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Preface

In these notes, we shall present a body of mathematical work devoted to gen-
eralizing the classical Weierstrassian notion of analytic continuation. These works
by Poincaré, Borel, Beurling, Tumarkin, Gon¢ar, and others have been undertaken
by various methods and for a variety of reasons, but for brevity, we will refer to
them as studies in ‘generalized analytic continuation’ (GAC). To better explain the
motivation behind our assembling this little book, we employ an analogy with the,
now classical, subject of divergent series.

In the 18th century, there was little agreement on how to attach an appropriate
number s to represent the ‘sum’ ag + a1 + ag + - -+ of complex numbers a;. From
G. H. Hardy’s Divergent Series [68, p. 5]:

It is plain that the first step towards such an interpretation must
be some definition, or definitions, of the ‘sum’ of an infinite se-
ries,. . . . This remark is trivial now: it does not occur to a
modern mathematician that a collection of mathematical sym-
bols should have a ‘meaning’ until one has been assigned to it
by definition. It was not a triviality even to the greatest math-
ematicians of the eighteenth century. They had not the habit of
definition: it was not natural to them to say, in so many words,
‘by X we mean Y’. There are reservations to be made...but it
is broadly true to say that mathematicians before Cauchy asked
not ‘How shall we define 1 —1+1— 1+ ---7 but ‘What s
1—1+1—1+---?7, and that this habit of mind led them into
unnecessary perplexities and controversies which were often re-
ally verbal.

Some order was established in this regard when Cauchy first defined, in a way that
is now standard, the notion of a ‘limit’ of a sequence, allowing him to define the
sum ag + a; + az + - - - to be the number s if

lim (ag + a1+ +a,) =s.
n—oo

This definition banished series suchas1—1+1—1+-.. to the realm of ‘divergent’
series.

However, various investigations pointed towards the usefulness of certain diver-
gent series. From James Pierpont:

It is indeed a strange vicissitude of our science that those series
which early in the century were supposed to be banished once
and for all from rigorous mathematics should, at its close, be
knocking at the door for readmission.

ix
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For example, the initial treatment (by Fourier) of Fourier series operated extensively
with divergent series. As another example, important series expansions arising in
cclestial mechanics - and also in connection with the Euler-Maclaurin summation
formula - turned out to diverge, yet gave useful results if truncated suitably, a
phenomenon later explained by Poincaré and others in the theory of asymptotic
series. Still further, Euler, Borel, and Mittag-Leffler had devised procedures which
‘summed’ certain Taylor expansions in regions outside their circle of convergence
to the value of the analytically continued function [75, p. 74]. Even further, after
the disappointing discovery, by du Bois-Reymond, that the Fourier series of a con-
tinuous function could diverge at some points, order was restored in a remarkable
way by L. Fejér’s discovery that none the less, the arithmetic means of those par-
tial sums do converge uniformly to the function. Lebesgue proceeded further and
showed that the same arithmetic means formed from the partial sums of the Fourier
series of a merely integrable function converge almost everywhere to the function.
These are only some examples. A more detailed discussion can be found in [68].

As various methods of ‘summing’ divergent series proved their worth, and also
became systematized by Toeplitz and others, a new ‘modern’ point of view emerged:
there was no need for polemics as to what was the ‘correct’ sum of a series like
1—1+4+1-1+--. Indeed, various reasonable looking summation procedures lead
to different answers. Instead, what was truly needed was a classification and a
comparison of the various summation procedures of Abel, Cesaro, Borel, and Euler,
and an even greater emphasis on their applications.

Among the new challenges in the field of divergent series was the task of proving
that the various new types of summation were compatible with Cauchy’s definition
of the sum in the case where the series was convergent in the first place. These
results are generally referred to as ‘Abelian’ theorems since the first was a result of
Abel asserting that if ag + ay + a2 + - - - converges to s then

x>
. n__
lim g apz” = s,
n=0

rz—1-
with the above formula being the ‘Abel sum’ of the a;’s. A similar type of result
holds for Cesaro convergence, that is

. Sgts1+--+ 5,
lim
n—0o0 n+1

:S’

where s, = a9 + a1 + - - - + an, and the above formula being the ‘Cesdro sum’ of
the a;’s. Another important task was to explore the converse question, and more
generally the compatibility of different types of summability - what are referred
to as ‘Tauberian’ theorems (68, p. 149]. For example, a result of Tauber says
that if a sequence {a,} is Abel summable to s, as above, and a, = o(1/n), then
ag+ay+---=s.

