
Richmond Journal of Law and Technology

Volume 6 | Issue 5 Article 5

2000

Opening Up to Open Source
Shawn W. Parker

Follow this and additional works at: http://scholarship.richmond.edu/jolt

Part of the Intellectual Property Law Commons, and the Internet Law Commons

This Article is brought to you for free and open access by UR Scholarship Repository. It has been accepted for inclusion in Richmond Journal of Law
and Technology by an authorized administrator of UR Scholarship Repository. For more information, please contact
scholarshiprepository@richmond.edu.

Recommended Citation
Shawn W. Parker, Opening Up to Open Source, 6 Rich. J.L. & Tech 24 (2000).
Available at: http://scholarship.richmond.edu/jolt/vol6/iss5/5

http://scholarship.richmond.edu/jolt?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/jolt/vol6?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/jolt/vol6/iss5?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/jolt/vol6/iss5/5?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/jolt?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/892?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/jolt/vol6/iss5/5?utm_source=scholarship.richmond.edu%2Fjolt%2Fvol6%2Fiss5%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Volume VI, Issue 5, Spring 2000

Opening Up to Open Source

Shawn W. Potter[*]

Cite As: Shawn W. Potter, Opening Up to Open Source, 6 RICH. J.L. & TECH. 24 (Spring 2000)
<http://www.richmond.edu/jolt/v6i5/article3.html>. [**]

TABLE OF CONTENTS

I. INTRODUCTION

II. WHAT IS SOFTWARE?

A. What is Open Source?

B. The Open Source Movement

III. SOCIETY SHOULD EMBRACE OPEN SOURCE

A. Who's in charge?

B. Transition Issues

C. Practical Benefits

D. Software Economics

E. Copyright

1. Copyright and Open Source

2. Length of Copyright Terms

IV. CONTEMPORARY OPEN SOURCE LICENSING AND TRANSACTIONS

A. Infringement

http://jolt.richmond.edu/v6i5/article3.html#h*
file:///C:/My%20Documents/JOLT%20Website%208-12-2001/admin/cite.html
http://www.richmond.edu/jolt/v6i5/article3.html
http://jolt.richmond.edu/v6i5/article3.html#h**
http://jolt.richmond.edu/v6i5/article3.html#h1
http://jolt.richmond.edu/v6i5/article3.html#h2
http://jolt.richmond.edu/v6i5/article3.html#h3
http://jolt.richmond.edu/v6i5/article3.html#h4
http://jolt.richmond.edu/v6i5/article3.html#h5
http://jolt.richmond.edu/v6i5/article3.html#h6
http://jolt.richmond.edu/v6i5/article3.html#h7
http://jolt.richmond.edu/v6i5/article3.html#h8
http://jolt.richmond.edu/v6i5/article3.html#h9
http://jolt.richmond.edu/v6i5/article3.html#h10
http://jolt.richmond.edu/v6i5/article3.html#h11
http://jolt.richmond.edu/v6i5/article3.html#h12
http://jolt.richmond.edu/v6i5/article3.html#h13
http://jolt.richmond.edu/v6i5/article3.html#h14

1. Copyright Remedies

2. Determining Infringement

B. Licensee and Licensor

1. Derivative Works

2. Terms, Conditions, and Warranties

V. OPENING UP

A. The Problem

B. Market Solutions

C. Government Solutions

VI. CONCLUSION

I. INTRODUCTION

{1}The latest "revolution" in the software industry has nothing to do with breakthrough technology; the
revolution is a rethinking of how software technology is held, developed, and distributed. The revolution is
called "open source," although it has also been called "freeware," and "copyleft." Each term generically
describes the movement, yet implies wildly different ideas to the developers, distributors, and users inside the
open source community. Open source is not a company, but rather, a community; projects are established and
programmers communicate and contribute software building blocks to each other via the Internet. When a
software program is completed by this method it is then offered to the public over the Internet, sometimes
free of charge, but always free of the use restrictions common to most software.

{2}Open source products are growing in popularity. Linux, the open source operating system, captured
17.2% of the operating system market in 1998.[1]Forecasters predict that its popularity will grow faster than
all other operating environments through 2003.[2] Apache, the open source webpage software, is now "the
most popular HTTP server in use."[3] Although far from displacing its monolithic corporate competitors
(e.g., Microsoft's operating system market share in 1994 was 90%),[4] its rapid growth calls for some
analysis of open source's legal and policy implications, since its growth calls into question software copyright
and licensing policies. Ironically, open source caught on slowly at first, because it was considered to be a
product of academics and hobbyist programers, and it was thought to be technically inferior to proprietary
software. But, as the technical issues subsided, copyright, licensing, and warranty issues have arisen in their
place. This article will discuss who, among open source programmers, has standing under copyright law to
sue for infringement. It will introduce the interesting licensing issues which open source creates, and it will
compare the warranties provided in an open source license to the warranties in a proprietary license.

{3}This paper is structured to address several purposes in its discussion of the open source movement. First,
Part III will discuss on a broad level how society benefits from a software development process like open
source, and how open source affects copyright and traditional notions of software piracy and reuse. Part III
will also review solutions that open source offers and outline the problems that may occur as the open source
model continues to unfold. Part IV then considers the contemporary objections to open source products, and

http://jolt.richmond.edu/v6i5/article3.html#h15
http://jolt.richmond.edu/v6i5/article3.html#h16
http://jolt.richmond.edu/v6i5/article3.html#h17
http://jolt.richmond.edu/v6i5/article3.html#h18
http://jolt.richmond.edu/v6i5/article3.html#h19
http://jolt.richmond.edu/v6i5/article3.html#h20
http://jolt.richmond.edu/v6i5/article3.html#h21
http://jolt.richmond.edu/v6i5/article3.html#h22
http://jolt.richmond.edu/v6i5/article3.html#h23
http://jolt.richmond.edu/v6i5/article3.html#h24
http://jolt.richmond.edu/v6i5/article3.html#t1
http://jolt.richmond.edu/v6i5/article3.html#N_1_
http://jolt.richmond.edu/v6i5/article3.html#N_2_
http://jolt.richmond.edu/v6i5/article3.html#N_3_
http://jolt.richmond.edu/v6i5/article3.html#N_4_

will demonstrate that copyright, licensing, and warranties - the legal issues in software - basically make
purchasers no worse off under an open source environment than a proprietary paradigm. As such, businesses
and consumers should not shy away from open source products. Part V crystalizes the underlying issue in this
paper: open source has many beneficial aspects, but still, the market has been slow to accept it. The article
concludes with possible solutions to the problem of slow acceptance, as the author asserts that both the
market and government can take steps to foster the growth of open source. In the end, the reader will
recognize that the traditional objections to open source software are fairly minimal. While open source may
not reach revolutionary status, it opens the door to positive changes regarding intellectual property rights and
licensing.

{4}To understand the issues presented in this article, one must consider some of software's origins. We begin
with a brief history of open source software, as compared to regular, closed source (i.e., proprietary) software.

II. WHAT IS SOFTWARE?

{5}Originally, software was treated as a service. It was viewed simply as the labor component of a computer
sales transaction. Purchasers would buy the computer, and the computer company would program it for them.
Computer engineers commonly gave away software because it was the hardware that brought in the money.
[5] Initially, there was very little software available and "researchers typically swapped programs,
embellishing one another's work without much attention to taking credit or nailing down commercial rights."
[6]

{6}In the late 1960's and 1970's, developers who were writing specialized software for particular clients
wanted to protect their works. The "developers retained ownership of the software and 'licensed' the software
to customers."[7] The licensing concept, derived from property law, basically grants permission to enter or
use another's property.[8] The developers relied on property law because intellectual property is a "product of
the human intellect that [has] economic value."[9] State trade secret and contract law were used, because
patent and copyright at that time did not specifically cover software.[10] Software was still in its infancy and
it was on the copyright statute's list of copyrightable items. Software became increasingly property-like, as it
became increasingly available. Eventually, in 1976, after much deliberation, Congress applied copyright law
to software, thereby strengthening the enforceability of the licenses.[11]

A. What is Open Source?

{7}In a way, open source is the re-emergence of the original software distribution model. Open source
software differs in two primary ways from proprietary software. First, users receive both the source code and
the compiled form, otherwise known as the object code.[12] The source code is the software's "blueprint,"
written in programming language (e.g., C, Pascal, or FORTRAN); whereas, object code is the series of 0's
and 1's, also called machine-readable code.[13] The compiled form is "machine language" that works directly
with the computer and is never seen by the user.[14] Proprietary software vendors generally sell only the
compiled form. However, having the source code "open" allows basically anyone to read and alter the
program or build a new derivative program.[15]

{8}Second, open source is licensed under a special "public" license such as the General Public License
("GPL").[16] The GPL is issued by various open source software distributors. It comes in the form of the
customary software mass market license.[17] The GPL is transferred by the consumer opening the box of
software, or by a mouse click if the software is downloaded over the Internet.[18] The terms of the GPL
encourage users to use the source code to make improvements, write new programs, and communicate all
improvements and changes back to the original developer. [19] This approach continuously improves the
program. The basic restriction of the GPL is that derivative products are distributed with the source code. In
contrast to the GPL, a proprietary software license restricts licensees to use-only, and changes or

http://jolt.richmond.edu/v6i5/article3.html#t2
http://jolt.richmond.edu/v6i5/article3.html#N_5_
http://jolt.richmond.edu/v6i5/article3.html#N_6_
http://jolt.richmond.edu/v6i5/article3.html#N_7_
http://jolt.richmond.edu/v6i5/article3.html#N_8_
http://jolt.richmond.edu/v6i5/article3.html#N_9_
http://jolt.richmond.edu/v6i5/article3.html#N_10_
http://jolt.richmond.edu/v6i5/article3.html#N_11_
http://jolt.richmond.edu/v6i5/article3.html#t3
http://jolt.richmond.edu/v6i5/article3.html#N_12_
http://jolt.richmond.edu/v6i5/article3.html#N_13_
http://jolt.richmond.edu/v6i5/article3.html#N_14_
http://jolt.richmond.edu/v6i5/article3.html#N_15_
http://jolt.richmond.edu/v6i5/article3.html#N_16_
http://jolt.richmond.edu/v6i5/article3.html#N_17_
http://jolt.richmond.edu/v6i5/article3.html#N_18_
http://jolt.richmond.edu/v6i5/article3.html#N_19_

enhancements are prohibited.[20] Additionally, proprietary software is usually licensed for use on a limited
number of computers.[21] The licensor reserves the right to make any improvements or changes.

{9}Open source developers claim both technical and social reasons for keeping the source code "open." From
a technical standpoint, open source leads to a better product. With more eyes on the code, errors can be
detected and corrected much more quickly than with traditional proprietary software. The social reason is that
software should be free, meaning uninhibited and unrestricted, rather than without a cost or charge, which is
the case with free speech. Used in this context, the term "'[f]ree software' refers to the users' freedom to run,
copy, distribute, study, change and improve the software" without restrictions or prohibitions.[22] Software
pervades modern society; it can be found in almost every product. So naturally, if only a few people control
software, their power increases and restricts users' freedom.

{10}There are valid arguments, however, for the proposition that software should not be free. These
arguments include economic theories that making free software reduces incentives to software producers to
create good products. The arguments against free software also stem from the basic business concerns
regarding returns on investment. The question whether free software is a good policy can only be answered
after a more full discussion.

B. The Open Source Movement

{11}The Open Source movement began at the time software developers started to sell software under licenses
that restricted use and disallowed changes. Most consider the beginning was when Richard Stallman became
dissatisfied with the way developers restrictively licensed software and decided to write "a complete UNIX-
compatible software system," that he named GNU.[23] Stallman, a former computer programmer and
researcher at the MIT Artificial Intelligence Lab, chose UNIX because it is portable, flexible, and a powerful
multi-tasking operating system. Regarding his GNU system, he wanted to "give it away free to everyone who
can use it."[24] Stallman asked "manufacturers for donations of machines and money . . .[and] individuals for
donations of programs and work."[25] As more programmers became involved, Stallman issued the
GNUManifesto as a way to better explain the project and his concept of free software:

I consider that the golden rule requires that if I like a program I must share it with other people
who like it. Software sellers want to divide the users and conquer them, making each user agree
not to share with others. I refuse to break solidarity with other users in this way.[26]

{12}GNU gradually gained contributors, mainly in the form of academics and hobbyist programmers.
Progress on the GNU project proceeded slower than the proprietary software development environment, but "
[b]y the 1990s, [the GNU team] had either found or written all the major components except one --the
kernel."[27] The kernel is "the fundamental part of a program. . . . [i]t is the part of the operating system that
is closest to the machine . . . [it] activate[s] the hardware directly or interface[s] to another software layer that
drives the hardware."[28] This problem was solved by Linus Torvalds' development of Linux, which is a free
kernel.[29] With the contribution of Torvalds' kernel, GNU acquired a fully-functioning, UNIX compatible,
operating system.

{13}Like Stallman, Torvalds also performed his first programming in an academic environment. Torvalds
developed the Linux kernel, while he was a student teaching assistant at the University of Helsinki.[30]
Desiring a stable operating system, he wrote the kernel "as a teaching aide for how such things should work."
[31] Torvalds' friend suggested he name the kernel Linux- "a marriage of 'Linus' and 'UNIX.'"[32] Although
Torvalds only developed the final kernel, the name LINUX stuck to the entire operating system.

