m−u2
m and (z′m)2−(u′

m)2 and also on the differences z2
m( · ; p)−z2

m( · ; q)
and (z′m)2( · ; p)− (z′m)2( · ; q). These estimates will be used to analyze the operator
A(p) discussed in the introduction.

Let G(x, y; z) denote the integral kernel of the operator (L(p) − z)−1. In order
to estimate the above quantities, we observe that we can recover zm(x, q)2 from the
diagonal of the residue of G(x, y; z) at z = λm(p), and z′m(x, q)2 from the diagonal of
the residue of Gxy(x, y; z). We will exploit resolvent perturbation theory to prove the
following estimates.

Theorem 4.1. Let M > 0 and let p and q belong to E with ‖p‖E, ‖q‖E < M .
For α ∈ (2, 3) choose R and N as in Theorem 2.4. Then there are constants C1 and
C2 depending on M so that for any m > N ,

(a) supx∈[0,1] |zm(x; p)2 − zm(x; q)2| ≤ C1m
2−α and

(b) supx∈[0,1] |z′m(x; p)2 − z′m(x; q)2| ≤ C2m
4−α

hold.
As an immediate corollary, setting q = 0, we have the following theorem.
Theorem 4.2. Let M > 0 and p ∈ E with ‖p‖E < M . For α ∈ (2, 3) choose R

and N as in Theorem 2.4. Then there are constants C1 and C2 depending on M so
that for any m > N , the estimates

(a) supx∈[0,1] |zm(x; p)2 − zm(x; 0)2| ≤ C1m
2−α and

(b) supx∈[0,1] |z′m(x; p)2 − z′m(x; 0)2| ≤ C2m
4−α hold.

To prove these results, we first note the following lemma.
Lemma 4.3. Let M > 0 and p ∈ E with ‖p‖E < M , let α ∈ (2, 3), and choose

R and N as in Theorem 2.4. Then for any m > N , the maps p 7→ zm(x; p) and
p 7→ z′m(x, p) are continuous as maps from E to C[0, 1] with the sup norm.

We do not give the full proof of Lemma 4.3 here but refer the reader to [29, section
5.5]. One first shows the existence of fundamental solutions with the required norm
continuity using a Volterra series construction. One then uses the continuity of the
eigenvalue map p 7→ λn(p), together with explicit formulas for the eigenfunctions in
terms of the fundamental solutions, to obtain the required continuity.

By the lemma, it is enough to prove the estimates in Theorem 4.1 for p and q
belonging to C∞

0 ((0, 1); R2). This restriction facilitates calculations which we will
carry out in what follows.

To prove Theorem 4.1 for such smooth coefficients, we exploit the fact that the
difference of eigenfunction squares and derivatives can be recovered from the residues
of the respective operators

A(p, q; z) = (L(p) − z)−1 − (L(q) − z)−1

and

B(p, q; z) = D(A(p, q; z))D,

at the appropriate eigenvalue. Here D denotes differentiation with respect to x.
We begin with the resolvent formula

(L(p) − z)−1 = (L(0) − z)−1 − (L(0) − z)−1Vp(L(0) − z)−1

+ (L(0) − z)−1Vp(L(p) − z)−1Vp(L(0) − z)−1
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where

Vp = −Dp1D + p2.

From this formula it follows that

A(p, q; z) = (L(p) − z)−1 − (L(q) − z)−1

= (L(0) − z)−1(−Vp−q)(L(0) − z)−1

+ (L(0) − z)−1Vp−q(L(p) − z)−1Vp(L(0) − z)−1

+ (L(0) − z)−1Vq(L(p) − z)−1Vp−q(L(q) − z)−1Vp(L(0) − z)−1

+ (L(0) − z)−1Vq(L(q) − z)−1Vp−q(L(0) − z)−1

(4.1)

with an analogous identity for the operator B(p, q; z). The operator B(p, q; z) is ini-
tially defined on C∞

0 (0, 1) and extended by density to a bounded operator from L2[0, 1]
to itself. Let KA and KB denote the respective integral kernels of A(p, q; z) and
B(p, q; z). The kernels KA and KB can be expressed in terms of the integral kernels
of (L(p) − z)−1 and (L(q) − z)−1, which are continuously differentiable in x and y;
thus A(p, q; z) and B(p, q; z) have continuous kernels. Moreover, the formulas

z2
m(x; p) − z2

m(x; q) =
1

2πi

∫
γm

KA(x, x; z) dz

and

z′m(x; p)2 − z′m(x; q)2 =
1

2πi

∫
γm

KB(x, x; z) dz

hold, where γm is the contour {z : |z − λm(0)| = Rmα}.
Thus, Theorem 4.1 will follow if we can show that

sup
z∈γm

sup
(x,y)∈[0,1]

|KA(x, y; z)| ≤ C1‖p− q‖Em2−2α(4.2)

and

sup
z∈γm

sup
(x,y)∈[0,1]

|KB(x, y; z)| ≤ C2‖p− q‖Em4−2α,(4.3)

where C1 and C2 depend only on α and M . If T is an integral operator on L2[0, 1] with
continuous kernel K(x, y), the sup norm of K is dominated by the L1[0, 1] → L∞[0, 1]
norm of the operator T . Thus it suffices to estimate the L1 → L∞ operator norm
of each of the terms in (4.1) and the corresponding identity for B(p, q; z). Note that
each term in (4.1) contains at least one factor involving p− q.

Roughly speaking, each resolvent contributes a factor m−α, each derivative that
occurs contributes a factor m, and each factor of p, q, or p − q contributes a factor
‖p‖E , ‖q‖E , or ‖p−q‖E to the estimates. This “naive power counting” gives estimates
of the desired form. The power counting is justified by the following two results, which
themselves depend on Lemma A.5 in Appendix A.
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Lemma 4.4. Let z ∈ γm, let 0 ≤ i, j ≤ 1, and let M > 0. Let r ∈ C∞
0 (0, 1).

Then for any p and q with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, the estimate

‖Di(L(0) − z)−1Djr‖p,q ≤ Cp,qm
i+j−α‖r‖2

holds.
This lemma is a straightforward consequence of Lemma A.5; the following pertur-

bative argument shows that an analogous result holds for the resolvent of L(p) when
p 6= 0.

Lemma 4.5. Let z ∈ γm, let 0 ≤ i, j ≤ 1, and let M > 0. Let r ∈ C∞
0 (0, 1).