Though there was initially little unity in the subject of divergent series, since
the motivations as well as the methods were diverse, unifying studies began to
appear in the work of Toeplitz and others. Finally, a comprehensive synthesis of
the whole field, including historical background, was done by G. H. Hardy in his
masterful work Divergent Series [68].

In much the same way as Euler, Abel, Borel, Cesaro and others attempted to
extend the notion of convergence of a series, there were those who attempted to
extend the notion of analytic continuation of a function f. In brief, ‘generalized
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analytic continuation’ (GAC), as the name suggests, studies ways in which the
component functions f|€2; - where f is a meromorphic function on a disconnected
open set €2 in the complex plane C and {§;} are the connected components of €
- may possibly be related to each other in certain cases where the Weierstrassian
notion of analytic continuation says there is a ‘natural boundary’. We say that
0§15, the boundary of §);, is a ‘natural boundary’ for the component function f|(2;
if f|Q; does not have an analytic continuation across any point of 9§;. As an
example of what is meant here, consider the function f defined by the series

> C
n
F@) =) —
n=1

where {e¥~} is a sequence of points everywhere dense in the unit circle T = {z € C :
|z| = 1} and {¢,,} is an absolutely summable sequence of non-zero complex numbers.
This function is analytic on Coo\T and in 1883, Poincaré [106] was able to prove
that T is a natural boundary for both f|D and f|D,, where D = {z € C: |z| < 1}
is the unit disk and D, = {#z € Coo : 1 < |2| < 00} is the extended exterior disk.

Certainly, if 2; and ) are adjacent components (they share a common bound-
ary arc) and f|€; is an analytic continuation of f|{; across a portion of that
common boundary arc, then f|Q; and f|Q are related, and, by the uniqueness
of analytic continuation, each uniquely determines the other. However, there are
other types of ‘continuations’, or ways of relating f|Q; and f|Q, beyond analytic
continuation. From E. Borel’s work [28, p. 100], where such ideas began to be
studied:

...we wished only to show how one could introduce into the
calculations analytic expressions whose values, in different re-
gions of their domain of convergence, are mutually linked in a
simple way. It seems, on the basis of that, that one could en-
vision extending Weierstrass’ definition of analytic function and
regarding in certain cases as being [parts of] the same function,
analytic functions having separate domains of existence. But for
that it is necessary to impose restrictions on the analytic expres-
sions one considers, and because he did not wish to impose such
~ restrictions Weierstrass answered in the negative [this| question:

” Therefore the thought was not to be ignored, as to whether
in the case where an arithmetic expression F(x) represents dif-
ferent monogenic functions in different portions of its domain of
validity, there is an essential connection, with the consequence
that the properties of the one should determine the properties of
the other. Were this the case, it would follow that the concept
‘monogenic function’ must be widened.”- (Weierstrass, Mathe-
matische Werke, vol. 2, p. 212)

It is not possible for us to give to this Chapter a decisive

- conclusion; for, in our opinion, the question addressed here is
not entirely resolved and calls for further research. We would be
content if we have convinced our readers that neither the funda-
mental works of Weierstrass, nor the later ones of Mittag-Leffler,
Appell, Poincaré, Runge, Painlevé entirely answer the question
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as to the relations between the notions of analytic function, and
analytic expression. One can even say without exaggeration,
that the classification of analytic expressions which are inca-
pable of representing zero [on some domain| without doing so
everywhere, is yet to be brought to completion.

For an example of a ‘continuation’ beyond analytic continuation, we return to

the above Poincaré example

= ¢

=3 T

n=1
Even though the component functions f|D and f|D. are not analytic continuations
of each other across any point of T, they can, in light of more modern complex
analysis techniques, be regarded as ‘continuations’ of each other. Indeed, f|ID and
fID. are both in the H? (0 < p < 1) spaces of their respective domains and
moreover, )
lim f(re?®) = lim f(re')

r—1t

r—1-
for almost every 6. Borel [27, 28] began to generalize Poincaré’s example to func-
tions of the type

[}
f (z) = n ’
where {z,} is a sequence of points which need not lie on T but merely accumulate
on all of T, and further explored the relationship between the component functions
f|D and f|D.. This investigation of ‘coherence’, often in various other settings, was
continued in the 1920’s and 1930’s by Walsh and more recently in the 1960’s and
1970’s by one of the current authors as well as Tumarkin and Gon¢car.