{14}Early into the project, Stallman "decided to adapt and use existing pieces of free software wherever that
was possible."[33] Initially Stallman employed TeX as the principal text formatter.[34] A few years later, he

http://jolt.richmond.edu/v6i5/article3.html#N_20_
http://jolt.richmond.edu/v6i5/article3.html#N_21_
http://jolt.richmond.edu/v6i5/article3.html#N_22_
http://jolt.richmond.edu/v6i5/article3.html#t4
http://jolt.richmond.edu/v6i5/article3.html#N_23_
http://jolt.richmond.edu/v6i5/article3.html#N_24_
http://jolt.richmond.edu/v6i5/article3.html#N_25_
http://jolt.richmond.edu/v6i5/article3.html#N_26_
http://jolt.richmond.edu/v6i5/article3.html#N_27_
http://jolt.richmond.edu/v6i5/article3.html#N_28_
http://jolt.richmond.edu/v6i5/article3.html#N_29_
http://jolt.richmond.edu/v6i5/article3.html#N_30_
http://jolt.richmond.edu/v6i5/article3.html#N_31_
http://jolt.richmond.edu/v6i5/article3.html#N_32_
http://jolt.richmond.edu/v6i5/article3.html#N_33_
http://jolt.richmond.edu/v6i5/article3.html#N_34_

decided to use the X Window System, rather than writing another window system for GNU.[35] X Window
"is a windowing system . . .which runs under UNIX and all major operating systems."[36] X Window
preceded the graphical user interface in the Microsoft Windows system. As a consequence of this decision,
the GNU system differs from the collection of all GNU software.[37] Thus, many different free software
applications compose the GNU system.[38]

{15}Stallman faced his first distribution dilemma in 1985 when his GNU Emacs program gained popularity.
[39] UNIX programmers were clamoring to get a copy from Stallman, but Stallman was unemployed and
"was looking for ways to make money from free software."[40] To generate income, Stallman "announced
that [he] would mail a tape to whoever wanted one, for a fee of $150. In this way, [he] started a free software
distribution business, the precursor of the companies that today distribute entire Linux-based GNU systems."
[41]

{16}As GNU's popularity grew, primarily among programmers and academics, Stallman and others founded
the Free Software Foundation ("FSF"), a tax-exempt entity designed to promote free software development.
[42] The FSF assumed control over the Emacs tape distribution business and later expanded the distribution
business by adding other free software, both GNU and non-GNU to the tape, and selling software manuals.
[43]

{17}As free technology improved and the community of GNU users and contributors grew, the term "open
source" surfaced. Some members of the community decided to stop using the term "free software,"
substituting the term "open source software" in its place. The rationale for substituting the terms was simply
to avoid the confusion of the word 'free' with 'gratis.' Other community members, however, wished to "set
aside the spirit of principle that had motivated the free software movement and ... GNU project, and to appeal
instead to executives and business users...."[44] Clearly, from this illustration of the dichotomy of perceptions
about the open source movement, the terms 'free software' and 'open source' "describe the same category of
software, more or less, but say different things about the software, and about values."[45]

{18}While Stallman is typically credited with starting the movement, GNU is not the only open source
software. During the same time period, various developers and institutions also wrote and distributed under
"open" licenses.[46] There are actually several open licenses with similar terms including licenses developed
by Berkeley ("BSD"),[47] M.I.T. ("X Consortium"),[48] Debian,[49] and others.

III. SOCIETY SHOULD EMBRACE OPEN SOURCE

{19}This section highlights the policy issues at a macro-level regarding the following concerns: 1) the
implications arising from a system reliant on freelance contributors; 2) the transition issues which arise when
moving from proprietary to open source as the standard of software distribution; 3) the practical benefits of
an open source standard of development; and 4) the economic benefits brought by open source.

A. Who's in Charge?

{20}The first contention against open source asserts that good software cannot result from an inconsistent
development process that haphazardly creates products through the efforts of freelance contributors. In 1976,
Bill Gates published "An Open Letter to Hobbyists," wherein he "accuse[d] hobbyists of stealing software
and thus preventing 'good software from being written.'"[50] Gates wrote in that letter, somewhat
prophetically, that "[n]othing would please me more than being able to hire ten programmers and deluge the
hobby market with good software."[51]

{21}Gates has certainly deluged the world with good software, but is the Microsoft proprietary licensing
scheme required to produce good software? Microsoft itself answered this question when it declared in an

http://jolt.richmond.edu/v6i5/article3.html#N_35_
http://jolt.richmond.edu/v6i5/article3.html#N_36_
http://jolt.richmond.edu/v6i5/article3.html#N_37_
http://jolt.richmond.edu/v6i5/article3.html#N_38_
http://jolt.richmond.edu/v6i5/article3.html#N_39_
http://jolt.richmond.edu/v6i5/article3.html#N_40_
http://jolt.richmond.edu/v6i5/article3.html#N_41_
http://jolt.richmond.edu/v6i5/article3.html#N_42_
http://jolt.richmond.edu/v6i5/article3.html#N_43_
http://jolt.richmond.edu/v6i5/article3.html#N_44_
http://jolt.richmond.edu/v6i5/article3.html#N_45_
http://jolt.richmond.edu/v6i5/article3.html#N_46_
http://jolt.richmond.edu/v6i5/article3.html#N_47_
http://jolt.richmond.edu/v6i5/article3.html#N_48_
http://jolt.richmond.edu/v6i5/article3.html#N_49_
http://jolt.richmond.edu/v6i5/article3.html#t5
http://jolt.richmond.edu/v6i5/article3.html#t6
http://jolt.richmond.edu/v6i5/article3.html#N_50_
http://jolt.richmond.edu/v6i5/article3.html#N_51_

infamous internal memorandum released in fall 1998, that open source systems were of a "commercial
quality" that posed a "direct short-term revenue and platform threat."[52] Although some claim that this
memorandum was leaked purposely to the press so as to undermine the mounting antitrust evidence against
Microsoft,[53] it is evident from the Linux gain in market share that the freelance development system
creates products of similar quality.

{22}A second claim contends that open source cannot exist without proprietary software vendors.[54] Open
source programming has been funded, to an unknown and indirect degree, by proprietary software vendors.
[55] These vendors employ programmers who, unbeknownst to the employer, work on open source projects,
rather than their own assignments.[56] If those programmers had to rely on a paycheck strictly from their
open source contributions, open source probably would have ended. Undoubtedly, the financial incentives to
write software are structured differently under open source.[57] Yet there is evidence suggesting that open
source returns may be sufficient now to promote creativity. Shares of Red Hat stock tripled on the first day of
its initial public offering.[58] VA Linux went public next, with shares soaring more than 600%.[59] Several
other open source companies are profitable now and preparing to go public.[60] Although their combined net
worth by no means rivals that of Microsoft, this evidence suggests that there is indeed a growing financial
base to support open source.

{23}A third contention is that open source is, by necessity, a small system and that growth will cripple the
movement. Assuming developers continue contributing open source code, "the distributed development
model may ultimately fail. 'As time goes on, it gets harder for key developers to communicate because of the
enormous noise on the mailing lists . . . Even if the development process continues to feed new improvements
into Linux, this in itself may be ultimately destructive."[61] Communication problems within the community
are certainly a growing pain that open source must endure, but these problems are not extreme enough to
prove destructive. If communication among freelancers was a problem, the journal and magazine publishing
businesses would have collapsed long ago.

{24}One of the greatest strengths of Linux "has been its leanness, but the temptation to add more and more
features can end up causing software bloat - huge programs trying to do too many marginal things."[62] The
concern with software bloat is no different for open source than it is with proprietary software. Under open
source, however, any programmer has the freedom to remove the marginal features from the program, and to
add any new features that the programmer deems appropriate.

{25}A fourth contention is that open source, like the Internet, will outgrow its freedom. The beginning of
open source, just like the beginning of the Internet, was based on a more altruistic system. Both operated
under a gift economy;[63] therefore, incentives were not purely financial. Now, many people are making big
money on the Internet, while only a few are making money from open source. There is little evidence that
those reaping the open source benefits are sharing it with their programming contributors.[64] This situation
may cause the programming process to cease because contributors who were happy to help "the community"
may not want to help "the company." For instance, hoping perhaps to keep the community happy, Red Hat
reserved shares at its IPO price for the "friends of Red Hat" - the open source developers.[65] In addition,
Red Hat informed outside investors of the importance of this cooperative community: "software is created
through the collaborative efforts of large communities of independent developers. Developers work alone or
in groups to write code, make the code available over the Internet, solicit feedback on it from other
developers, and then modify and share it with others for general use."[66] Whether open source becomes less
"free" in the future does not mean that it should not be embraced in the present. It is a viable alternative to
proprietary software that, at least for now, allows users to become programmers.

B. Transition Issues

{26}Many companies, including Microsoft, have given products away free of charge to get a foothold in the

http://jolt.richmond.edu/v6i5/article3.html#N_52_
http://jolt.richmond.edu/v6i5/article3.html#N_53_
http://jolt.richmond.edu/v6i5/article3.html#N_54_
http://jolt.richmond.edu/v6i5/article3.html#N_55_
http://jolt.richmond.edu/v6i5/article3.html#N_56_
http://jolt.richmond.edu/v6i5/article3.html#N_57_
http://jolt.richmond.edu/v6i5/article3.html#N_58_
http://jolt.richmond.edu/v6i5/article3.html#N_59_
http://jolt.richmond.edu/v6i5/article3.html#N_60_
http://jolt.richmond.edu/v6i5/article3.html#N_61_
http://jolt.richmond.edu/v6i5/article3.html#N_62_
http://jolt.richmond.edu/v6i5/article3.html#N_63_
http://jolt.richmond.edu/v6i5/article3.html#N_64_
http://jolt.richmond.edu/v6i5/article3.html#N_65_
http://jolt.richmond.edu/v6i5/article3.html#N_66_
http://jolt.richmond.edu/v6i5/article3.html#t7

market.[67] However, the key transition problem concerning open code involves proprietary software
vendors giving away source code to move their products into the open source market. The following
discussion presents short term problems that will occur as open source continues growing and more former
proprietary vendors shift to the open source model.

{27}The first shift is to sell proprietary products that operate on an open source operating system. Apple,
Corel, IBM, Sun, and others have created, or are in the process of creating, applications to run on the Linux
operating system.[68] The next step, which Corel is taking with its WordPerfect application, is to convert a
proprietary application to an open source application. However, Corel committed the ultimate faux pas when
it did not use an open license for a pre-release test version of the software, and thereby limited its distribution
to only a few testers.[69] Corel is apparently still operating in the proprietary paradigm because the reason it
did not open the license "is that [it does] need to protect [its] name and that [it has] to make sure that what [it]
release[s] is good."[70] In the open source realm, products are released so the entire community can work and
improve upon them. Keeping the source code a secret to be shared among just a few testers is contrary to the
open source ideal.

{28}Netscape had similar problems when it open source edits Internet browser, Navigator, in 1998.[71]
Netscape initially faced problems as "the monolithic architecture of its starting point (Netscape Navigator)
caused severe delays in releasing usable code, and thus failed to attract developers."[72] Many software
companies have a type of monolithic organizational architecture that hinders the movement to open source
from the base level of the code itself. Usually, code is written by a small team of programmers who
intimately know the code and the project, so that there is no need for documentation of potential bugs. A
second level is the actual management of the code. Code is released slowly for a number of reasons. The
company management, for example, may want to keep the potentially valuable components of a software
application in-house, while allowing the less useful parts to trickle out to the open source community. Each
part of the code is carefully reviewed for its profit potential before release to the public. Another management
issue is that the company programmers may want to make some improvements to the code, knowing that
their names will be associated with the pieces they wrote.

{29}Unlike a corporate software developer, individual open source contributors choose the projects they
develop.[73] Consequently, progress can be quite slow on less popular programs. This fact is frustrating to
those in the corporate mold, but in reality, it is a type of first-level test market. If a group of programmers is
disinterested in developing a product, their disinterest may mean that the product is unlikely to fare well in
the market. This approach allows programmers to develop beneficial products that may not have the cash
return value that proprietary developers require before starting a project. Some may contend that this system
hampers development because programmers can band together and boycott the development of certain
products. However, the reality is that programmers from around the world contribute to open source
development, and it is unlikely that their loose coalition would ever rise to the level of a conspiracy.

{30}At the 1999 Linuxworld Convention, open source guru, Eric S. Raymond, spoke of several conceptual
business models that could work well for open source.[74] Raymond heads the Open Source Initiative, which
acts as a missionary for the open source movement in general. The business models are, as Raymond
characterized and coined them: 1) market positioner/loss leader; 2) widget frosting; 3) give away recipe/open
restaurant; 4) accessorizing; 5) free the future, sell the present; 6) free the software/sell the brand; and 7) free
the software/sell the content.[75]

{31}A market positioner or loss leader "use[s] open-source software to create or maintain a market position
for proprietary software that generates a direct revenue stream."[76] Open source client software can enable
sales of server software, or generate advertising revenue on an Internet portal.[77] Netscape
Communications, Inc. seemed to follow this strategy by releasing the open source Mozilla browser in early
1998. In fact, "[b]y opening up the widely popular Netscape browser, Netscape effectively denied Microsoft

http://jolt.richmond.edu/v6i5/article3.html#N_67_
http://jolt.richmond.edu/v6i5/article3.html#N_68_
http://jolt.richmond.edu/v6i5/article3.html#N_69_
http://jolt.richmond.edu/v6i5/article3.html#N_70_
http://jolt.richmond.edu/v6i5/article3.html#N_71_
http://jolt.richmond.edu/v6i5/article3.html#N_72_
http://jolt.richmond.edu/v6i5/article3.html#N_73_
http://jolt.richmond.edu/v6i5/article3.html#N_74_
http://jolt.richmond.edu/v6i5/article3.html#N_75_
http://jolt.richmond.edu/v6i5/article3.html#N_76_
http://jolt.richmond.edu/v6i5/article3.html#N_77_

the possibility of a browser monopoly."[78]

{32}"Widget frosting" is a model for hardware manufacturers because they view software as overhead, rather
than a profit center.[79] Market forces have compelled hardware manufacturers to write and maintain
software, such as device drivers. If they used open source software, their maintenance and writing costs could
be placed on the open source community. As a result, "the vendor gains ... a dramatically larger developer
pool, more rapid and flexible response to customer needs, and better reliability through peer review."[80] At
least one manufacturer has used this method: "Apple Computer [employed this model when] they open-
sourced 'Darwin,' the core of their MacOSX server operating system."[81]

{33}"Giving away the recipe and opening a restaurant" means "selling the value added by assembling and
testing a running operating system that is warranted (if only implicitly) to be merchantable and plug-
compatible with other operating systems carrying the same brand."[82] This is what Red Hat and other Linux
distributors do. These companies also generate revenue by selling service to install the software as well as
support service contracts.