There is a positive integer N1 > N depending only on M so that for all p ∈ E with
‖p‖ < M and every m > N1, the estimate

‖Di(L(p) − z)−1Djr‖ ≤ Ci+jm
i+j−α‖r‖2

holds.
Proof. We will use equation (2.2). With R chosen sufficiently large, as in Theorem

2.4, so that (2.2) holds for z ∈ γm, we may estimate ‖A(z)‖ and ‖B(z)‖ for z ∈ γm
using Lemma A.5 and obtain

‖A(z)‖ ≤ Cm2−2α‖p1‖2

and

‖B(z)‖ ≤ Cm2−2α(1 + ‖p1‖2)‖p2‖2.

Since 2 − 2α < −α for α > 2, we recover the estimate with i = j = 0. If i = 1 and
j = 0, we compute from the second resolvent identity that

D(L(p) − z)−1

= D(L(0) − z)−1 −D(L(0) − z)−1(Dp1D + p2)(L(p) − z)−1.
(4.4)

From Lemma A.5, we obtain

‖D(L(p) − z)−1‖ ≤ c1m
1−α + c3‖p1‖2m

2−α‖D(L(p) − z)−1‖ + c1‖p2‖2m
1−α.

By choosing m so large that c3‖p1‖2m
2−α < 1/2, we can conclude that

‖D(L(p) − z)−1‖ ≤ Cm1−α.

The proofs for (i, j) = (0, 1) and (i, j) = (1, 1) are similar.
To finish the proof of Theorem 4.1, we use Lemmas 4.4 and 4.5 in conjunction with

the identity (4.1) and the corresponding identity for the operator D(L(p)− z)−1D to
estimate ‖A(p, q; z)‖L1→L∞ and ‖B(p, q; z)‖L1→L∞ and thereby show that (4.2) and
(4.3) hold. For example, the norm of the second right-hand term in (4.1) is

‖(L(0) − z)−1Vp−q(L(p) − z)−1Vp(L(0) − z)−1‖L1→L∞

= ‖(L(0) − z)−1(D(p1 − q1)D + (p2 − q2))

× (L(p) − z)−1(Dp1D + p2)(L(0) − z)−1‖L1→L∞ .
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The term of highest order in m for z ∈ γm comes from the term involving p1, because
it involves the highest number of differentiations. In what follows, let C denote a
generic constant depending on only M , a bound for ‖p‖E and ‖q‖E , and let ‖ · ‖p,q
denote the B(Lp[0, 1], Lq[0, 1])-operator norm. We can estimate

‖(L(0) − z)−1D(p1 − qq)D(L(p) − z)−1Dp1D(L(0) − z)−1‖L1→L∞

≤ ‖(L(0) − z)−1D(p1 − q1)‖2,∞ ‖D(L(p) − z)−1p1‖2,2 ‖D(L(0) − z)1‖1,2

≤ C(m1−α‖p1 − q1‖L2[0,1])(m
1−α‖p1‖L2[0,1])(m

1−α)

≤ Cm3−3α

using Lemma 4.4 for the first and third factors, and Lemma 4.5 for the second. Similar
estimates on the remaining terms in (4.1) show that all terms can be bounded by
Cm2−2α‖p− q‖E so that

‖A(p, q; z)‖1,∞ ≤ Cm2−2α‖p− q‖E .
Analogous estimates show that

‖B(p, q; z)‖1,∞ ≤ Cm4−2α‖p− q‖E .
Finally, we refine the crude eigenvalue asymptotics obtained in section 2. We let

p1,m =

∫ 1

0

p1(x) cos(mπx) dx.

Note that the sequence {p1,m} belongs to `2(N).
Theorem 4.6. Let p ∈ E with ‖p‖E < M , and α ∈ (2, 3). There is a constant

C depending only on α and M such that the estimate

|λm(p) − λm(0) −m2π2 (p1 + p1,2m) | ≤ Cm4−α

holds for n > N . In particular, m−2(λm(p) − λm(0) − m2π2p1) defines a sequence
belonging to `2(N), and p1 may be recovered from the asymptotics of the λm(p).

Proof. First suppose that p ∈ C∞
0 (0, 1) × C∞

0 (0, 1). It suffices to prove the
estimate for such p since an arbitrary q ∈ E can be approximated by such smooth p
in norm and the eigenvalues are continuous functions of p. Let νm(t) = λm(tp) for
t ∈ [0, 1]. Then standard perturbative calculations show that

νm(1) − νm(0)

=

∫ 1

0

∫ 1

0

p1(x)(z′m(x; tp))2 dx dt

+

∫ 1

0

∫ 1

0

p2(x)(zm(x, tp))2 dx dt.

Using Theorem 4.2 together with the explicit formula

zm(x; 0) =
√

2 sin(mπx),

we readily obtain the claimed asymptotics.
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5. Analyticity. In this section, we prove the following theorem.
Theorem 5.1. The map µ is an analytic mapping from E into F .
Proof. Theorem 4.6 already implies that the map µ has range in F . It remains to

show that it has the required analyticity. It is not difficult to see that any particular
µn is analytic in a small neighborhood of any p ∈ E , where the size of the neighborhood
may depend on n. To show analyticity of µ we must show, for any p ∈ E , that the µn

with n > N are analytic in a fixed neighborhood of p independent of n > N .
To do this, we fix an M > 0 and choose N and R as in section 2. Let

Pn(p) =
1

2πi

∫
γn

(L(p) − z)−1 dz ,

where En is as defined in section 2. It follows from the analyticity of the resolvent
that Pn(p) is analytic in p. Moreover, for p and q with ‖p‖ ≤ M and ‖q‖ ≤ M ,

‖Pn(p) − Pn(q)‖ ≤ Rnα sup
z∈γn

‖(L(p) − z)−1 − (L(q) − z)−1‖

≤ C‖p− q‖E n2−α

by the estimate in the proof Theorem 4.2. For n > N and α > 2 we may choose
‖p − q‖ < (2CN2−α)−1 and guarantee that ‖Pn(p) − Pn(q)‖ ≤ 1/2 for all n > N .
From the formula

λn(q) =
〈zn(·, p), L(q)P (q)un(p)〉
〈zn(·, p), Pn(q)un(p)〉 ,

we see that λn(q) is analytic for ‖p− q‖ < (2CN2−α)−1, which defines a fixed neigh-
borhood of p independent of n > N . Thus, given p ∈ E , there is a fixed neighborhood
U of p so that all of the µn(q) are analytic for q ∈ U . This shows the required
analyticity.

6. Linear independence: The Borg system. We now consider linear inde-
pendence of the functions gn(p) constructed from eigenfunctions of L(p) via (1.7)
when p ∈ D. We shall accomplish this by displaying a set of functions which is
biorthogonal to the gn(p) in E. The development of this biorthogonal set will involve
the spectral theory of a non-self-adjoint fifth-order system, the Borg system, satisfied
by the functions

ĝn(x; p) =

(
(zn(x; p))2

(z′n(x; p))2

)
,(6.1)

where zn(x; p) is the nth eigenfunction of L(p).
First, we will define the Borg system and construct a basis for its solution space

from solutions of the underlying fourth-order problems. Then, we will show how one
may specify boundary conditions for this system so that the spectrum of the resulting
boundary value problem for the Borg system coincides with the spectra of the fourth-
order operators L(p), L1(p), and L2(p). Finally, we will show that the resolvent of the
Borg system has simple poles and rank-one residues; this will enable us to construct
the desired biorthogonal set.