An important insight emerged from these pioneering works: if a sequence of
rational functions converges uniformly on compact subsets of a disconnected open
set - as the partial sums of the above series do - and the approximants are restricted
by either of two very different types of requirements, then the limit functions on
the components of the open set exhibit a kind of mutual ‘coherence’. In particu-
lar, they mutually determine one another. These two types of requirements are,
on the one hand, a sufficiently rapid convergence as related to the degree of the
rational function (a line pursued by Borel, Walsh, and Gonéar), and on the other,
a geometric restriction of the locations of the poles, without regard to the speed
of convergence (a line pursued by Walsh and Tumarkin). One of the current au-
thors and his co-workers later revealed a surprising connection between Tumarkin’s
results and a problem in operator theory, namely the classification of the cyclic
vectors for the backward shift operator on the Hardy space.

The results we have assembled in this little book possess a mathematical rich-
ness and potential to constitute an interesting field in much the same way as diver-
gent series. But we are not there yet. To again pursue the analogy with divergent
series, so far we have a variety of proposed schemes for continuing (classes of)
noncontinuable analytic functions and ‘Abelian’ theorems, guaranteeing they will
produce the correct result when applied to functions that already possess ordinary
analytic continuations. But the analog of the Tauberian theorems is almost wholly
lacking. For example, it is not known, at least to us, whether pseudocontinuation
and Gonéar continuation, as defined in this book, applied to the same function can
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yield incompatible results. There is also another interesting analogy with divergent
series. Just as the Tauberian theorems showed that some divergent series, for ex-
ample, 1/2+1/3+1/4+ -- -, are, roughly speaking, ‘universally divergent’ (they
cannot be summed by any of the natural methods), some Taylor series, such as
the ones which have an isolated winding point on their circle of convergence, are
‘universally non-continuable’ and do not allow a GAC by any method satisfying
a few natural conditions. This limitation of the scope of GAC is a sign that we
are dealing with a bona fide concept here since it cannot be stretched to make
‘everything’ continuable.

It is our hope that the present bock, which juxtaposes results in a way that
has not been done before, may help pave the way towards the study of GAC in
a unifying context. We feel our pursuit is worthwhile since for one, much of the
mathematics involved here is quite beautiful but unfortunately widely scattered
throughout the literature, often in sources difficult to obtain. Secondly, it involves a
central notion in function theory, analytic continuation, which historically has given
rise to heated polemics. In the same spirit as the modern theory of summability
methods for divergent series, there is nothing controversial here, only technical
questions of how different continuation schemes relate to one another and to analytic
continuation. Thirdly, many attributes of analytic continuation can be studied
afresh in the context of one or another notion of GAC, such as the overconvergence
theorems of Ostrowski or noncontinuability of Taylor series with various types of
gaps. Fourth, GAC appears in one form or another in the study of the backward
shift operator on many Banach spaces of analytic functions on the unit disk. We
have already mentioned this with regard to the Hardy space. Recently however,
several authors have employed GAC in their investigations of the backward shift
on other function spaces such as the Bergman and Dirichlet spaces. In fact, a new
type of ‘continuation’ to be introduced in these notes leads to further progress in
this context. Finally, GAC appears, almost surprisingly, in the study of electrical
networks (the Darlington synthesis problem) as well as in questions related to linear
differential equations of infinite order.

Though the subject of GAC is not ready for a Diwvergent Series like treatise,
we feel this humble offering begins to organize the results in a coherent way and
presents the future author of such a treatise with some open questions that need
to be answered before such a comprehensive work can be written.

We wish to give our warmest thanks to Dima Khavinson, Genrikh Tumarkin,
and Lawrence Zalcman who read earlier drafts of this manuscript and provided valu-
able suggestions and corrections. We also thank Evgeny Abakumov for introducing
us to Aleksandrov’s papers on gap series.

We will be keeping any updates/corrections/additions at
www.richmond.edu/"wross
We welcome your comments.
W. T. Ross H. S. Shapiro
Richmond Stockholm
wross@richmond.edu shapiro@math.kth.se
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