{34}"Accessorizing" means "sell[ing] accessories for open source software."[83] This activity could equate
to, "[a]t the low end, mugs and T-shirts; at the high end, professionally-edited and produced documentation."
[84] For example, "O'Reilly Associates, publishers of many excellent references [sic] volumes on open-
source software, is a good example of an accessorizing company."[85] Obviously, accessorizing is not limited
to the open source realm. Independent writers, for instance, have published and sold tutorials and manuals for
all kinds of software applications. Under open source, however, the writer has the entire source code
available and can write an intricately detailed manual.

{35}"Freeing the future and selling the present" involves a play on licensing terms. Under this model, the
software is released under a closed license, but the license includes an expiration date on the closure
provisions. For example, a license may be written which "permits free redistribution, forbids commercial use
without fee, and guarantees that the software comes under GPL terms a year after release or if the vendor
folds."[86] This method is in line with the idea that copyright creates market inefficiencies, as was discussed
previously in this article. The software developer has a short term monopoly in which he is the sole profit
recipient. Upon expiration of the term, others have the right to alter the software and to create derivative
products. This method comes closer to striking the balance between the needs of the individual software
creator and the public's needs than other models.

{36}"Freeing the software, selling the content" means giving away software that is only a means to
something else. Many Internet Service Providers ("ISPs") use this method, when they mail free CDs to
consumers so that when they install the free software, they can pay the ISP for the information it receives
through its portal. The ISP would be better off by open sourcing its dial-up software in the same way
hardware manufacturers benefit under the widget frosting idea discussed above. Furthermore, it is Raymond's
observation that "[t]he value is neither in the client software nor the server[,] but in providing objectively
reliable information" which is why Raymond believes that America Online should move its client software to
open source.[87]

{37}Raymond's last idea has future implications. "Free the Software, Sell the Brand," means that the
developer retains a test suite or a set of compatibility criteria, so that when users implement an open source
application that has been altered from its original specification, the developer checks out the altered
application, and if it meets the compatibility criteria, the user is sold a brand certifying that their
implementation of the technology is compatible with all others wearing the brand.

{38}The idea of branding may become very important to the future growth and existence of open source
software, because it addresses the lurking concern of industry standards regulation. There is no single source

http://jolt.richmond.edu/v6i5/article3.html#N_78_
http://jolt.richmond.edu/v6i5/article3.html#N_79_
http://jolt.richmond.edu/v6i5/article3.html#N_80_
http://jolt.richmond.edu/v6i5/article3.html#N_81_
http://jolt.richmond.edu/v6i5/article3.html#N_82_
http://jolt.richmond.edu/v6i5/article3.html#N_83_
http://jolt.richmond.edu/v6i5/article3.html#N_84_
http://jolt.richmond.edu/v6i5/article3.html#N_85_
http://jolt.richmond.edu/v6i5/article3.html#N_86_
http://jolt.richmond.edu/v6i5/article3.html#N_87_

to answer questions or to establish product standards. Presumably at a future date, Red Hat Linux could be
very different from Caldera Open Linux. Is this really a problem? Not necessarily. Recall that when PCs were
first available, there were several choices for operating systems and several choices for each type of
application. Standardization occurred in an evolutionary manner. Eventually, the choices were limited to a
relatively few monolithic software companies. For many, this reduction in choice was a relief because it also
reduced the uncertainty that the software would be supported in the future. If the market pushes for
standardization of open source products as strongly as it has in other areas of computing, open source will fail
without some level of compatibility branding. Even if it fails, with the source code freely available, chances
are much higher that some software engineer can be hired to support it.

{39}Even by applying Raymond's business models, not all developers will successfully convert to the open
source method. We have already noted that, while Netscape's Mozilla release may have helped Netscape
successfully avoid a Microsoft browser monopoly, "the Mozilla project has little to show for in the way of
usable code."[88]

C. Practical Benefits

{40}For our computerized world to continue turning, our computers must be compatible. The quest for
compatibility led to industry standards in architecture on the hardware side and jousts for market domination
on the software side. For example, Microsoft's MS-DOS (and now Windows) was the de-facto operating
system standard, and for years, there was no real rival in the PC market. Consumers came to know that they
could purchase and install any software that operated on DOS. This market domination removed consumer's
compatibility concerns, but this domination ultimately triggered an antitrust action against Microsoft.[89]
Open source avoids antitrust and monopoly issues because no single entity owns the code. Compatibility
problems are also tempered because each contributor wants to ensure that his contribution will succeed.

{41}In addition, open source may be a force for innovation in the hardware market. Innovations in hardware
have remained relatively static, as compared to software.[90] Certain hardware and software developers have
formed strategic alliances, but smaller developers are normally left to themselves. Relying on industry
standard open source code, hardware developers can focus on improving their own products, rather than on
making sure the hardware will work with the various software applications.[91] Hardware developers like the
fact that open source is royalty free and that it is completely configurable.[92]

{42}Open Source may encourage computer users to become more knowledgeable. Simply having the option
to program one's own software "fix" is a start, even though most users are not programmers. Users have not
been encouraged to learn how to write source code because as consumers, we have been taught that writing
code is the job of software companies. Software companies encourage this thinking because it increases their
economic security, but it has also caused a shortage of information technology professionals in the United
States today. The technology worker shortage will eventually be replaced by a glut in the market. The
previous oversupply of computer workers still affects the marketplace; for instance, older information
technology professionals continue to find difficulty locating employment. Information technology
employment cycles can, in part, be smoothed by a widespread open source standard. Open source allows
individual programmers, unaffiliated with any software company, to practice the trade on a smaller scale,
while still working full time in another occupation. The advantage is that the hobbyist programmer is getting
valuable feedback from others in the open source community about his work. Without that feedback, the
hobbyist has minimal value in the market. By keeping his skills honed, he is able to easily jump into
programming full-time when the market gives him incentives to do so.

{43}The older worker problem originates from firms that have phased out older technology and its
accouterments. As an illustration, recall that no one seemed to need COBOL programmers when new
programming languages became available that worked better on the PC platform.[93] But with some

http://jolt.richmond.edu/v6i5/article3.html#N_88_
http://jolt.richmond.edu/v6i5/article3.html#t8
http://jolt.richmond.edu/v6i5/article3.html#N_89_
http://jolt.richmond.edu/v6i5/article3.html#N_90_
http://jolt.richmond.edu/v6i5/article3.html#N_91_
http://jolt.richmond.edu/v6i5/article3.html#N_92_
http://jolt.richmond.edu/v6i5/article3.html#N_93_

remedial training in the C programming language, and with source code freely available, these older workers
may be able to work as freelance programmers for companies moving to open source platforms, or as
contributors to one of many open source projects.

{44}Open source is good for the Internet. The growth of open source may even follow a pattern of growth
similar to that of the Internet. There are three basic reasons for this predicted optimistic pattern of success for
open source. First, as discussed earlier, open source and the Internet grew up together.[94] The software used
to develop compatible protocols was open source from the beginning, so that everyone could have access to
it. Therefore, the more the Internet grows, the more open source will grow. Second, the prevalence of open
source software on the Internet will make the Internet very difficult to regulate.[95] However, regardless of
one's personal opinions about Internet regulation, having the Internet technologically incapable of regulation
for a time creates an exciting experimental hypothesis - can the market actually regulate itself to the benefit of
all Internet users? If the market can provide solutions, government may not have to expend resources in
regulating the Internet.

{45}Third, the Internet has changed the way software is priced and valued. Software that operates the
Internet is often given away free of charge or is paid for by advertisers.[96] Companies have recognized that
it is the content on the Internet that has the value, and not necessarily the software tools used to access it. By
analogy, open source diverts the value usually found in the price of software into the price for content,
maintenance, warranties, etc.[97] Price shifting, in this case, creates a truer economic picture of consumer
value. Consumers are not just purchasing software; instead, they are purchasing access to the content of the
Internet. With maintenance and warranties, they are insuring that access to the Internet and their other
software applications will function properly.

D. Software Economics

{46}The basic economic model assumes scarcity of product, and greater scarcity generally means greater
value. This assumption causes problems for software because it is only as scarce as vendors and consumers
make it. The whole world can collude in purchasing one licensed copy if the first purchaser gives copies to
everyone else. Proprietary software vendors call this act "software piracy" - stealing.[98] Others prefer the
term software "reuse."[99] The economic term is "free rider" - meaning a person who takes advantage of
someone else's benefits and activities without paying.[100] Extensive free riding can cause a market failure.
Allowing outright copying of software results in a market price around the cost of duplication,[101] which
completely ignores development and marketing costs. At that low price, there is little incentive for developers
to supply new or better software. Overall, an undesirable result develops from this chain of events.

{47}Does the current method of protecting software avoid the free rider problem? Not conclusively. The theft
of copyrighted software in 1998 amounted to nearly $11 billion,[102] which is one-third or more of the value
of the software sold by U.S. producers.[103] The free rider problem inherent in proprietary software greatly
diminishes in an open source model. Free riding is a non-issue when the developer expects no (or minimal)
payment in return for his contribution to the software.

{48}The question begging to be answered is how open source can convince software developers to forego the
traditional forms of payment for their labor. This question is answered in part by Raymond's business models
and by the recent success of open source companies such as Red Hat and VA Linux. The part of the question
that goes unanswered is whether this method of open source licensing will continue to gain popularity in the
market over the older, more established proprietary models.

{49}The current method of coupling copyright with restrictive licensing terms leads to economically
inefficient results because software is "expensive to create and companies can save costs by reusing pre-
existing work."[104] Open source developers continue to build on one another's works, whether by

http://jolt.richmond.edu/v6i5/article3.html#N_94_
http://jolt.richmond.edu/v6i5/article3.html#N_95_
http://jolt.richmond.edu/v6i5/article3.html#N_96_
http://jolt.richmond.edu/v6i5/article3.html#N_97_
http://jolt.richmond.edu/v6i5/article3.html#t9
http://jolt.richmond.edu/v6i5/article3.html#N_98_
http://jolt.richmond.edu/v6i5/article3.html#N_99_
http://jolt.richmond.edu/v6i5/article3.html#N_100_
http://jolt.richmond.edu/v6i5/article3.html#N_101_
http://jolt.richmond.edu/v6i5/article3.html#N_102_
http://jolt.richmond.edu/v6i5/article3.html#N_103_
http://jolt.richmond.edu/v6i5/article3.html#N_104_

contributing a simple bug fix, or by creating a compatible application. The word "application" means a
function of the computer, such as word processing, spreadsheets, games, etc. The advantage of free software
programmers is that they "don't have to solve the same problems over and over. They keep improving on the
work that came before, like the scientific method."[105]

{50}The assumption behind copyright law is that protection is necessary to promote innovation, which in
turn, makes restriction economically efficient. Innovators can also choose not to take advantage of copyright
protections, as open source developers have chosen to work without the mini-monopoly created for them by
copyright law. The open source business models, introduced by Eric Raymond, do not require software
developers to hide their software secrets to make money. The same business models help open source avoid
piracy issues. The free rider problem of proprietary software is as much caused by the miscategorization of
software as a "manufactured good" as it is by "pirates." The public has "a strong tendency to assume that
software has the value characteristics of a typical manufactured good."[106] The general perception is that,
"1) [m]ost developer time is paid for by sale value [and] 2) [t]he sale value of software is proportional to its
development cost."[107] According to open source advocates both assumptions are false. Unofficial open
source "surveys" indicate that 95% of software is written in-house specifically to meet in-house business
needs.[108] One open source vendor states that his "usual development customer is someone who needs a
problem solved, but who is not in the software business."[109]

{51}There is a concern that making source code freely available could increase piracy and reduce the value
of the software to the cost of duplication. However, by reducing the amount of value artificially infused into
the software component of the product and by placing value in other items or services packaged for sale (i.e.,
support, warranties, maintenance, etc.), simple copying may not reduce value to market crashing proportions.
Consumers often buy a software application that includes in its price some form of limited technical support.
The technical support may or may not ever be used, and it may not meet the value paid by the consumer. The
value of the software product is not just in what is on the diskette or CD.

{52}It may sound rather unfriendly for Red Hat to sell a software suite without support for a price of $29.95,
[110] while it sells the same product coupled with maintenance and support for $79.95.[111] Even the least
wary consumer can be motivated by the apparent economic incentives for poor workmanship as a sound
rationale for purchasing technical support. However, for those who are comfortable finding and correcting
software glitches on their own, this pricing scheme is quite a bargain. While not every consumer may want to
debug his own software, at least this approach offers consumers a choice. Microsoft prices Windows to
include support, but there is no way to bargain for a lower price, if the individual consumer does not desire
support.

{53}Furthermore, a software product's value does not always match its price. Red Hat gives away Linux over
the Internet.[112] The $29.95 software product consists of Linux and an office suite that includes a word
processor, spreadsheet, and presentation program.[113] In comparison, Microsoft Windows 98 operating
system costs $96.82,[114] and its office suite comprised of Word, Excel, and PowerPoint Presentations costs
$329.90.[115] In addition, it must be noted that if a consumer has a choice between two goods that perform
substantially the same function, although one is technically superior, the consumer will often choose the
cheaper good. This theory has often been used to explain why the VHS format overtook the Beta-Max format
of video recorders. Leaving out the technical superiority question, open source is currently a second best
alternative, and it is gaining momentum.