6.1. The Borg system. Now, we define the Borg system and establish some of
its properties.

Lemma 6.1. For p ∈ C∞
0 (0, 1)×C∞

0 (0, 1), there exist differential operators M(p)
and B(p), mapping C∞

0 (0, 1) × C∞
0 (0, 1) into itself, such that
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(i)

M =

 D5 + M11(x,D) M12(x,D)

M21(x,D) D5 + M22(x,D)

 ,

where each Mij is a linear differential operator of order not exceeding four
with smooth coefficients depending on p, and

(ii)

B =

 8
3D 0

B21(x,D) −24D

 ,

where B21 is a third-order linear differential operator with smooth coefficients
depending on p.

(iii) If u and v are solutions of L(p)u = λu, then

M(p)φ = λB(p)φ,(6.2)

where φ = (uv, u′v′)T .
The proof is a direct calculation and is omitted. The explicit forms of M and B

are given in Appendix B.
Next we note a purely algebraic lemma. It will be used to furnish bases of solutions

from which Green’s function for the fifth-order system

(M− λB)u = f,(6.3)

with boundary conditions dictated by the chosen basis, can be calculated.
Lemma 6.2. Fix λ ∈ C. Let {yi}4

i=1 be a fundamental set of solutions for the
differential equation L(p)u = λu. The ten products {yiyj : 1 ≤ i ≤ j ≤ 4} have
nonvanishing Wronskian.

Lemma 6.2 is a consequence of the following abstract result about symmetric
tensor products. Recall that if V is a real n-dimensional vector space with basis
{ei}ni=1, the symmetric tensor product V ⊗s V is the n(n + 1)/2-dimensional real
vector space spanned by the tensors ei ⊗s ej = ei ⊗ ej + ej ⊗ ei. If A : V → V is a
linear transformation, A⊗s A is the linear transformation on V ⊗s V acting on basis
vectors by (A⊗s A)(ei ⊗s ej) = (Aei) ⊗s (Aej) and extended to V ⊗s V by linearity.

Lemma 6.3. Let A : V → V be a linear operator. Then,

det(A⊗s A) = 2
n(n+1)

2 det(A)n+1.

Proof. Suppose first that A is diagonal with eigenvalues {λi}ni=1. The eigenvalues
of A ⊗s A are 2λiλj for 1 ≤ i ≤ j ≤ n. The product over these n(n + 1)/2 numbers

gives 2
n(n+1)

2 (
∏n

i=1 λi)
n+1

. This proves the formula for the dense set of n×n matrices
which are similar to a diagonal matrix. The general result follows by continuity of
the determinant function.

We denote the 10×10 matrix of products yiyj , 1 ≤ i ≤ j ≤ 4, and their derivatives
of up to ninth order by YS .
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Proof of Lemma 6.2. Let Ψ be the 10 × 10 matrix consisting of the symmetric
derivatives D(k)yiD

(l)yj + D(l)yiD
(k)yj for 1 ≤ i ≤ j ≤ 4 and 0 ≤ k ≤ l ≤ 3. By

Lemma 6.3,

det(Ψ) = 210 (W (y1, y2, y3, y4))
5 6= 0.

A direct calculation shows that there is a nonsingular constant matrix G1 for
which

YS = ΨGT
1 ,(6.4)

which establishes the result.
Lemma 6.4. Let yi be as in Lemma 6.2, and let Φ be the 10×10 matrix consisting

of the yiyj and their derivatives of up to fourth order, and the y′iy
′
j and their derivatives

of up to fourth order. There is a nonsingular constant matrix C such that Φ = YSC
T .

The proof is a direct calculation and is omitted. The nonsingular constant matrix
C maps any row vector consisting of yiyj and its derivatives up to ninth order, where
yi and yj are solutions of the fourth-order problem, to a corresponding row vector
whose entries are yiyj and its first four derivatives, followed by y′iy

′
j and its first four

derivatives.
We conclude from Lemma 6.4 and relation (6.4) that{(

yiyj , y
′
iy

′
j

)T
: 1 ≤ i ≤ j ≤ 4

}
forms a basis for the ten-dimensional solution space of the fifth-order system (6.2).

6.2. Boundary conditions for the Borg system. We are now ready to pre-
scribe boundary conditions on the Borg system. We do so implicitly, by specifying a
basis for the desired ten-dimensional solution space. To this end, choose a basis yj of
solutions to L(p)u = λu to satisfy the initial conditions Di−1yj(0) = δij , 1 ≤ i, j ≤ 4,
and similarly choose a basis zj of solutions to L(p)u = λu to satisfy Di−1zj(1) = δij ,
1 ≤ i, j ≤ 4. Denote by B the 4 × 4 matrix with

yj(x, λ) =

4∑
i=1

Bijzi(x, λ) , 1 ≤ i, j ≤ 4;

the matrix B is a holomorphic function of λ with determinant 1. Bases of solutions for
the fourth-order homogeneous problems L(p)u = λu, L1(p)u = λu, and L2(p)u = λu
obeying the x = 0 and x = 1 boundary conditions are, respectively, {y2, y4, z2, z4},
{y2, y4, z1, z3}, and {y2, y4, z3, z4}. We denote the Wronskians of these sets, respec-
tively, as W1(λ), W2(λ), and W3(λ); the respective zeros are exactly {λn(p)}, {σn(p)},
and {τn(p)}. In terms of the matrix B,

W1(λ) = B1,4B3,2 −B1,2B3,4 ,

W2(λ) = B2,4B4,2 −B2,2B4,4 ,

W3(λ) = B1,2B2,4 −B1,4B2,2 .

Let us denote, for each i and j,

φL
ij =

 yiyj ,

y′iy
′
j ,

(6.5)
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and

φR
ij =

 zizj ,

z′iz
′
j ,

 .(6.6)

From Lemmas 6.2 and 6.4 it follows that either of the sets φL
ij or φR

ij form a basis for
the solution space of (6.2).

In lieu of specifying explicit boundary conditions for the fifth-order system (6.2),
we shall specify a ten-dimensional solution space for the Borg system by explicitly
choosing a basis for the solution space. This basis, consisting of a subset L of the
φL
ij and a subset R of the φR

ij , will be chosen so that the eigenfunctions of the three
boundary value problems specified in section 2 will contribute to the eigenfunctions
of (6.2) via (6.1). Explicitly, we choose

L = (φL
22, φ

L
44, φ

L
24)

and

R = (φR
11, φ

R
22, φ

R
33, φ

R
44, φ

R
13, φ

R
24, φ

R
34).

In what follows, we will also use the notation {φi}10
i=1 for these basis functions,

where 1 ≤ i ≤ 3 for the vectors in L, and 4 ≤ i ≤ 10 for the vectors in R. We shall
also designate the components of φi by

φi(x;λ) =

 ζi(x;λ),

ηi(x;λ),

 .

We need to verify that the ten functions in L ∪ R are linearly independent (and
hence, a basis for the solution space). Computing an appropriate Wronskian deter-
minant leads to an explicit eigenvalue condition. Recall that λn(p), σn(p), and τn(p)
denote, respectively, the nth eigenvalues of L(p), L1(p), and L2(p).

Lemma 6.5. Let W (λ) be the Wronksian of the solution set L∪R, and let p ∈ D.
Then W (λ) is a constant multiple of W1(λ)W2(λ)W3(λ), and W (λ) has simple zeros
at the eigenvalues {λn(p)}, {σn(p)}, {τn(p)}.

Proof. By Lemma 6.4 and the remarks following it, it suffices to show that the
assertion of Lemma 6.5 is true for the Wronskian determinant of the ten functions z2

1 ,
z2
2 , z2

3 , z2
4 , z1z3, z2z4, z3z4, and y2

2 , y2
4 , y2y4. Evaluating the determinant at x = 1

leads to the determinant of a block upper triangular matrix

A =

 I A12

0 A22

 ,(6.7)

where I is the 7×7 identity matrix, A12 is a 7×3 matrix whose entries are polynomials
in the Bi,j , and A22 is the 3 × 3 matrix

A22(λ) =


2B1,2 B2,2 B1,2 B2,4 + B2,2 B1,4 2B1,4 B2,4

2B1,2 B4,2 B1,2 B4,4 + B1,4 B4,2 2B1,4 B4,4

2B2,2 B3,2 B2,2 B3,4 + B2,4 B3,2 2B2,4 B3,4

 .
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Explicit calculation gives the formula

det(A22(λ)) = W1(λ)W2(λ)W3(λ).

The fact that W (λ) has simple zeros follows from a result of Everitt (see [12]) and
the fact that p ∈ D.

Thus, the spectrum of the boundary value problem for the Borg system coincides
exactly with the spectra of L(p), L1(p), and L2(p). With some additional calculation,
we can show the following lemma.

Lemma 6.6. Let p ∈ D. At each zero of W (λ), the kernel of M− λB is one-
dimensional.

Proof. It is enough to show that the matrix A defined in (6.7) has a one-
dimensional kernel at such points λ. To see this, note that a nonzero solution of
the homogeneous equation (M− λB)u = 0, which satisfies the left and right bound-
ary conditions, exists if and only if the spans of the vectors in L and R have nonempty
intersection. Recalling the notation {φi}10

i=1 we see that the dimension of the kernel
of M− λB is the dimension of solutions {αi} of the equation

10∑
i=1

αiφi = 0 ,(6.8)

since the sets {φi}3
i=1 and {φj}10

j=4 are linearly independent. Let Φ denote the 10×10
matrix containing the components of φi and their derivatives of up to fourth or-
der. This matrix is related by a nonsingular constant matrix to the 10 × 10 Wron-
skian matrix containing the corresponding products yiyj , zizj and their derivatives
of up to ninth order. The solutions of (6.8) therefore correspond to the nullspace of
the Wronskian matrix of the yiyj and zizj so that the dimension of the space of
solutions to (6.8) is exactly the dimension of the kernel of the matrix A in Lemma
6.5. Since A is upper triangular, dim kerA = dim kerA22. The proof is completed by
showing that dim kerA22 = 1 at each zero of W (λ), which is the content of the next
lemma.

Lemma 6.7. If W (λ) = 0, then dim ker(A22) = 1.
Proof. By virtue of Lemma 6.5, W (λ) = 0 if and only if Wj(λ) = 0 for some j.

Note that, since the spectra of the fourth-order problems do not overlap,
• B1,2 and B1,4 are never zero simultaneously (for otherwise, W1(λ) = W3(λ) =

0) and
• B2,2 and B2,4 are never zero simultaneously (for otherwise, W2(λ) = W3(λ) =

0).
Since the matrix A22 is symmetric (up to column-interchanges) with respect to

the second index on the coefficients Bi,j , we may assume without loss of generality
that B2,2 6= 0 and express A22 equivalently as

A22 =

 2B1,2 B1,4 + B1,2α2 2B1,4α2

2B1,2B4,2 B1,2B4,4 + B4,2B1,4 2B1,4B4,4

2B3,2 B3,4 + B3,2α2 2B3,4α2

 ,

where

α2 ≡ B2,4

B2,2
.
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There are two possibilities: either B1,2 6= 0 or B1,4 6= 0. We consider the former only,
the latter being essentially the same.

Assume B1,2 6= 0. The matrix A22 can then be written equivalently as

A22 =

 2 α1 + α2 2α1α2

2B4,2 B4,4 + B4,2α1 2B4,4α1

2B3,2 B3,4 + B3,2α2 2B3,4α2

 ,

where

α1 ≡ B1,4

B1,2
.

It is straightforward to show that there exist nonsingular matrices C and E for
which

A22 = CDET ,

where

D =

 2 α1 + α2 2α1α2

0 B4,4 −B4,2α2 2α1(B4,4 −B4,2α2)
0 B3,4 −B3,2α1 2α2(B3,4 −B3,2α1)

 =

 2 α1 + α2 2α1α2

0 − W2

B2,2
−2α1W2

B2,2

0 − W1

B1,2
−2α2W1

B1,2

 .

Noting that row 1 of D never vanishes (and is independent of the other rows) and
rows 2 and 3 cannot vanish simultaneously, we see that dim kerA22 = dim kerD ≤ 1
and is determined by the dimension of the kernel of the 2 × 2 submatrix

AA ≡
(− W2

B2,2
−2α1W2

B2,2

− W1

B1,2
−2α2W1

B1,2

)
.

We have

det(AA) =
2

B1,2B2,2
W1W2(α2 − α1) = − 2

B2
1,2B

2
2,2

W1W2W3 ,

and the result follows.
As a consequence, we have not only that the eigenvalues {νn} of the boundary

value problem (6.2) are precisely the eigenvalues of the three boundary value problems
considered in section 2, but also that, for each such eigenvalue, the eigenfunction of
(6.2) is (z2, (z′)2)T , where z is the eigenfunction of the corresponding fourth-order
problem.