E. Copyright

{54}One of the first acts passed by Congress was Copyright Act of 1790.[116] The Copyright Act underwent
a major overhaul in 1976, in order to, among other things, broaden the scope of copyright to include "all
writings," rather than just books.[117] The Copyright Act of 1976[118] presents Congress' most recent major

http://jolt.richmond.edu/v6i5/article3.html#N_105_
http://jolt.richmond.edu/v6i5/article3.html#N_106_
http://jolt.richmond.edu/v6i5/article3.html#N_107_
http://jolt.richmond.edu/v6i5/article3.html#N_108_
http://jolt.richmond.edu/v6i5/article3.html#N_109_
http://jolt.richmond.edu/v6i5/article3.html#N_110_
http://jolt.richmond.edu/v6i5/article3.html#N_111_
http://jolt.richmond.edu/v6i5/article3.html#N_112_
http://jolt.richmond.edu/v6i5/article3.html#N_113_
http://jolt.richmond.edu/v6i5/article3.html#N_114_
http://jolt.richmond.edu/v6i5/article3.html#N_115_
http://jolt.richmond.edu/v6i5/article3.html#t10
http://jolt.richmond.edu/v6i5/article3.html#N_116_
http://jolt.richmond.edu/v6i5/article3.html#N_117_
http://jolt.richmond.edu/v6i5/article3.html#N_118_

reform of the Act "which [with some modifications] governs most works today."[119] But, it was not until
1980 that the term "computer program" made it on the list of copyrightable items.[120] The U.S. Constitution
states the original purpose of patent and copyright: "[t]o promote the Progress of Science and useful Arts, by
securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and
Discoveries."[121]

{55}Patent protection is available, but difficult to obtain, so most software developers copyright their
products. In short, patents protect " any new and useful process, machine, manufacture, or composition of
matter, or any new and useful improvement thereof. . . ."[122] Copyrights protect the expression of ideas. It is
often difficult to patent software because most software is simply a new expression of an existing process
(i.e., accounting software is just a computerized expression of pen and paper accounting). Copyright
protection is granted to the creators of "original works of authorship."[123] The subject matter of the
Copyright Act includes literary, dramatic, musical, and pictorial works.[124] Among the rights that
accompany copyright protection are the right to reproduce the work, prepare derivative works based upon the
work, make copies of the work, perform the work publicly, and display the work publicly.[125]

1. Copyright and Open Source

{56}The constitutional purpose for granting copyright privileges is to further science and the useful arts.[126]
In other words, the benefits of copyright law should flow to society, and not strictly to the author. Economists
recently have argued along the same lines regarding software.[127]

{57}The proprietary software model restricts users from altering or copying software. As such, software
developers have to work in a vacuum, unable to avoid the mistakes others have made before them. This
model only benefits the software developer who comes out on top. This author maintains that software
copyrights should be construed in a way that increases the returns flowing to society. If software developers
could have the opportunity to build on each other's ideas, rather than duplicate each other's efforts, the
benefits would return to society, and not just to the developer. The economic argument favors relaxing the
copyright laws and allowing some reuse.[128] The "economic goal of copyright law is to balance an author's
incentive to create with his or her ability to build on prior work in order to maximize social wealth."[129]
Open source allows reuse, but it does so only by foregoing some benefits of copyright law.

{58}Open source developers copyright their products.[130] If they simply put their creations in the public
domain, our current law would end open sources. Software left unrestricted in the public domain (i.e., placed
on the Internet for unrestricted use) allows subsequent developers to legally take it, alter it, and sell it under a
restricted use license. To avoid this loss, the software product is copyrighted to give the original writer
control over its use, but the open source developer places different restrictions on the product than a
proprietary developer does. The key open source restrictions are: 1) the software must be redistributed freely;
2) the distribution must include the source code; 3) derived works are allowed; and 4) the author's source
code must retain its integrity.[131] Thus it can be said that copyright restrictions on open source software
ensure that it remains free.

2. Length of Copyright Terms

{59}The bundle of rights granted by a copyright remains exclusive to the original author "for a term
consisting of the life of the author and seventy years after the author's death."[132] In comparison to the
copyright term, the useful economic life of a software product is much shorter. For example, from 1981 to
1993, Microsoft released six major MS-DOS products.[133] Windows, which first retailed in 1985, is
currently in its sixth major iteration.[134] Roughly every two years, the previous version becomes obsolete.
[135] Generally, copyright owners make money by selling permission (i.e., licenses) to reproduce, copy and
make derivative works from the original products; whereas, owners of software copyrights tend to sell

http://jolt.richmond.edu/v6i5/article3.html#N_119_
http://jolt.richmond.edu/v6i5/article3.html#N_120_
http://jolt.richmond.edu/v6i5/article3.html#N_121_
http://jolt.richmond.edu/v6i5/article3.html#N_122_
http://jolt.richmond.edu/v6i5/article3.html#N_123_
http://jolt.richmond.edu/v6i5/article3.html#N_124_
http://jolt.richmond.edu/v6i5/article3.html#N_125_
http://jolt.richmond.edu/v6i5/article3.html#t11
http://jolt.richmond.edu/v6i5/article3.html#N_126_
http://jolt.richmond.edu/v6i5/article3.html#N_127_
http://jolt.richmond.edu/v6i5/article3.html#N_128_
http://jolt.richmond.edu/v6i5/article3.html#N_129_
http://jolt.richmond.edu/v6i5/article3.html#N_130_
http://jolt.richmond.edu/v6i5/article3.html#N_131_
http://jolt.richmond.edu/v6i5/article3.html#t12
http://jolt.richmond.edu/v6i5/article3.html#N_132_
http://jolt.richmond.edu/v6i5/article3.html#N_133_
http://jolt.richmond.edu/v6i5/article3.html#N_134_
http://jolt.richmond.edu/v6i5/article3.html#N_135_

licenses for use only. Open source software licenses allow use, reproduction, or creation of derivative
products. This licensing method puts control in the hands of the users regarding the release of new upgrades,
which features are added, and which bugs are fixed. In a way, proprietary vendors use the terms of the license
against consumers.

III. CONTEMPORARY OPEN SOURCE LICENSINGAND TRANSACTIONS

{60}Corporate purchasing, information technology ("IT") and legal departments have their own concerns
about open source software. Corporate purchasing departments worry that open source vendors offer no
warranties. IT professionals worry that the product will not be supported long enough to recoup the corporate
investment. Legal departments worry that the company will not own the software it creates from open source
and that someone else will have rights in the company software. Legal fees to defend a copyright
infringement suit averaged $249,000 in 1997.[136] Consumers might also be concerned about these three
issues. We will consider these issues in the remainder of this article, beginning with the legal concerns.

A. Infringement

{61}While open source licensees may worry about the number of people who have rights in their software,
there should be little concern manifested overall. The open source copyright holder has fewer rights to sue
licensees than proprietary copyright holders because literally all open source copyright rights are granted to
the licensee through the GPL.[137] The GPL grants licensees' rights to modify their copies of programs,
forming works based on the programs, and to copy and distribute such modifications.[138] GPL licensees can
distribute the modified programs as long as they also meet the following three restrictions. First, they must
"cause the modified files to carry prominent notices stating that [they] changed the files and the date of any
change."[139] Second, "any work that [licensees] distribute or publish, . . . [must] be licensed as a whole at
no charge to all third parties under the terms of [the GPL]."[140] Third, the modified work must "print or
display an announcement including an appropriate copyright notice and a notice that there is no warranty [or
else, saying that [they] provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License."[141]

{62}There is only one restriction on distribution among these three alternatives. Specifically, the distribution
must be accompanied by "the complete corresponding machine-readable source code," or, "a written offer,
valid for at least three years, to give any third party. . . a complete machine-readable copy of the
corresponding source code," or, accompany it with the information "received as to the offer to distribute
corresponding source code."[142] It is important to note that "[t]his alternative is allowed only for
noncommercial distribution. . . ."[143]

{63}The GPL restriction that derivative works "must . . . be distributed under the same terms as the license of
the original software[,]"[144] causes concern for those who write software for in-house use. For example,
consider the petroleum company that writes its own software to calculate oil well capacity. If the engineer
builds upon an existing, copyrighted open source product to create the application, is his product a derivative
product subject to the open-distribution restrictions of the GPL? Yes, there is no doubt that it is a derivative
product. Next, we must ask, will he have to make his product open to his competitors to free ride? What if
our petroleum engineer decided to sell the derived product to other oil companies under a proprietary license?
The answer is readily apparent, as this is clearly a license violation, and it is also a copyright rights violation.

{64}What if the engineer, instead of creating a derivative work based on an open source product, used a
GNU compiler or library to help create the oil well software? A compiler is a software tool that translates the
source code into object code. The object code version of the software created through the use of these tools
may constitute a derivative work, in this case, a translation. The law is currently not entirely settled on this
question.

http://jolt.richmond.edu/v6i5/article3.html#t14
http://jolt.richmond.edu/v6i5/article3.html#N_136_
http://jolt.richmond.edu/v6i5/article3.html#t15
http://jolt.richmond.edu/v6i5/article3.html#N_137_
http://jolt.richmond.edu/v6i5/article3.html#N_138_
http://jolt.richmond.edu/v6i5/article3.html#N_139_
http://jolt.richmond.edu/v6i5/article3.html#N_140_
http://jolt.richmond.edu/v6i5/article3.html#N_141_
http://jolt.richmond.edu/v6i5/article3.html#N_142_
http://jolt.richmond.edu/v6i5/article3.html#N_143_
http://jolt.richmond.edu/v6i5/article3.html#N_144_

{65}The open source community has responded to this problem by creating a new license for libraries and
compilers, and it is called the Lesser General Public License ("LGPL").[145] LGPL is intended "to preserve
the modifiability and redistributability of LGPL software without encumbering works that '[contain] no
derivative of any portion of the Library' with the LGPL."[146] However, even though the intent was to avoid
the derivative work problem, the LGPL does not solve the problem. Rather, "[t]he LGPL gets more fuzzy as
the distinction between the proprietary work and the library are blurred. For example, an extension library
based upon the library may be a derivative work, or it may not be, depending on interpretation."[147] The
intent of the LGPL is to regard programs compiled by the GNU compiler as non-derived programs, but the
interpretation may ultimately be left to the court if the dispute ever arises.

{66}To date, no open source contributor has sued a subsequent licensee for copyright infringement and
neither have any of the open source vendors.[148] A suit may arise, however, under a breach of license claim,
as was already discussed previously in the portion of this paper addressing the compiler issue. Of course,
obviously a licensee could sell an open source derived product under a proprietary license. No court has ruled
on the validity of an open source copyright or determined liability or damages based on infringement of an
open source license. One legal writer contends that the GPL is a valid enforceable license, stemming from
shrinkwrap licenses and shareware licenses.[149] The oldest commercial open source developer, Cygnus
Solutions, claims the GPL's "terms are specific and sufficiently narrow[,] that it is viewed as being as valid as
any other software license."[150]

{67}Assuming our engineer infringes the copyright, who has standing to bring suit? According to the
Copyright Act, only the legal or beneficial owner of an exclusive right under the copyright may sue.[151] The
legal owner is the person holding the copyright.[152] Beneficial owners are those who have "parted with
legal title to the copyright in exchange for percentage royalties based on sales or license fees."[153] One
court has held that, "[t]o bring an infringement action, a plaintiff must be the owner of a copyright, its
assignee, or an exclusive licensee."[154] GNU, and most other open source products, are distributed solely
under a non-exclusive license.[155] This licensing method would seem to limit the number of possible
plaintiffs if the license or copyright is infringed.

{68}The first question in determining standing is whether the plaintiff developer is really a new owner of
copyrightable files. Due to the teamwork nature of open source projects, most developers will be non-
exclusive licensees creating a derivative work under the GPL. They are licensees because the only way to
gain access to the program they are improving is by obtaining a license to it. There may be multiple owners
of subparts of any given open source software application. For example, "the Linux kernel ... [is] a patchwork
of copyrights. Each individual file may have its own copyright, or sometimes even multiple copyrights."[156]
The problem of standing results from the collaborative nature of open source development. There is no
question that open source developers retain copyright rights in programs they create and release themselves.
[157]

{69}Once a plaintiff with standing decides to sue, it may be procedurally onerous to continue. The court may
require the plaintiff to serve notice of the suit to other parties with an interest in the copyright. Once initiated,
"[t]he court may require the joinder, and shall permit the intervention, of any person having or claiming an
interest in the copyright."[158] The list of parties can become rather long if each code contributor can be
considered an interested and necessary party.

{70}Open source licensors seem to have been cut off from asserting copyright claims at all in the Ninth
Circuit, which ruled that, a "'copyright owner who grants a nonexclusive license to use his copyrighted
material waives his right to sue the licensee for copyright infringement' and can sue only for breach of
contract."[159] Open source licensors distribute solely under nonexclusive licenses. But limiting the
copyright owner to breach of contract actions gives rise to other problems, such as invalidity for lack of
consideration (free download from the Internet is common), and for lack of privity. Following the decision of

http://jolt.richmond.edu/v6i5/article3.html#N_145_
http://jolt.richmond.edu/v6i5/article3.html#N_146_
http://jolt.richmond.edu/v6i5/article3.html#N_147_
http://jolt.richmond.edu/v6i5/article3.html#N_148_
http://jolt.richmond.edu/v6i5/article3.html#N_149_
http://jolt.richmond.edu/v6i5/article3.html#N_150_
http://jolt.richmond.edu/v6i5/article3.html#N_151_
http://jolt.richmond.edu/v6i5/article3.html#N_152_
http://jolt.richmond.edu/v6i5/article3.html#N_153_
http://jolt.richmond.edu/v6i5/article3.html#N_154_
http://jolt.richmond.edu/v6i5/article3.html#N_155_
http://jolt.richmond.edu/v6i5/article3.html#N_156_
http://jolt.richmond.edu/v6i5/article3.html#N_157_
http://jolt.richmond.edu/v6i5/article3.html#N_158_
http://jolt.richmond.edu/v6i5/article3.html#N_159_

the Ninth Circuit, the open source developer appears to waive the right to sue for copyright infringement and
loses any contract remedies.

{71}In the same case, Sun Microsystems, the Ninth Circuit went on to allow copyright remedies for a certain
breach of license. If "a license is limited in scope and the licensee acts outside the scope, the licensor can
bring an action for copyright infringement."[160] The GPL, by its terms, grants licensees all of the licensor's
exclusive copyright rights. With such a broad grant of rights, is the GPL sufficiently limited in scope?

{72}As earlier discussed, the GPL grants licensee's all of the licensor's copyright rights. The only substantial
right reserved by the GPL is that any derivative products made for distribution by the licensee must also be
distributed in the open source format. Case law supports a finding that breach of the GPL amounts to
copyright infringement.[161] Courts have found infringement by exceeding the scope of a license when the
licensee used the software on hardware unauthorized by the license,[162] when the licensee allowed third
party access to the licensed software,[163] and when the licensee made "innumerable copies" of the software
for unauthorized purposes.[164] Each breach of the license agreement violated only one of many license
restrictions.[165] By comparison, the GPL contains basically only one restriction, that further redistribution
must be made under the same license.[166] This violation appears at least as serious as the three under which
infringement was found.