6.3. Biorthogonal set. We shall now construct the desired biorthogonal set
from the residues of the resolvent (M− λB)−1. It follows from explicit formulas for
the Green’s function in terms of the basis functions φL

ij , φ
R
ij and the Wronskian W (λ)

that the resolvent (M− λB)−1 has simple poles with rank-one residues.
Theorem 6.8. Let (M− λB)−1 be the resolvent of the non-self-adjoint boundary

value problem (6.2). Then the poles of (M− λB)−1 are simple and occur at the
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numbers νn. Their residue takes the form (χn, ·)ψn, where ψn ∈ Ker(M− λB) and
χn ∈ Ker((M− λB)∗).

Proof. The integral kernel of (M− λB)−1 is the matrix-valued function G11(x, t;λ) G12(x, t;λ)

G21(x, t;λ) G22(x, t;λ)

 ,

where the Gij obey
• G11(x, t;λ) and G22(x, t;λ) are continuous in (x, t) ∈ [0, 1] × [0, 1] together

with their derivatives of up to order three and have a unit jump at x = t in
their fourth derivative,

• G12(x, t;λ) and G21(x, t;λ) are continuous in (x, t) ∈ [0, 1] × [0, 1] together
with their derivatives up to order four

and solve the differential equations

(M− λB)xGij(x, t;λ) = 0

for x 6= t. We can find explicit expressions for the Gij by setting

 G11,

G21,

 =


∑

i∈I
αi(t)φi(x) x < t,

−
∑

j∈J
αj(t)φj(x) x > t

and  G12,

G22,

 =


∑

i∈I
βi(t)φi(x) x < t,

−
∑

j∈J
βj(t)φj(x) x > t

and solving the linear equations∑10

i=1
αi(x)ζ

(k)
i (x) = 0, 0 ≤ k ≤ 3,

∑10

i=1
αi(x)ζ

(4)
i (x) = 1,

∑10

i=1
αi(x)η

(k)
i (x) = 0, 0 ≤ k ≤ 4,

and

∑10

i=1
βi(x)ζ

(k)
i (x) = 0, 0 ≤ k ≤ 4,

∑10

i=1
βi(x)η

(k)
i (x) = 0, 0 ≤ k ≤ 3,

∑10

i=1
βi(x)η

(4)
i (x) = 1.
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Using Cramer’s rule to solve for the functions αi and βi yields an expression for
Green’s function in terms of the holomorphic functions φi(x;λ) and the Wronskian
W (λ). Using the known properties of W (λ) we conclude that Green’s function has
simple poles.

A simple argument shows that the residue of (M− λB)−1 has range in Ker(M− λB)
and is therefore rank-one by Lemma 6.6. Writing the residue at λ = νn in the form
(χn, ·)ψn, it follows from the identity

((M− λB)∗)−1 = ((M− λB)−1)∗

that χn ∈ Ker((M− λB)∗).
Suppose that νi and νj are distinct eigenvalues of the Borg operator. It is not

difficult to see that the resolvent identity

(M− λB)−1 − (M− µB)−1 = (µ− λ)(M− λB)−1B(M− µB)−1

holds. Let Pi and Pj be the rank-one residues corresponding to these distinct eigenval-
ues. From the resolvent identity above, it is easy to see that the relations PiBPi = Pi

and PiBPj = 0 hold for i 6= j. Writing Pi = (χi, ·)ψi, we obtain the following theorem.
Theorem 6.9. The biorthogonality relations

(χi,Bψj) = δij(6.9)

hold. Consequently, the eigenfunctions {ψj} form a linearly independent set in E.
Proof. The conclusion that the set {ψj} is linearly independent in E follows

immediately from (6.9), once it is established that

χi ∈ D(B∗)(6.10)

for each i. Appendix B gives explicitly the boundary conditions which determine
D((M− λB)∗) and D(B∗). Direct comparison shows that D((M− λB)∗) ⊂ D(B∗),
so (6.10) holds.

We now order the poles, νn, of the Borg operator so that ν3n = λn, ν3n+1 = σn,
ν3n+2 = τn. The vectors ψ3n are, up to normalization, exactly the vectors ĝn. Thus
these vectors form a linearly independent set, and their orthogonal complement is an
infinite-dimensional space spanned by the vectors

{B∗χ3n+1,B∗χ3n+2}∞n=1.

To conclude that the same is true of the gradients gn for the direct spectral map, we
need the following lemma.

Lemma 6.10. The kernel of B is the one-dimensional subspace of L2[0, 1]×L2[0, 1]
spanned by the vector ĝ0 = (0, 1)T .

This is a direct computation using the formulas for B and its boundary conditions
recorded in Appendix B.

Now consider the family of vectors {g̃n}∞n=0, where g̃0 = (0, 1) and g̃n = (n2π2)−1ĝn−
g̃0. Since g̃0 ∈ ker(B), we have the biorthogonality relations

〈B∗χn, g̃m〉 = cnδnm

for n ∈ N, cn > 0, and m ∈ 0 ∪ N. Thus the family {g̃n}∞n=0 is linearly independent.
Since the gradients gn are obtained from g̃n by permuting the first and second entries,
we have proved the following theorem.

Theorem 6.11. For any p ∈ D, the gradients {gn(x; p)}∞n=0 are linearly inde-
pendent. Moreover, the complement of their span has infinite dimension in E.
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7. Proofs of the main theorems. We now prove Theorem 1.3, first proving
that dµ(q) is a linear isomorphism from Ev(q) onto F , and then proving that the space
Eh(q) is complementary. In light of the discussion following the statement of Theorem
1.3, and in view of Theorem 5.1 and the estimates of section 4, the first assertion will
be proved once the following result is established.

Lemma 7.1. For each p ∈ D, dµ(p) is a linear isomorphism from Ev(p) onto F .
In proving this result, we will make use of some results on Riesz bases. Recall

that if H is a Hilbert space with inner product 〈·, ·〉, a basis {en} is called a Riesz
basis for H if there exist a, b ∈ R

+ for which

a‖h‖2 ≤
∑
n

|〈h, en〉|2 ≤ b‖h‖2 ∀h ∈ H .(7.1)

Lemma 7.2. Let H be a Hilbert space, and let {en} be a Riesz basis for H. Then,
there is a unique set {εm} ⊆ H for which

(1) 〈en, εm〉 = δm,n for all m,n ∈ N,
(2) There exist α, β ∈ R

+ so that

α‖h‖2 ≤
∑
m

|〈h, εm〉|2 ≤ β‖h‖2 ∀h ∈ H .

Proof. Let Th =
∑

n〈h, en〉en. Then, T is self-adjoint, and

〈h, Th〉 =

〈
h,

∑
n

〈h, en〉en
〉

=
∑
n

|〈h, en〉|2.