{73}The previous cases seem to establish that the GPL is sufficiently limited in scope to support a copyright
claim. The next question concerning the validity of the license is whether the limitation is enforceable.
Limiting the terms of distribution could possibly be declared unenforceable by a court as contrary to the
public policy.[167] The situation would arise when the alleged infringer asserts a defense of copyright
misuse. A copyright misuse defense trumps anti-competitive restrictive clauses in software licenses. The
dominance of the copyright misuse defense has been shown in cases where the license prohibits licensees
from making software based on the basic idea underlying the licensed software,[168] and where licenses
prohibit the production of any competing product "whether or not computer-based."[169]

{74}Does the restriction of the GPL on distribution rise to the level of these anti-competitive clauses? This
author believes the answer is probably not, for the three following reasons. First, open source is not a
monolithic competitor. Within the open source community, there are various competing companies selling
almost identical software under the exact same license - the GPL.[170] Second, for every open source
software application, there are myriad proprietary versions available that accomplish the same result, and that
can be purchased under different license terms. Third, the open source distribution limitation is minuscule
when compared to the restrictions found in proprietary licenses. The GPL restriction on distribution is not
anti-competitive and should survive a copyright misuse attack. This means that, just like any other software
licensor, open source licensors have copyright standing to sue for breach of license.

1. Copyright Remedies

{75}For what damages would the infringing engineer be liable? Copyright law establishes statutory damages
for infringement up to $150,000 or for reimbursement of the infringer's revenues.[171] Apportioning
damages among all those with an interest in an open source product may prove difficult. For example, how
can one value one developer's contribution against that of another? It would be like evaluating the relative
values of a word processor's thesaurus and its spell checker. Splitting the damages evenly among all code
contributors is also unfair. The difficulty of apportionment and the nonjoinder of some interested parties may
decrease the damages awarded. Copyright also allows injunctive relief.[172] The developer who created a
derivative work and distributed it under a proprietary license may be required to come into compliance with
the license and to make the source code available.

2. Determining Infringement

http://jolt.richmond.edu/v6i5/article3.html#N_160_
http://jolt.richmond.edu/v6i5/article3.html#N_161_
http://jolt.richmond.edu/v6i5/article3.html#N_162_
http://jolt.richmond.edu/v6i5/article3.html#N_163_
http://jolt.richmond.edu/v6i5/article3.html#N_164_
http://jolt.richmond.edu/v6i5/article3.html#N_165_
http://jolt.richmond.edu/v6i5/article3.html#N_166_
http://jolt.richmond.edu/v6i5/article3.html#N_167_
http://jolt.richmond.edu/v6i5/article3.html#N_168_
http://jolt.richmond.edu/v6i5/article3.html#N_169_
http://jolt.richmond.edu/v6i5/article3.html#N_170_
http://jolt.richmond.edu/v6i5/article3.html#t16
http://jolt.richmond.edu/v6i5/article3.html#N_171_
http://jolt.richmond.edu/v6i5/article3.html#N_172_
http://jolt.richmond.edu/v6i5/article3.html#t17

{76}The difficulties with remedies aside, some parts of an infringement proceeding are much easier under
open source. A substantial amount of judicial effort goes into determining if copying has occurred. Parties in
several software cases have done extensive side-by-side comparisons of source code to prove the act of
copying. Courts have found infringement when as little as fifty-six lines of code have matched between
programs.[173] Parties often do not want to release their source code to the court in fear that it will somehow
be leaked to the public. Because source code is freely available, the parties will be unconcerned about the
litigation that often requires the release of their code.

B. Licensee and Licensor

1. Derivative Works

{77}Returning to our engineer who created a derivative work from an open source product, it is highly
unlikely that he will be stuck with a license infringement suit. The GPL explicitly allows modifications and
derivative works.[174] The open source license requires that derivative products be "distributed under the
same terms as the license of the original software."[175] As to derivative works that are not distributed, there
is no need to open the source to competitors.

{78}Our hypothetical engineer is a great concern for corporate legal departments. As the problem is defined,
the engineer has done no wrong. If, however, the engineer acquired the original source code from which the
derivative program was created, from a copyright infringer, the company will be in trouble. Open source
software licenses provide no warranties, not even the warranty against infringement. In a situation such as
this, the company may become involved in the complex litigation scenario contemplated above.

2. Terms, Conditions, and Warranties

{79}Assuming the license is valid, what about the warranties, terms, and conditions of the GPL for those who
just want a reliable software product? Open source vendors tend not to provide warranties for their products,
presumably because no single person or group is responsible.[176] But, this is nothing new for consumers.
Proprietary vendors also tend not to provide warranties for their products. Comparing a Microsoft Windows
95 license agreement to the Free Software Foundation's GPL, there are some striking similarities. Foremost,
both licenses disclaim all implied warranties.[177] Next, neither license guarantees that the product will
work.[178]

{80}Microsoft allows use of a product on only one computer at a time;[179] whereas, the GPL allows
unlimited use.[180]Microsoft disallows reverse engineering and disassembly to remove any component part,
[181] while the GPL allows any alteration.[182]Microsoft warrants that the software will "perform
substantially in accordance with the accompanying written materials for a period of ninety (90) days..."[,]
[183] but beyond that claim, there are no warranties, either express or implied.[184] The GPL software, on
the other hand, is "as is without warranty of any kind,"[185] for any amount of time. Microsoft's only remedy
is either, "return of the price paid" or "repair or replacement of the software" at the manufacturer's sole
option.[186] The GPL grants no remedies.[187] If the license is any indication of the product's viability,
Microsoft will guarantee that the software will work on one computer for ninety (90) days or they will send a
replacement disk.[188] The FSF gives no guarantees, but allows users to do whatever they want with the
software.[189] In one respect, buyers are a little better off under the GPL than they are under a proprietary
license because at least they have the option to alter the code.

{81}Both proprietary and open source licenses disclaim consequential damages.[190] But, open source
software security may give rise to consequential damages problems.[191] With operating system source code
freely available, it may appear easier for malefactors to create and to load destructive viruses.[192] In reality,
it is actually not any easier to create viruses in open source than it is in proprietary operating systems.[193]

http://jolt.richmond.edu/v6i5/article3.html#N_173_
http://jolt.richmond.edu/v6i5/article3.html#t17
http://jolt.richmond.edu/v6i5/article3.html#t18
http://jolt.richmond.edu/v6i5/article3.html#N_174_
http://jolt.richmond.edu/v6i5/article3.html#N_175_
http://jolt.richmond.edu/v6i5/article3.html#t19
http://jolt.richmond.edu/v6i5/article3.html#N_176_
http://jolt.richmond.edu/v6i5/article3.html#N_177_
http://jolt.richmond.edu/v6i5/article3.html#N_178_
http://jolt.richmond.edu/v6i5/article3.html#N_179_
http://jolt.richmond.edu/v6i5/article3.html#N_180_
http://jolt.richmond.edu/v6i5/article3.html#N_181_
http://jolt.richmond.edu/v6i5/article3.html#N_182_
http://jolt.richmond.edu/v6i5/article3.html#N_183_
http://jolt.richmond.edu/v6i5/article3.html#N_184_
http://jolt.richmond.edu/v6i5/article3.html#N_185_
http://jolt.richmond.edu/v6i5/article3.html#N_186_
http://jolt.richmond.edu/v6i5/article3.html#N_187_
http://jolt.richmond.edu/v6i5/article3.html#N_188_
http://jolt.richmond.edu/v6i5/article3.html#N_189_
http://jolt.richmond.edu/v6i5/article3.html#N_190_
http://jolt.richmond.edu/v6i5/article3.html#N_191_
http://jolt.richmond.edu/v6i5/article3.html#N_192_
http://jolt.richmond.edu/v6i5/article3.html#N_193_

Proprietary developers must provide in-depth details about the executable formats so outside software
developers can write applications.[194] These details are enough to allow hackers to hook in and build a
virus.[195] The upside in open source is that "there are more people watching for these hacks ... so they can
be caught quicker,"[196] and the fix can be communicated to all users more quickly than in a traditional
closed source situation. Open source facilitates quicker communication because once someone encounters a
problem, the problem may be posted on the Internet. Then, users begin working together to fix the problem.
[197] By comparison, some software companies will not publicly admit that a problem exists until they can
deliver a fix.[198]

{82}To fix a virus in a web server, Microsoft's lead product manager Jason Garms says "[t]he absolute
minimum [time] expected to fix [a virus] is two weeks."[199] In comparison, the turnaround time is
drastically lessened in an open source environment, such as in a similar situation involving "the teardrop
exploit, [a bug] that affected both Linux and Windows systems. It was patched under Linux in a matter of
hours."[200] Linux has two advantages over Microsoft operating systems in the bug fixing area. First, the
number of Linux users is still very small in comparison to the number of users of other systems, so it is easier
to reach each individual user. Second, until recently, the great majority of Linux users were also Linux
programmers or at least computer literates, who could quickly detail a problem and understand how to apply
a fix. As Linux and other open source applications grow in popularity, these two advantages will likely
diminish.

{83}For those who feel more secure when they can point to a corporate product manager to fix problems,
closed source may "create a false sense of security."[201] An open source fix is not guaranteed in a license
agreement, but it is "warranted," at least by the pride of the individual developer that wrote the program,
essentially guaranteeing that the person will do all that is necessary to improve his product.[202] There are
hundreds of viruses for Windows and only a handful, possibly under ten, for Linux.[203]

{84}There are legitimate needs for encryption and secrecy software to protect sensitive information on
government computers, in banks, the military, and the like. Having encryption software open-sourced would
seemingly defeat its very purpose. Strangely enough, experts consider open source encryption software
technically superior to many proprietary products.[204]

{85}Corporate purchasers commonly want some kind of warranty that someone will support the software
well into the future, especially if the software is an integral core from which other applications will be built.
In one respect, open source solves this problem because the source code is available and the purchasing
company can train someone in-house to maintain it. Current proprietary programs must tailor its features to
the lowest common denominator. If a specific user needs a bug fixed or wants additional functionality there
are two options: 1) ask the vendor to fix the bug or add the function; or 2) find a new vendor. With open
source, there is always a third option - "fix it yourself."[205] If you cannot fix the problem yourself, there are
several open source vendors who can and will provide a fix.

IV. OPENING UP

A. The Problem

{86}The preceding sections of this paper have introduced open source software and outlined some of the
benefits that can result from its broad acceptance. The article has also presented a general problem open
source software faces - the market has been slow to accept open source. The market has been slow to accept
open source partly because of product concerns. Product concerns include product viability, technical issues,
such as security and scalability, and technical support. Product concerns seem to be the first barrier to any
new product and are certainly not endemic to open source. While product concerns are a key issue for the
open source community, offering technical solutions are beyond the scope of this article.

http://jolt.richmond.edu/v6i5/article3.html#N_194_
http://jolt.richmond.edu/v6i5/article3.html#N_195_
http://jolt.richmond.edu/v6i5/article3.html#N_196_
http://jolt.richmond.edu/v6i5/article3.html#N_197_
http://jolt.richmond.edu/v6i5/article3.html#N_198_
http://jolt.richmond.edu/v6i5/article3.html#N_199_
http://jolt.richmond.edu/v6i5/article3.html#N_200_
http://jolt.richmond.edu/v6i5/article3.html#N_201_
http://jolt.richmond.edu/v6i5/article3.html#N_202_
http://jolt.richmond.edu/v6i5/article3.html#N_203_
http://jolt.richmond.edu/v6i5/article3.html#N_204_
http://jolt.richmond.edu/v6i5/article3.html#N_205_
http://jolt.richmond.edu/v6i5/article3.html#t20
http://jolt.richmond.edu/v6i5/article3.html#t21

{87}A second reason for slow acceptance is the user's contractual concern that they might sign a purchase
contract with a company that did not create the product they are buying. Programmers may be uneasy
developing open source products because their copyright rights are minimal. Open source software
companies may be uneasy providing warranties of any kind for products they did not create. These
contractual concerns are only beginning to be addressed. Even with some companies now offering warranties
with open source products, some consumers are still choosing to go without the warranties. Along these lines,
many purchasers simply refuse to open contractual discussions with a small company that may not be around
in the future to support the product. This affects the development of open source because many open source
companies that support open source products are still small and have short corporate histories.

{88}A third problem that may limit the growth of open source is product standardization. This problem stems
from the free availability of source code. Programmers can add functionality, enhance, or simply alter the
application, such that it can be sold as a different program or at least a newer version. The multiplicity of
products and versions can result in incompatible systems and inconsistent products.

B. Market Solutions

{89}The assertion that the market provides a solution is a little inaccurate. What really happens is that an
individual buyer or seller settles the issue in such a way that other buyers and sellers follow suit. In fact, the
market has already started to work on the contractual concerns arising. Some users are used to going without
warranties on their proprietary products, so the thought of not having a warranty for an open source product
does not worry them. On the other hand, open source vendors increasingly offer support contracts and
guarantees that the product will perform. Beyond this "give-and-take" relationship between users and
purchasers, the market offers no further solution to contractual concerns.

{90}However, there are a few ways the market can attack the problem of standardization. First, open source
companies can form a separate, non-profit entity to verify application compatibility. This could be similar to
the non-profit, multiple listing services created by local real estate agencies. In the absence of cooperation
among companies, a separate entity could step in to offer independent verification. Software escrow
companies already offer independent source code verification for companies on an individual basis. This
standardization or verification entity could operate as a type of brand for developers or as a certification for
users. For a fee, the entity would test new products on criteria based on compatibility with other products,
platforms, or devices. If the new product met the criteria, it would be given a brand that it passed. The brand
may be similar to the Underwriters Laboratories ("UL")[206] listing for electronics. The entity could also
operate on the user end as more of an information clearinghouse on compatibility and standards. The key to
success is that the entity must establish consumer trust by remaining impartial and independent from vendors.

C. Government Solutions

{91}There are three main areas in which government can also enhance the adoption of open source. First,
states can amend the Uniform Commercial Code ("UCC"), which governs the sale of goods, to reduce
contractual concerns. Second, the government's vast computer resources systems can be operated on open
source software. This software utilization could give open source the type of exposure that will reduce many
product concerns. Third, judicial remedies can include requiring certain products to be licensed as open
source. This requirement could potentially place more products into the open source market. A fourth area
involves copyright issues. As previously discussed, open source already works well within existing copyright
law. Congress could scale back many of the software copyright protections, so as to make all software open
source, but doing so would limit the freedom currently enjoyed by other software developers. Open source,
after all, is about freedom.