It then follows from (7.1) that the spectrum of T is contained in the interval [a, b] so
that T−1 exists. By the spectral theorem, we have

b−2‖h‖2 ≤ ‖T−1h‖2 ≤ a−2‖h‖2.(7.2)

Let εn ≡ T−1en for each n ∈ N. Then

en = Tεn =
∑
m

〈εn, em〉em,

so 〈εm, en〉 = δnm by the linear independence of the en; this establishes (1). Fi-
nally, it follows from relation (7.2) and the definition of εn that

∑
n |〈h, εn〉|2 =∑

n |〈T−1h, en〉|2 obeys the inequality

ab−2‖h‖2 ≤
∑
n

|〈h, εn〉|2 ≤ ba−2‖h‖2 ,

which establishes (2).
Lemma 7.3. Let {dn} be a Riesz basis for H. Then the linear map A : H 7→ `2(N)

defined by

Ax = {〈x, dn〉}n≥1 , x ∈ H,

is an isomorphism.
Proof. We will show that A is a bounded bijection from H to `2. The conclusion

of the lemma will then follow from the open mapping theorem. First, it is clear that



958 L. F. CAUDILL, P. A. PERRY, AND A. W. SCHUELLER

Ax = 0 only when 〈x, dn〉 = 0 for each n. Since {dn} is a basis for H, we must have
x ≡ 0 so that A is one-to-one. Further, for x ∈ H we have, from (7.1),

‖Ax‖2 = ‖{〈x, dn〉}‖2
`2 =

∑
n

|〈x, dn〉|2 ≤ b‖x‖2 ,

so A is bounded.
To show A is onto `2(N), we introduce {δm} as the Riesz basis biorthogonal to

{dn}, the existence of which is guaranteed by Lemma 7.2. Then, given {ym} ∈ `2(N),
set y =

∑
m ymδm. From (7.1),

‖y‖2 ≤ 1

a

∑
n

|〈y, dn〉|2 =
1

a

∑
n

∣∣∣∣∣∑
m

ym〈δm, dn〉
∣∣∣∣∣
2

=
1

a

∑
n

|yn|2 < ∞

so that y ∈ H. Also,

Ay = {〈y, dn〉}n≥1 =

{∑
m

ym〈δm, dn〉
}

n≥1

= {yn}n≥1 ,

which shows that A maps onto `2(N). By the open mapping theorem, A is an iso-
morphism.

For each n ∈ N, let zn and un denote, respectively, the nth eigenfunction of L(p)
and L(0), and as before let

gn(x, p) =


z′n(x, p)2

n2π2 − 1

zn(x; p)2

n2π2

 .

By explicit computation

gn(x, 0) =

 cos(2nπx)

1 − cos(2nπx)
n2π2

 .(7.3)

Recalling the form (1.6) of dµ(p), it suffices, by virtue of Lemma 7.3, to show that
{gn( · ; p)} is a Riesz basis for Ev(p) = span{gn( · ; p)}. Using Fourier theory, one
can show directly that {gn( · ; 0)} is a Riesz basis for its span. To show that the
same is true for {gn( · ; p)}, we note that {gn( · ; p)} is linearly independent, by
virtue of Theorem 6.11, and use the following stability result for Riesz bases.

Lemma 7.4. Let H be a Hilbert space, and let {en} ⊆ H be a Riesz basis for
He ≡ span{en}. Let {dn} ⊆ H be a linearly independent set for which∑

n

‖dn − en‖2 ≡ M < ∞.

Then, {dn} is a Riesz basis for Hd ≡ span{dn}; i.e., there exist α, β ∈ R
+ so that,

for each h ∈ Hd,

α‖h‖2 ≤
∑
n

|〈h, dn〉|2 ≤ β‖h‖2.(7.4)
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Proof. Define a map A : He −→ Hd by Aen = dn for each n ∈ N, extended by
linearity. Then, for h ∈ Hd and each n,

〈h, dn〉 = 〈h,Aen〉 = 〈A∗h, en〉.(7.5)

Let a and b be the constants for which (7.1) holds for {en} on He. Then, from (7.4),

a‖A∗h‖2 ≤
∑
n

|〈A∗h, en〉|2 =
∑
n

|〈h, dn〉|2 ≤ b‖A∗h‖2.(7.6)

We claim that A (and hence A∗) is boundedly invertible. If this is true, then (7.6)
leads to

a

‖(A∗)−1‖2
‖h‖2 ≤

∑
n

|〈h, dn〉|2 ≤ b‖A∗‖2‖h‖2,

which establishes (7.4).
To show A is invertible, we note that the linear independence of {dn} implies the

injectivity of A. To see that the range of A is all of Hd, note that any h ∈ Hd can
be written as h =

∑
n hndn, where {hn} ∈ `2(N). Then, setting x ≡ ∑

n hnen, one
easily sees that x ∈ He and Ax = h. Hence, A maps He onto Hd.

Finally, we show that A is bounded. Choose x ∈ He, and write as

x =
∑
n

xnen =
∑
n

〈x, εn〉en,

where {εn} is the Riesz basis for He which is biorthogonal to {en}. Then,

Ax =
∑
n

xndn =
∑
n

xnen +
∑
n

xn(dn − en) = x +
∑
n

xn(dn − en),

which yields

‖Ax‖2 ≤ ‖x‖2 +
(∑

n |xn|2
) (∑

n ‖dn − en‖2
)

= ‖x‖2 + M
∑

n |〈x, εn〉|2

≤ ‖x‖2 + Mβ‖x‖2 ,

where (7.4) was used in the last inequality. Thus,

‖A‖2 ≤ 1 + Mβ < ∞ ,

and A is bounded. By the open mapping theorem, A has a bounded inverse, as
asserted.

Proof of Lemma 7.1. From the estimates of Theorem 4.1, one can show that∑
n

‖gn( · ; p) − gn( · ; 0)‖2 < ∞ ,(7.7)

so, by Lemma 7.4, {gn} is a Riesz basis for Ev(p). The result now follows from Lemma
7.3.
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Finally, we prove that for any q ∈ E , the complementary space Eh(q) is infinite-
dimensional. We first observe that, by the explicit formula (7.3) and Fourier analysis,
the gradients gn(·, 0) are orthogonal vectors, and the complementary space Eh(0) has
infinite dimension. Since the gradients satisfy (7.7), the second part of Theorem 1.3
will follow from the next lemma.

Lemma 7.5. Let {vn} be an orthogonal set of vectors in a Hilbert space H. Let
{wn} ⊂ H be a linearly independent set of vectors which satisfy

∑
n ‖vn −wn‖2 < ∞.

Set V ≡ span{vn} and W ≡ span{wn}. If V ⊥ has infinite dimension, then W⊥ also
has infinite dimension.

Proof. Suppose not, and choose an infinite sequence of orthogonal unit vectors
{en} from V ⊥ so that en → 0 weakly. Let ε > 0 be given. Writing en = PW en+PW⊥en
we see that PW⊥en → 0 if W⊥ has finite dimension. We will obtain a contradiction
by showing that ‖PW en‖ is also small for large n. First observe that by hypothesis,
for M sufficiently large and all n,

∞∑
m=M+1

|〈en, wm〉|2 < ε.

On the other hand, using the weak convergence again,

M∑
m=1

|〈en, wm〉|2 → 0

as n → ∞ for a fixed M . It follows that for any ε > 0,

lim sup
n→∞

(∑
m

|〈en, wm〉|2
)

≤ ε.

Since {wn} is a Riesz basis, by virtue of Lemma 7.4, this means that lim supn→∞ ‖PW en‖ ≤
ε, a contradiction.

Appendix A. The free Green’s function and free resolvent operator. In
this appendix, we prove some useful technical estimates on the Green’s kernel for the
differential operator L#(0), where L#(0) is one of the operators L(0), L1(0), or L2(0)

defined in (1.3)–(1.5). Let G#
0 (x, y; z) be the integral kernel of (L#(0)− z)−1, and let

C#
R,α be defined as in section 2.

In what follows, β = (βx, βy), where βx and βy are nonnegative integers, and

∂β = ∂βx
x ∂

βy
y . We wish to derive estimates on ∂βG#

0 (x, y; z). These estimates will
involve series of the form

∞∑
n=1

Dβx
x u#

n (x)D
βy
y u#

n (y)

λ#
n (0) − z

,(A.1)

where λ#
n (0) and u#

n are the eigenvalues and eigenfunctions, respectively, of L#(0).
It can be verified directly that for each set of boundary conditions, the eigenfunctions
obey

|Dj
xu

#
n (x)| ≤ Cnj , 0 ≤ j ≤ 2 ,
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for some constant C. Thus, to estimate series of the form (A.1), it suffices to majorize
the numerical series

∞∑
n=1

n|β|

|λ#
n (0) − z| .

In so doing, we will require the following technical result, which may be easily verified.

Lemma A.1. Let R > 1 and α ∈ (2, 3). Then, for m > (8R)
1

3−α ,∫ m−1

1

t2

m4π4 − t4π4 dt ≤ 1

mπ4 lnm,(A.2)

∫ ∞

m+2

t2

t4π4 − [(m + 1)4π4 + R(m + 1)α]
dt ≤ C

m
lnm,(A.3)

where the constant C depends only on α.
First of all, we have the following lemma.
Lemma A.2. Let R > 0, let α ∈ (2, 3), and let N be an integer satisfying the

bounds (2.1). Then for any z 6∈ C#
R,α:

(a) for |β| ≤ 1,

sup
x,y∈[0,1]

|∂βG#
0 (x, y; z)| ≤ c|β|R−1;

(b) for |β| = 2,

sup
x,y∈[0,1]

|∂βG#
0 (x, y; z)| ≤ c2R

−1 ln(R),

where c2 is a numerical constant depending only on α.
Proof. We consider the case λn(0) = n4π4, the computations for other boundary

conditions being similar.
For |β| ≤ 1 we have the simple majorization

∞∑
n=1

n

|n4π4 − z| ≤
∞∑

n=1

n

Rnα ,

which gives estimates of the desired form.
For |β| = 2, we seek to estimate the series

∞∑
n=1

n2

|n4π4 − z|

for z 6∈ CR,α. We split the sum into

T1 =
N∑

n=1

n2

|n4π4 − z|

and

T2 =
∞∑

n=N+1

n2

|n4π4 − z| ,
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where N > (8R)
1

3−α .

To estimate T1, we use the fact that for 1 ≤ n ≤ N , |z − n4π4| ≥ |zN − n4π4|
where zN = N4π4 + RNα. The integral test then yields the bound

T1 ≤
N−2∑
n=1

n2

|n4π4 −N4π4| +
(N − 1)2

zN − (N − 1)4π4

+
N2

|N4π4 − zN |

≤
∫ N−1

1

t2

N4π4 − t4π4 + CR−1 .

Using (A.2) and the fact that N = O(R
1

3−α ), we conclude that T1 ≤ C(α)R−1 lnR.

To estimate T2, we consider the two cases <(z) ≤ zN and <(z) ≥ zN separately.
If <(z) ≤ zN , then |m4π4 − z| ≥ |m4π4 − zN |, from which we obtain

T2 ≤
∞∑

n=N+1

n2

π4n4 − [π4N4 + RNα]
.

We may estimate this sum by

(N + 1)2

π4(N + 1)2 − zN
+

∫ ∞

N+1

t2

t4π4 − [π4N4 + CRNα]
dt ,

which, in conjunction with (A.3), yields an estimate of the desired form.

If <(z) > zN , we divide the half-plane <(z) > zN into strips

Sm = {z ∈ C : <(z) ∈ [m4π4 + Rmα, (m + 1)4π4 + R(m + 1)α)}

and fix m so that z ∈ Sm. We can then estimate T2 by letting x = <(z) and splitting

∞∑
n=N+1

n2∣∣n4π4 − z
∣∣ =

m−2∑
n=N+1

n2∣∣n4π4 − z
∣∣

+

(
(m− 1)2

z − (m− 1)4π4 +
m2

|z −m4π4|

+
(m + 1)2

|z − (m + 1)4π4| +
(m + 2)2

|z − (m + 2)4π4|
)

+
∞∑

n=m+3

n2

n4π4 − x

= T21 + T22 + T23 .

From the definition of CR,α, it is clear that

T22 ≤ CR−1 ,
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which bounds T22. Finally, using the fact that, for x in the interval [m4π4+Rmα, (m+
1)4π4 + R(m + 1)α),

T21 ≤
∫ m−1

0

t2

m4π4 − t4π4 dt,

T23 ≤
∫ ∞

m+2

t2

t4π4 − [(m + 1)4π4 + R(m + 1)α]
dt ,

we can use (A.2) and (A.3) to bound T21 and T23, respectively.
We will also need estimates on the free resolvent kernel on contours surrounding

the sets E#
m.