{92}State legislatures should adopt amendments to the UCC. The code is written by a non-profit entity

http://jolt.richmond.edu/v6i5/article3.html#t22
http://jolt.richmond.edu/v6i5/article3.html#N_206_
http://jolt.richmond.edu/v6i5/article3.html#t23

consisting of judges, law professors, and practicing lawyers, the National Conference of Commissioners on
Uniform State Laws ("NCCUSL"). The NCCUSL has already promulgated an amendment to the UCC called
the Uniform Computer Information Transactions Act ("UCITA"). The UCITA governs certain computer
software and information transactions, but for the most part it does not apply to computer hardware, which
are considered to be goods. No states have yet adopted this amendment draft.

{93}The scope of UCITA goes beyond open source software, but it can directly benefit open source software
by codifying the legality of mass market licenses. The current draft advances the codification of mass market
products. Some courts have already found the use of some mass market licenses legally binding, such as
"shrinkwrap" licenses in which the buyer assents to the terms of the license by breaking the transparent
shrinkwrap on the software box.[207] This codification moves a step closer to legal approval of binding
"click-wrap" licenses. The GPL is a mass market, click-wrap license. That means that the buyer manifests
assent to the terms of the license by virtue of clicking a button on a website. The unquestioned validity of
mass market licenses is a necessity for open source because a large number of open source transactions occur
between anonymous parties over the Internet.[208] But, the UCITA is far from being an open source booster.
Depending on the language state legislatures adopt, the UCITA can as easily invalidate open source click-
wrap licenses. The UCITA also poses other threats to open source software development regarding warranties
and reverse engineering.

{94}The current draft builds new implied warranties into software licenses. Implied warranties of any kind
are uniquely difficult for open source developers. Because many individual open source programmers receive
little compensation for their efforts, they may be unwilling and unable to assume higher risks of lawsuits for
breach of warranty.[209] Lowering the risk of lawsuit means "low barriers to entry; anyone can contribute
code to the process, not just those who can afford insurance or lawyers to arrange liability-limiting legal
structures."[210] Placing the risk of litigation on the open source developer may in turn increase the price of
open source products. Another negative consequence is the possible deterrence of programmers from
contributing useful code.

{95}Open source advocates are also very concerned about the current UCITA stance on reverse engineering.
They claim it causes an "indirect consequence that would hamstring free software development in the long
term - it gives proprietary software developers the power to prohibit reverse engineering."[211] Currently,
reverse engineering is legal for reasons of "interoperability" between computer systems.[212] Prohibiting
reverse engineering inhibits the development of open source because for open source products to be of any
value, they must be compatible with other computer applications. The way to establish compatibility is to
reverse engineer the other developer's code. Open source advocates are concerned that the UCITA will allow
proprietary developers to "establish secret file formats and protocols, which there would be no lawful way for
[open source programmers] to figure out."[213] Thus, the UCITA is a double-edged sword. While, it may
prove to be a boon, or maybe a bane to open source development. Based on the UCITA language states may
choose to adopt, the statute can speed the acceptance of open source software, or, in the alternative, it can
bring it to a halt.

{96}To help reduce product concerns, government agencies can use open source products as the software of
choice. The government could serve as a test site to show large corporate users that open source software is
viable. Several federal agencies have already adopted the Linux operating system.[214] The result of large-
scale government involvement in open source could calm many of the marketplace concerns regarding open
source products. The Government Accounting Office ("GAO") could commission a study on the reliability
and security of open source applications, and the relevant costs associated with a government agency
switching platforms.[215] The GAO information would prove to answer corporate concerns about converting
to open source.

{97}A government agency could also serve as the standardization or verification entity. If no private entity

http://jolt.richmond.edu/v6i5/article3.html#N_207_
http://jolt.richmond.edu/v6i5/article3.html#N_208_
http://jolt.richmond.edu/v6i5/article3.html#N_209_
http://jolt.richmond.edu/v6i5/article3.html#N_210_
http://jolt.richmond.edu/v6i5/article3.html#N_211_
http://jolt.richmond.edu/v6i5/article3.html#N_212_
http://jolt.richmond.edu/v6i5/article3.html#N_213_
http://jolt.richmond.edu/v6i5/article3.html#N_214_
http://jolt.richmond.edu/v6i5/article3.html#N_215_

steps in to meet this need, the government has the ability to do it. As a government agency, the entity's role
would be somewhat different. The role is not to help market open source products, but rather, to be the
impartial harbinger of open source information. The agency would provide information to consumers about
various versions, the latest updates, patches, and fixes. Additionally, it could employ the expertise of the
government and military engineers to guide individuals to the technical solutions sought.[216]

{98}The judicial branch can also embrace the open source ideology. It can be used in antitrust, patent, and
copyright violations. Occasionally, the price commercial monopolies pay for antitrust violations is a
judicially-enforced corporate dismemberment. Breaking apart a company is difficult, but doing it in the
software world offers no real advantage because consumers demand the software interoperability that results
from a large company. A more effective remedy is found in allowing the company to remain intact, while
denying the company the fruits of its monopoly. Basically, the court can require the monopolistic company to
release the source code of its products under an open source license. Similar remedies can be applied to
copyright and patent violators. This would allow other developers to enter into the competitive arena without
disrupting consumer needs.

{99}AT&T handled the development of UNIX in this way. Federal antitrust laws denied AT&T the right to
enter the computer market with UNIX after its development in 1969.[217] AT&T decided the next best idea
for UNIX was to give it away to universities. The result was a generation of student programmers who had
full access to UNIX source code. GNU systems and the Linux operating system are outgrowths of this action
on the part of AT&T. Had AT&T kept UNIX as a proprietary product, open source and its family of
inventions might never have come about today.

V. CONCLUSION

{100}This article began with the premise that open source has already created technically valuable products.
The products are tested repeatedly by hundreds of developers on hundreds of varying configurations. We
have discussed software copyright, licensing, development and distribution methods, and social issues, as
they relate to open source. The purpose in discussing these issues is to relieve the concerns of proprietary
developers, corporate legal departments, and end users, relating to the relative risks of open source.

{101}Economically, open source is a more efficient way to allocate the benefits of copyright to society.
Because current software protection law benefits relatively few developers, there is a need for change. Open
source exhibits valid, economical, and marketable alternatives to proprietary software development and
distribution.

{102}Regarding copyright infringement, programmers can rest at ease. Derivative works are encouraged
under the GPL. Infringement suits are a reality; yet, they are no easier to initiate, nor harder to defend than
under a proprietary paradigm. Purchasers are no worse off under GPL warranties than under proprietary end-
user warranties. Corporate purchasers who are used to negotiating warranties can still negotiate with open
source vendors to provide warranties beyond the GPL.

{103}As vendors move to the open source market, transition issues will arise about how quickly source code
is to be made available, how much ownership vendors should retain, and how to appropriately price the
software. Open source may renew an interest in computer programming in our society, and can even smooth
the information technology employment cycle. Open source has exciting synergistic possibilities with
hardware manufacturers. Whether open source will grow to supplant proprietary software methods, or if it
just grows to be second best, programmers, purchasers, and users should be open to open source.

http://jolt.richmond.edu/v6i5/article3.html#N_216_
http://jolt.richmond.edu/v6i5/article3.html#N_217_
http://jolt.richmond.edu/v6i5/article3.html#t24

ENDNOTES[**]

[*] Shawn W. Potter received a B.A. and M.A. (Public Policy) from Brigham Young University in 1996 and
he will complete his J.D. at the University of Kansas School of Law in May 2001.

[**].NOTE: All endnote citations in this article follow the conventions appropriate to the edition of THE
BLUEBOOK: A UNIFORM SYSTEM OF CITATION that was in effect at the time of publication. When citing to this
article, please use the format required by the Seventeenth Edition of THE BLUEBOOK, provided below for
your convenience.

Shawn W. Potter, Opening Up to Open Source, 6 RICH. J.L. & TECH. 24 (Spring 2000), at
http://www.richmond.edu/jolt/v6i5/article3.html.

[1]. See Therese Poletti, Linux Gains More Corporate Love: HP Allies with Red Hat to Add Linux to Servers,
and SGI is Expected to Follow Suit (visited Feb. 25, 2000)
<http://www.zdnet.com/zdnn/stories/news/0,4586,2195730,00.html>; see generally The Linux Home Page at
Linux Online (visited Feb. 25, 2000) <http://www.linux.org>; <http://www.perens.com/OSD.html>
(providing information about Linux).

[2]. See Steven Brody, IDC Says Linux Likely to Lead OS Growth: But Getting Exact Numbers for Linux Is
Impossible (visited Feb. 25, 2000) <http://www.linuxworld.com/linuxworld/lw-1999-03/lw-03-idc.html>; see
also Other Operating Environments Will Have Trouble Keeping Up with Linux's Growth: Linux Commercial
Shipments Will Increase at a Four-Year Rate of 25% (visited Feb. 25, 2000)
<http://www.idcresearch.com:8080/Data/Software/content/SW033199PR.htm>.

[3]. Judy DeMocker, Behlendorf Jumps to O'Reilly: Move Gives Apache Developer Time to Rearchitect
Popular Web Server (visited Feb. 25, 2000) <http://www.linuxworld.com/linuxworld/lw-1999-02/lw-02-
behlendorf.html>.

[4]. See U.S. v. Microsoft: Findings of Fact (visited Feb. 25, 2000)
<http://www.callaw.com/stories/findings.html>; also available at <http://usvms.gpo.gov/findfact.html>, and
<http://www.usdoj.gov/atr/cases/f3800/msjudgex.htm>.

[5]. See Ira V. Heffan, Copyleft: Licensing Collaborative Works in the Digital Age, 49 Stan. L. Rev. 1487,
1492 (1997)[hereinafter Heffan, Copyleft].

[6]. Id. at 1492-93.

[7]. Id. at 1494; see also Kenneth W. Dam, Some Economic Considerations in the Intellectual Property
Protection of Software,24 J. Legal Stud. 321, 327 (1995).

[8]. See Heffan, Copyleft, supra note 6, at 1494.

[9]. Stephen Fishman, Software Development, A Legal Guide, 2-3 (2d ed.1998).

[10]. See Heffan, Copyleft, supra note 6, at 1493.

http://jolt.richmond.edu/v6i5/article3.html#h**
http://jolt.richmond.edu/v6i5/article3.html#n*
http://jolt.richmond.edu/v6i5/article3.html#n**
http://www.richmond.edu/jolt/v6i5/article3.html
http://jolt.richmond.edu/v6i5/article3.html#n1
http://www.zdnet.com/zdnn/stories/news/0%2C4586%2C2195730%2C00.html
http://www.linux.org/
http://www.perens.com/OSD.html
http://jolt.richmond.edu/v6i5/article3.html#n2
http://www.linuxworld.com/linuxworld/lw-1999-03/lw-03-idc.html
http://www.idcresearch.com:8080/Data/Software/content/SW033199PR.htm
http://jolt.richmond.edu/v6i5/article3.html#n3
http://www.linuxworld.com/linuxworld/lw-1999-02/lw-02-behlendorf.html
http://jolt.richmond.edu/v6i5/article3.html#n4
http://www.callaw.com/stories/findings.html
http://usvms.gpo.gov/findfact.html
http://www.usdoj.gov/atr/cases/f3800/msjudgex.htm
http://jolt.richmond.edu/v6i5/article3.html#n5
http://jolt.richmond.edu/v6i5/article3.html#n6
http://jolt.richmond.edu/v6i5/article3.html#n7
http://jolt.richmond.edu/v6i5/article3.html#n8
http://jolt.richmond.edu/v6i5/article3.html#n9
http://jolt.richmond.edu/v6i5/article3.html#n10

[11]. See id. at 1496.

[12]. See The Open Source Definition (visited Feb. 25, 2000) <http://www.opensource.org/osd.html>
[hereinafter Open Source].

[13]. See generallyTech. Encyclopedia: Source Code (visited Feb. 25, 2000)
<http://www.techweb.com/encyclopedia/defineterm?term=SOURCECODE&exact=1> (defining source code)
[hereinafter Tech. Encyclopedia].

[14]. See id.

[15]. See Open Source, supra note 13.

[16]. See GNU General Public License (visited Feb. 25, 2000) <http://www.opensource.org/licenses/gpl-
license.html> [hereinafter GNU GPL].

[17]. See id.

[18]. See id.

[19]. See id.

[20]. See Netscape Server Software End User License Agreement (visited Feb. 25, 2000)
<http://www.netscape.com/download/server.html>; see generally, You Got a License for This? (visited Feb.
25, 2000) <http://www.computerworld.com/home/online9697.nsf/All/970512licenselink> (noting the
restrictive nature of proprietary software licensing).

[21]. See generally About Software Licensing (visited Feb. 25, 2000)
<http://www.compaq.com/products/software/info/swl_about.html> (explaining that proprietary software
licenses limit usage to a maximum number of computers).

[22]. What is Free Software? (visited Feb. 25, 2000) <http://www.gnu.org/philosophy/free-sw.html>.

[23]. See Richard Stallman, The GNU Project (visited Feb. 25, 2000) <http://www.gnu.org/gnu/the-gnu-
project.html> (explaining that GNU stands for "GNU's Not UNIX") [hereinafter Stallman, GNU Protect]; see
also Richard Stallman, Initial Announcement (visited Feb. 25, 2000) <http://www.gnu.org/gnu/initial-
announcement.html> [hereinafter Stallman, Initial Announcement].

[24]. Stallman, Initial Announcement, supra note 24.

[25]. Id.

[26]. Free Software Foundation, The GNU Manifesto, (visited Feb. 25, 2000)
<http://www.gnu.org/gnu/manifesto.html> [hereinafter, Free Software Foundation, GNU Manifesto].

[27]. Stallman, GNU Project, supra note 24.

[28]. Tech. Encyclopedia, supra note 14.

[29]. Id.

[30]. Charles Arthur, The Man Who Can Smash Windows, The Independent (London), July 28, 1999, at 1, 2
[Arthur, The Man].

http://jolt.richmond.edu/v6i5/article3.html#n11
http://jolt.richmond.edu/v6i5/article3.html#n12
http://www.opensource.org/osd.html
http://jolt.richmond.edu/v6i5/article3.html#n13
http://www.techweb.com/encyclopedia/defineterm?term=SOURCECODE&exact=1
http://jolt.richmond.edu/v6i5/article3.html#n14
http://jolt.richmond.edu/v6i5/article3.html#n15
http://jolt.richmond.edu/v6i5/article3.html#n16
http://www.opensource.org/licenses/gpl-license.html
http://jolt.richmond.edu/v6i5/article3.html#n17
http://jolt.richmond.edu/v6i5/article3.html#n18
http://jolt.richmond.edu/v6i5/article3.html#n19
http://jolt.richmond.edu/v6i5/article3.html#n20
http://www.netscape.com/download/server.html
http://www.computerworld.com/home/online9697.nsf/All/970512licenselink
http://jolt.richmond.edu/v6i5/article3.html#n21
http://www.compaq.com/products/software/info/swl_about.html
http://jolt.richmond.edu/v6i5/article3.html#n22
http://www.gnu.org/philosophy/free-sw.html
http://jolt.richmond.edu/v6i5/article3.html#n23
http://www.gnu.org/gnu/the-gnu-project.html
http://www.gnu.org/gnu/initial-announcement.html
http://jolt.richmond.edu/v6i5/article3.html#n24
http://jolt.richmond.edu/v6i5/article3.html#n25
http://jolt.richmond.edu/v6i5/article3.html#n26
http://www.gnu.org/gnu/manifesto.html
http://jolt.richmond.edu/v6i5/article3.html#n27
http://jolt.richmond.edu/v6i5/article3.html#n28
http://jolt.richmond.edu/v6i5/article3.html#n29
http://jolt.richmond.edu/v6i5/article3.html#n30

[31]. Id.

[32]. Id.

[33]. Stallman, GNU Project, supra note 24.

[34]. See id.

[35]. See id.

[36]. Tech. Encyclopedia, supra note 14.

[37]. See id.

[38]. See id.

[39]. See id.

[40]. Id.

[41]. Id.

[42]. See id.

[43]. See id.

[44]. Id.

[45]. Id.

[46]. See Tim O'Reilly, The Open Source Revolution, Esther Dyson's Monthly Rep., (last modified Nov.
1998) <http:www.eventure.com/release1/1198.html> [hereinafter O'Reilly, Open Source Rev.].

[47]. Open-Source Software (visited Feb. 28, 2000) <http://www.tux.org/~niemi/opensource/customer-
case.html>; see also Marshall Kirk McKusick, Twenty Years of Berkley Unix-From AT&T Owned to Freely
Distributable (visited Feb. 25, 2000) <http://www.oreilly.com/catalog/opensources/book/kirkmck.html>.

[48]. See X Consortium (visited Feb. 28, 2000) <http://www.x.org/>; see also Graphical Interface (visited
February 28, 2000) <http://www.systemsix.com/prop/xwindows.html>; O'Reilly, Open Source Rev., supra
note 47.

[49]. See Debian (visited Feb. 25, 2000) <http://www.debian.org/intro/about>.

[50]. Microsoft Museum (visited Feb. 22, 2000) <http://www.microsoft.com/Museum/default.asp>.

[51]. Id.

[52]. Mary Jo Foley, Microsoft Evaluates Open Software 'Threat', PCWeek Online (Nov. 2, 1998)
<http://www.zdnet.com/pcweek/stories/news/0,4153,369430,00.html>; see also Stephen Shankland,
Microsoft Spins "Halloween" Memos, CNET News.com (Nov. 6, 1998) <http://news.cnet.com/news/0-1003-
200-335100.html>;[hereinafter Shankland, Microsoft Spins].

[53]. See Shankland, Microsoft Spins, supra note 53.

http://jolt.richmond.edu/v6i5/article3.html#n31
http://jolt.richmond.edu/v6i5/article3.html#n32
http://jolt.richmond.edu/v6i5/article3.html#n33
http://jolt.richmond.edu/v6i5/article3.html#n34
http://jolt.richmond.edu/v6i5/article3.html#n35
http://jolt.richmond.edu/v6i5/article3.html#n36
http://jolt.richmond.edu/v6i5/article3.html#n37
http://jolt.richmond.edu/v6i5/article3.html#n38
http://jolt.richmond.edu/v6i5/article3.html#n39
http://jolt.richmond.edu/v6i5/article3.html#n40
http://jolt.richmond.edu/v6i5/article3.html#n41
http://jolt.richmond.edu/v6i5/article3.html#n42
http://jolt.richmond.edu/v6i5/article3.html#n43
http://jolt.richmond.edu/v6i5/article3.html#n44
http://jolt.richmond.edu/v6i5/article3.html#n45
http://jolt.richmond.edu/v6i5/article3.html#n46
http://www.edventure.com/release1/1198.html
http://jolt.richmond.edu/v6i5/article3.html#n47
http://www.tux.org/~niemi/opensource/customer-case.html
http://www.oreilly.com/catalog/opensources/book/kirkmck.html
http://jolt.richmond.edu/v6i5/article3.html#n48
http://www.x.org/
http://www.systemsix.com/prop/xwindows.html
http://jolt.richmond.edu/v6i5/article3.html#n49
http://www.debian.org/intro/about
http://jolt.richmond.edu/v6i5/article3.html#n50
http://www.microsoft.com/Museum/default.asp
http://jolt.richmond.edu/v6i5/article3.html#n51
http://jolt.richmond.edu/v6i5/article3.html#n52
http://www.zdnet.com/pcweek/stories/news/0%2C4153%2C369430%2C00.html
http://news.cnet.com/news/0-1003-200-335100.html
http://jolt.richmond.edu/v6i5/article3.html#n53

[54]. See Arthur, The Man, supra note 31.

[55]. See id.

[56]. See id.

[57]. See David Ticoll, Consider the Open Source, Tele.com, June 7, 1999.

[58]. Steve Gelsi, Red Hat Gains 272 Percent IPO Turns in Red Hot Performance, CBS MarketWatch (last
modified Aug. 11, 1999) <http://cbs.marketwatch.com/archive/19990811/news/current/ipo_rep.htx?
source=blq/yhoo&dist=yhoo>.

[59]. Roland Moller, Linux Founder Pleased with Market Hype: Not Jealous of Those Making Millions on
His Program, Financial Post, Dec. 14, 1999, at C12.

[60]. Stephen Shankland, VA Linux Files IPO Plans, CNET News.com (last modified Oct. 9, 1999)
<http://yahoo.cnet.com/news/0-1003-200-811842.html>.

[61]. Glyn Moody, The Greatest OS That (N)ever Was, Wired Magazine, Aug. 1997 (quoting Eric
Youngdale).

[62]. Id.

[63]. See Free Software Foundation, supra note 27 and accompanying text.

[64]. See generally OsOpinion, The Practical manager's Guide to Linus: Can You Profitably Use Linus in
Your Organisation? (visited Mar. 17, 2000)
<http://www.osopinion.com/Opinions/GaneshCPrasad/GaneshCPrasad2.html> [hereinafter osOpinion,
Practical Manager's Guide].

[65]. S-1 Prospectus, Red Hat SEC Filing, June 4, 1999.

[66]. Id.

[67]. See History of the Open Source Initiative (visited Mar. 17, 2000)
<http://www.opensource.org/history.html>;Charles Cooper & Lisa M. Bowman, Ballmer: Microsoft Taking
Notice of Free Rivals Linux, Apache (visited Mar. 17, 2000)
<http://www.zdnet.com/zdnn/stories/zdnn_smgraph_display/0,3441,2134010,00.html>; Mozilla News
(visited Mar. 17, 2000) <http://www.mozilla.org>.

[68]. See Open Source Products (visited Mar. 17, 2000) <http://opensource.org/products.html>.

[69]. See Nicholas Petreley, Corel Controversy (last modified Oct. 15, 1999)
<http://www.linuxworld.com/linuxworld/lw-1999-09/lw-09-corelbeta.html>.

[70]. Id.

[71]. See Mozilla org., Mozilla Release FAQ (visited Mar. 17, 2000) <http://www.mozilla.org/docs/mozilla-
faq.html> (stating that the open source project was nicknamed "Mozilla")[hereinafter Mozilla.org., Mozilla
Release].

[72]. N. Drakos, Gartner Group, An Evaluation Framework for Open-Source Software, Commentary, June 1,

http://jolt.richmond.edu/v6i5/article3.html#n54
http://jolt.richmond.edu/v6i5/article3.html#n55
http://jolt.richmond.edu/v6i5/article3.html#n56
http://jolt.richmond.edu/v6i5/article3.html#n57
http://jolt.richmond.edu/v6i5/article3.html#n58
http://cbs.marketwatch.com/archive/19990811/news/current/ipo_rep.htx?source=blq/yhoo&dist=yhoo
http://jolt.richmond.edu/v6i5/article3.html#n59
http://jolt.richmond.edu/v6i5/article3.html#n60
http://yahoo.cnet.com/news/0-1003-200-811842.html
http://jolt.richmond.edu/v6i5/article3.html#n61
http://jolt.richmond.edu/v6i5/article3.html#n62
http://jolt.richmond.edu/v6i5/article3.html#n63
http://jolt.richmond.edu/v6i5/article3.html#n64
http://www.osopinion.com/Opinions/GaneshCPrasad/GaneshCPrasad2.html
http://jolt.richmond.edu/v6i5/article3.html#n65
http://jolt.richmond.edu/v6i5/article3.html#n66
http://jolt.richmond.edu/v6i5/article3.html#n67
http://www.opensource.org/history.html
http://www.zdnet.com/zdnn/stories/zdnn_smgraph_display/0%2C3441%2C2134010%2C00.html
http://www.mozilla.org/
http://jolt.richmond.edu/v6i5/article3.html#n68
http://opensource.org/products.html
http://jolt.richmond.edu/v6i5/article3.html#n69
http://www.linuxworld.com/linuxworld/lw-1999-09/lw-09-corelbeta.html
http://jolt.richmond.edu/v6i5/article3.html#n70
http://jolt.richmond.edu/v6i5/article3.html#n71
http://www.mozilla.org/docs/mozilla-faq.html
http://jolt.richmond.edu/v6i5/article3.html#n72

1999.

[73]. See generally osOpinion, Practical Manager's Guide, supra note 65.

[74]. See Joe Barr, Eric Raymond Keynote at the Open Source Forum (visited Mar. 17, 2000)
<http://www.linuxworld.com/linuxworld/lw-1999-06/f_lw-06-esr.html> [hereinafter Barr, Eric Raymond
Keynote]; see alsoThe Magic Cauldron: Indirect Sale- Value Models (visited Mar. 17, 2000)
<http://www.tuxedo.org/~esr/writings/magic-cauldron/magic-cauldron-9.html> [hereinafter Raymond, Magic
Cauldron].

[75]. See Magic Cauldron: Indirect Sale-Value Models, supra note 75; see also Barr, Eric Raymond Keynote,
supra note 75.

[76]. Id.

[77]. See id.

[78]. Magic Cauldron, supra note 75; see also Eric Raymond, The Cathedral and the Bazaar (visited March
26, 2000) <http://www.tuxedo.org/~esr/writings/cathedral-paper.html> (discussing Netscape's release of
Mozilla) [hereinafter Cathedral and Bazaar].

[79]. See Magic Cauldron, supra note 75; see also Opensource.org, The Business Case for Open Source
(visited Mar. 17, 2000) <http://opensource.org/for-suits.html>.

[80]. Magic Cauldron, supra note 75.

[81]. Id.

[82]. Id.

[83]. Id.

[84]. Id.

[85]. Id.

[86]. Id.

[87]. Id.

[88]. See Mozilla org., Mozilla Release, supra note 72.

[89]. See generally Eric Raymond, Open Source Software A (New?) Development Methodology (visited Mar.
16, 2000) <http://www.opensource.org/halloween/halloween1.html> (presenting an annotated memorandum
originating with Microsoft); see also Techweb (visited Mar. 16, 2000) <http://www.techweb.com/news>
(conducting a general search on this site).

[90]. See generallyOpen Source Hardware (visited Mar. 16, 2000) <http://www.eg3.com/micr/opensrc.htm>
(stating that open source is not just for software anymore).

[91]. See generally The OpenCPU Source Page (visited Mar. 16, 2000)
<http://www.opencpu.freeserve.co.uk/> (regarding project to develop an open source CPU that may be used
for electronic curcuits); Troy Benjegerdes, Industry Analysis Paper (visited Mar. 16, 2000)

http://jolt.richmond.edu/v6i5/article3.html#n73
http://jolt.richmond.edu/v6i5/article3.html#n74
http://www.linuxworld.com/linuxworld/lw-1999-06/f_lw-06-esr.html
http://www.tuxedo.org/~esr/writings/magic-cauldron/magic-cauldron-9.html
http://jolt.richmond.edu/v6i5/article3.html#n75
http://jolt.richmond.edu/v6i5/article3.html#n76
http://jolt.richmond.edu/v6i5/article3.html#n77
http://jolt.richmond.edu/v6i5/article3.html#n78
http://www.tuxedo.org/~esr/writings/cathedral-paper.html
http://jolt.richmond.edu/v6i5/article3.html#n79
http://opensource.org/for-suits.html
http://jolt.richmond.edu/v6i5/article3.html#n80
http://jolt.richmond.edu/v6i5/article3.html#n81
http://jolt.richmond.edu/v6i5/article3.html#n82
http://jolt.richmond.edu/v6i5/article3.html#n83
http://jolt.richmond.edu/v6i5/article3.html#n84
http://jolt.richmond.edu/v6i5/article3.html#n85
http://jolt.richmond.edu/v6i5/article3.html#n86
http://jolt.richmond.edu/v6i5/article3.html#n87
http://jolt.richmond.edu/v6i5/article3.html#n88
http://jolt.richmond.edu/v6i5/article3.html#n89
http://www.opensource.org/halloween/halloween1.html
http://www.techweb.com/news
http://jolt.richmond.edu/v6i5/article3.html#n90
http://www.eg3.com/micr/opensrc.htm
http://jolt.richmond.edu/v6i5/article3.html#n91
http://www.opencpu.freeserve.co.uk/

<http://web.dodds.net/~hozer/opensource.html> (containing a brief overview of the idea of open-source
hardware).