Lemma A.3. Let R > 0, let α ∈ (2, 3), let N be an integer satisfying the bounds
(2.1), and let E#

m be defined as in section 2. Let γm be the contour bounding E#
m. If

m > N and |β| ≤ 2, then the estimate

sup
x, y ∈ [0, 1]
z ∈ γm

|∂βG#
0 (x, y; z)| ≤ C|β|m|β|−α

holds. Here C|β| is a numerical constant which diverges as α ↑ 3.
Proof. Here again we consider the case λn(0) = n4π4 and |β| = 2. We must

majorize the numerical series

∞∑
n=1

n2

|z − n4π4| ,

where |z −m4π4| = Rmα. We split the sum into∑m−2

n=1

n2

|z − n4π4|

+

[
(m− 1)2

|z − (m− 1)4π4| + m2

|z −m4π4| +
(m + 1)2

|z − (m + 1)4π4|
]

+
∑∞

n=m+2

n2

|z − n4π4| .

The three bracketed terms are easily estimated by 6Rm2−α. We can estimate the first
and last terms using (A.2) and (A.3).

Now we derive estimates on operators involving compositions of the resolvent
(L#(0)− z)−1 with the operator of differentiation, D, and the operator of multiplica-
tion by a function r ∈ C∞

0 (0, 1). These compositions are initially defined on C∞
0 (0, 1)

and extended by density to bounded operators. It follows from this definition and
an integration by parts that the operator Dβx(L(0) − z)−1Dβy has integral kernel
(−1)βy (∂βG0)(x, y; z). From the kernel estimates in Lemma A.2 and integration by
parts, the following estimates are easily demonstrated.

Lemma A.4. Suppose that r ∈ C∞
0 (0, 1). For z 6∈ CR,α, there exist c0, c1, c2 ∈ R

so that the following estimates hold:
(a) ‖(L#(0) − z)−1‖ ≤ c0R

−1.
(b) ‖(L#(0) − z)−1r‖ ≤ c0R

−1 ‖r‖2.
(c) ‖D(L#(0) − z)−1‖ ≤ c1R

−1.



964 L. F. CAUDILL, P. A. PERRY, AND A. W. SCHUELLER

(d) ‖(L#(0) − z)−1Dr‖ ≤ c1R
−1 ‖r‖2.

(e) ‖D(L#(0) − z)−1Dr‖ ≤ c2R
−1 ln(R) ‖r‖2.

The following bounds are used to estimate the resolvent (L#(p)−z)−1 for z ∈ γm,
the contour determined by the boundary of the set Em defined in section 2. We
denote by ‖A‖p,q the norm of the linear operator A from Lp[0, 1] to Lq[0, 1], where
1 ≤ p, q ≤ ∞. Using the strong pointwise estimates on the free resolvent and its
partial derivatives from Lemma A.3, we easily obtain the following lemma.

Lemma A.5. Let z ∈ γm and r ∈ C∞
0 (0, 1), and let 0 ≤ i, j ≤ 1. Then for any

p, q with 1 ≤ p, q ≤ ∞, the estimate

‖Di(L#(0) − z)−1Dj‖p,q ≤ Ci+jm
i+j−α

holds, and for any p, q with 1 ≤ p ≤ 2 and 1 ≤ q ≤ ∞, the estimate

‖Di(L#(0) − z)−1Djr‖p,q ≤ Ci+jm
i+j−α‖r‖2

holds. Here Ci+j is the numerical constant defined in Lemma A.3.

Appendix B. Domains related to the Borg system. In this appendix, we
collect some useful calculations regarding the Borg system M− λB of section 6. First
of all, for p = (p1, p2) ∈ D, the matrix-valued differential operators M and B which
define the Borg system can be computed to be

M =

(
M1 M2

M3 M4

)
and B =

(
B1 B2

B3 B4

)
,

where

M1 = D5 − p1D
3 − 2p′1D

2 +

(
8

3
p2 − p′′1

)
D + 2p′1,

M2 = −10

3
D3 +

4

3
p1D +

2

3
p′1,

M3 = −3p′1D
4 + 10p2D

3 + (3p1p
′
1 + 5p′2)D

2 +
(
p′′2 − 4p1p2 + 3(p′1)

2
)
D − 6p′1p2,

M4 = D5 − 5p1D
3 − p′1D

2 + (4p2
1 − 8p′′1 − 24p2)D + (2p1p

′
1 − 2p′′′1 − 6p′2),

B1 =
8

3
D,

B2 = 0,

B3 = 10D3 + 4p1D − 6p′1,
B4 = −24D.

Boundary conditions are to be specified so that if w is an eigenfunction (with
eigenvalue λ) of one of the three underlying fourth-order problems (1.3), (1.4), (1.5),
then z = [w2, (w′)2]T will be in the kernel of M− λB. The three fourth-order opera-
tors L(p), L1(p), and L2(p) underlying the Borg system carry the following boundary
conditions (see section 1):

L(p) : w(0) = w′′(0) = w(1) = w′′(1) = 0,

L1(p) : w(0) = w′′(0) = w′(1) = w′′′(1) = 0,

L2(p) : w(0) = w′′(0) = w(1) = w′(1) = 0.



ISOSPECTRAL SETS FOR DIFFERENTIAL OPERATORS 965

Setting u ≡ w2 and v ≡ (w′)2, one can compute directly that the boundary conditions
which determine the domain of M are:

• At x = 0 : u = u′ = u′′′ = v′ = v′′′ = u′′ − 2v = u(4) − 4v′′ = 0,
• At x = 1 : u′ = u′′′ = v′ = 0.

The operator B is to be viewed as a perturbation of M, so we take D(B) = D(M),
from which it follows that D(M− λB) = D(M).

It will also be useful to determine the boundary conditions which define the
domains of certain adjoint operators related to the Borg system. First, consider
D(M∗), where M∗ denotes the Hilbert space adjoint of the unbounded operator M.

Let z = [u, v]T ∈ D(M). An element σ = [φ, ψ]T ∈ D(M∗) must satisfy

〈Mz, σ〉 − 〈z,M†σ〉 = 0 ,

where M† denotes the formal adjoint of M. One can compute directly the following
boundary conditions which define D(M∗):

• At x = 0 : ψ = ψ′′ + 2
3φ = ψ(4) − 4

3φ
′′ + 8

3p1φ = 0,

• At x = 1 : φ = φ′′ = φ(4) = ψ = ψ′ = ψ′′ = ψ(4) = 0.
Similarly, one can compute the following boundary conditions which define D(B∗):
• At x = 0 : ψ = 0,
• At x = 1 : ψ = 5ψ′′ + 4

3φ = 0.
One immediately observes the following containment:

D(M∗) ⊂ D(B∗) .

Finally, proceeding as above, one may compute the following set of boundary
conditions which defines D((M− λB)∗):

• At x = 0 : ψ = ψ′′ + 2
3φ = ψ(4) − 4

3φ
′′ + 8

3p1φ = 0,

• At x = 1 : φ = φ′′ = φ(4) = ψ = ψ′ = ψ′′ = ψ(4) = 0 ,
which shows that D((M− λB)∗) = D(M∗).
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