[92]. See Bernard Cole, Customized RTOS Targets Open-Source Strategy, Electronic Engineering Times,
Sept. 28, 1998 [hereinafter Cole, Customized RTOS].

[93]. See generally Webopedia, COBOL (visited Mar. 16, 2000)
<http://webopedia.internet.com/TERM/C/COBOL.html> (stating that although disparaged by many
programmers for being outdated, COBOL is still the most widely used programming language in the world).

[94]. See Magic Cauldron, supra note 75.

[95]. See Lawrence Lessig, The Limits in Open Code: Regulatory Standards and the Future of the Net, 14
Berkeley Tech. L.J. 759 (1999).

[96]. See,e.g., Microsoft.com Download Center (visited Mar. 15, 2000)
<http://www.microsoft.com/downloads/search.asp?> (offering Microsoft's "Internet Explorer" as a free
download); Netscape Products (visited Mar. 15, 2000) <http://home.netscape.com/download/index.html>
(offering Netscape's "Navigator" as a free download).

[97]. See United States v. Mircosoft Corp., 65 F. Supp.2d 1, 14-15 (D.C. 1999).

[98]. See Adobe Systems, Inc. v. South Sun Products, Inc., 187 F.R.D. 636, 637 (S.D. Cal. 1999).

[99]. See Gary Anthes, Eyes on the ITWallet, COMPUTERWORLD, Jan. 3, 2000, at 96; see generally Netron
Announces New Capabilities for Finding and Componentizing Business Rules in Legacy Systems, Business
Wire, Jan. 25, 2000, available in LEXIS, News Group File (noting that the company is "[a]n acknowledged
leader in software reuse technology"). Id.

[100]. See, e.g.,Southworth v. Grebe, 151 F.3d 717, 728 (7th Cir. 1998); Love v. Reilly, 924 F.2d 1492, 1495
(9th Cir. 1991).

[101]. See Kenneth W. Dam, supra note 8, at 333.

[102]. See 45 Cong. Rec. S8253 (daily ed. July 12, 1999) (comments of Sen Leahy introducing S. 1257, the
Digital Theft Deterrence and Copyright Damages Improvement Act of 1999).

[103]. See Oliver Grawe, Blaring Trial Headlines Ignore Several Key Aspects of Software Industry, Legal
Times, Mar. 8, 1999, at S30.

[104]. Michael Risch, How Can Whelan v. Jaslow and Lotus v. Borland Both Be Right? Reexamining the
Economics of Computer Software Reuse, 17 J. Marshall J. Computer & Info. L. 511 (1999) [hereinafter
Risch, Reexamining the Economics].

[105]. Leander Kahney, Linux's Forgotten Man (last modified Mar. 5, 1999)
<http://www.wired.com/news/technology/0,1282,18291,00.html>. The scientific method is defined as the
"principles and procedures for the systematic pursuit of knowledge involving the recognition and formulation
of a problem, the collection of data through observation and experiment, and the formulation and testing of
hypotheses." Merriam-Webster's Collegiate Dict. 1045 (10th ed. 1999).

[106]. Magic Cauldron, supra note 75.

http://web.dodds.net/~hozer/opensource.html
http://jolt.richmond.edu/v6i5/article3.html#n92
http://jolt.richmond.edu/v6i5/article3.html#n93
http://webopedia.internet.com/TERM/C/COBOL.html
http://jolt.richmond.edu/v6i5/article3.html#n94
http://jolt.richmond.edu/v6i5/article3.html#n95
http://jolt.richmond.edu/v6i5/article3.html#n96
http://www.microsoft.com/downloads/search.asp?
http://home.netscape.com/download/index.html
http://jolt.richmond.edu/v6i5/article3.html#n97
http://jolt.richmond.edu/v6i5/article3.html#n98
http://jolt.richmond.edu/v6i5/article3.html#n99
http://jolt.richmond.edu/v6i5/article3.html#n100
http://jolt.richmond.edu/v6i5/article3.html#n101
http://jolt.richmond.edu/v6i5/article3.html#n102
http://jolt.richmond.edu/v6i5/article3.html#n103
http://jolt.richmond.edu/v6i5/article3.html#n104
http://jolt.richmond.edu/v6i5/article3.html#n105
http://www.wired.com/news/news/technology/story/18291.html?wnpg=3
http://jolt.richmond.edu/v6i5/article3.html#n106

[107]. Id.

[108]. Id.

[109]. See Cole, Customizing RTOS, supra note 93.

[110]. See Redhat.com Store (visited Feb. 16, 2000) <https://www.redhat.com/commerce/redhatlinux.html>.

[111]. See id.

[112]. See Redhat.com - How to Download Red Hat Linux 6.1 (visited Feb. 17, 2000)
<http://www.redhat.com/download/howto_download.html>.

[113]. See id.

[114]. CDW Product Overview (visited Feb. 16, 2000) <http://www.cdw.com/shop/products/default.asp?
EDC=158754> (listing the price for Microsoft Windows 98 Second Edition Version).

[115]. See id. (listing the price for Microsoft Office 2000 Professional Upgrade).

[116]. See ROBERT P. MERGESET AL., INTELLECTUAL PROPERTY IN THE NEW TECHNOLOGICAL AGE 323
(1997) [hereinafter MERGES, INTELLECTUAL PROPERTY].

[117]. See id.

[118]. 17 U.S.C. §§ 101-1332 (1994 & Supp.IV 1998).

[119]. MERGES, INTELLECTUAL PROPERTY, supra note 117.

[120]. See Pub. L. No. 96-517 § 10(a), 94 Stat. 3028 (1980) (amending § 101 of the Copyright Act).

[121]. U.S. Const. art. I, § 8, cl. 8.

[122]. 35 U.S.C. § 101 (1994).

[123]. 17 U.S.C. § 102(a) (1994).

[124]. See 17 U.S.C. § 102 (1994 & Supp. IV 1998); see, e.g., U.S. Copyright Office, Copyright Basics (last
modified Sept. 27, 1999) <http://lcweb.loc.gov/copyright/circs/circ1.html> (giving a primer on the Copyright
Act).

[125]. See 17 U.S.C. § 106 (1994 & Supp. IV 1998).

[126]. See U.S. Const. art. I, § 8, cl. 8.

[127]. See Risch, Reexamining the Economics, supra note 105.

[128]. See id.

[129]. Id.(emphasis added).

[130]. See Robert W. Gomulkiewicz, How Copyleft Uses License Rights to Succeed in the Open Source
Software Revolution and the Implications for Article 2B, 36 HOUS. L. REV. 179, 185-86 (1999)

http://jolt.richmond.edu/v6i5/article3.html#n107
http://jolt.richmond.edu/v6i5/article3.html#n108
http://jolt.richmond.edu/v6i5/article3.html#n109
http://jolt.richmond.edu/v6i5/article3.html#n110
http://www.redhat.com/
http://jolt.richmond.edu/v6i5/article3.html#n111
http://jolt.richmond.edu/v6i5/article3.html#n112
http://www.redhat.com/download/howto_download.html
http://jolt.richmond.edu/v6i5/article3.html#n113
http://jolt.richmond.edu/v6i5/article3.html#n114
http://www.cdw.com/shop/products/default.asp?EDC=158754
http://jolt.richmond.edu/v6i5/article3.html#n115
http://jolt.richmond.edu/v6i5/article3.html#n116
http://jolt.richmond.edu/v6i5/article3.html#n117
http://jolt.richmond.edu/v6i5/article3.html#n118
http://jolt.richmond.edu/v6i5/article3.html#n119
http://jolt.richmond.edu/v6i5/article3.html#n120
http://jolt.richmond.edu/v6i5/article3.html#n121
http://jolt.richmond.edu/v6i5/article3.html#n122
http://jolt.richmond.edu/v6i5/article3.html#n123
http://jolt.richmond.edu/v6i5/article3.html#n124
http://lcweb.loc.gov/copyright/circs/circ1.html#wci
http://jolt.richmond.edu/v6i5/article3.html#n125
http://jolt.richmond.edu/v6i5/article3.html#n126
http://jolt.richmond.edu/v6i5/article3.html#n127
http://jolt.richmond.edu/v6i5/article3.html#n128
http://jolt.richmond.edu/v6i5/article3.html#n129
http://jolt.richmond.edu/v6i5/article3.html#n130

[Gomulkiewicz, Copyleft Uses License Rights]; see, e.g., Open BSD Copyright Policy (last modified Sept. 29,
1999) <http://www.openbsd.org/policy.html> (noting that while OpenBSD is copyrighted , it is freely
redistributable).

[131]. See Open Source, supra note 13.

[132]. 17 U.S.C. § 302(a) (Supp. IV 1998).

[133]. See Microsoft Timelines (visited Feb. 28, 2000)
<http://www.microsoft.com/Museum/musTimeline.asp>.

[134]. Seeid.

[135]. See id. (noting that in the time line of Microsoft product releases Windows was upgraded in 1987,
1990, 1992, and 1995, with the Workgroup and NT versions released in 1993). While not yet listed in the
Timeline, the most recent upgrades of Windows were released in 1998 and 2000.

[136]. See Daniel J. Langin, Insurance Coverage for IP Infringement -- Helping Companies Protect
Themselves, 3 CYBER. LAW. 8 (1998).

[137]. See GNU GPL, supra note 17.

[138]. See id.

[139]. Id.

[140]. Id.

[141]. Id.

[142]. Id.

[143]. Id.

[144]. Open Source, supra note 13.

[145]. See GNU Lesser General Public License (last modified Feb. 1999)
<http://www.opensource.org/licenses/lgpl-license.html>.

[146]. E-mail from K. Powers, Staff member of Cygnus Solutions, to Shawn Potter (June 29, 1999) (e-mail
on file with the author).

[147]. Id.

[148]. See Heffan, supra note 6, at 1492-93. For example, a search conducted on March 26, 2000 in the
LEXIS Copyright Law, Federal Cases Database for "open-source" or "open source" did not produce any
results in terms of case citations.

[149]. See id. at 1509-10.

[150]. E-mail from K. Powers, Staff member of Cygnus Solutions, to Shawn Potter (June 29, 1999) (e-mail
on file with the author), supra note 147.

http://www.openbsd.org/policy.html
http://jolt.richmond.edu/v6i5/article3.html#n131
http://jolt.richmond.edu/v6i5/article3.html#n132
http://jolt.richmond.edu/v6i5/article3.html#n133
http://www.microsoft.com/Museum/musTimeline.asp
http://jolt.richmond.edu/v6i5/article3.html#n134
http://jolt.richmond.edu/v6i5/article3.html#n135
http://jolt.richmond.edu/v6i5/article3.html#n136
http://jolt.richmond.edu/v6i5/article3.html#n137
http://jolt.richmond.edu/v6i5/article3.html#n138
http://jolt.richmond.edu/v6i5/article3.html#n139
http://jolt.richmond.edu/v6i5/article3.html#n140
http://jolt.richmond.edu/v6i5/article3.html#n141
http://jolt.richmond.edu/v6i5/article3.html#n142
http://jolt.richmond.edu/v6i5/article3.html#n143
http://jolt.richmond.edu/v6i5/article3.html#n144
http://jolt.richmond.edu/v6i5/article3.html#n145
http://www.opensource.org/licenses/lgpl-license.html
http://jolt.richmond.edu/v6i5/article3.html#n146
http://jolt.richmond.edu/v6i5/article3.html#n147
http://jolt.richmond.edu/v6i5/article3.html#n148
http://jolt.richmond.edu/v6i5/article3.html#n149
http://jolt.richmond.edu/v6i5/article3.html#n150

[151]. See 17 U.S.C. § 501 (1994).

[152]. See 17 U.S.C. § 201 (1994).

[153]. H. R. REP. NO. 94-1476 (1976), reprinted as HISTORICALAND REVISION NOTES to 17 U.S.C. § 501
(1994).

[154]. Broadcast Music, Inc. v. CBS, Inc., 221 U.S.P.Q. 246 (S.D.N.Y 1983) (citing Bertolino v. Italian Line,
414 F. Supp. 279, 284 (S.D.N.Y. 1976)).

[155]. SeeGNU GPL, supra note 17.

[156]. E-mail from Brian Youmans, Free Software Foundation, to Shawn Potter (Oct. 28, 1999) (e-mail on
file with the author).

[157]. See generally Heffan, supra note 6, at 1496-96 (discussing copyright protection of software).

[158]. 17 U.S.C. § 501(b) (1994).

[159]. Sun Microsystems, Inc. v. Microsoft Corp., 188 F.3d 1115, 1121 (9th Cir. 1999) (quoting Graham v.
James, 144 F.3d 229, 236 (2nd Cir. 1998)).

[160]. Id.

[161]. See infra notes 163-166 and accompanying text (discussing cases holding that GPL breaches equate to
copyright infringement).

[162]. See, e.g., Tingley Sys., Inc. v. Norse Sys., Inc., 49 F.3d 93, 98 (2d Cir. 1995) (upholding jury finding of
no infringement where jury question stated that "unless Tingley proved an agreement . . .that Tingley
software culd only be used on the Ultimate machines, Tingley could not prevail on its copyright claim"). Id;
see also Stephen J. Sand, Validity, Construction, and Application of Computer Software Licensing
Agreements, 38 A.L.R 5th 1, 10 (1999) (citing cases in which courts found that a breach of a software license
resulting in a use that exceeds the scope of the license constitutes copyright infringement).

[163]. See Advanced Computer Servs. v. MAI Sys. Corp., 845 F. Supp. 356 (E.D. Va. 1994).

[164]. See SAS Inst., Inc. v. S & H Computer Sys., 605 F. Supp. 816, 828 (M.D. Tenn. 1985).

[165]. See id. at 827.

[166]. See GNU GPL, supra note 17.

[167]. See generally Michael Liberman, Comment, Overreaching Provisions in Software License Agreements,
1 Rich. J.L. & Tech. 4, ¶ 39 (Apr. 10, 1995) <http://www.richmond.edu/jolt/v1i1/liberman.html> (noting that
in Lasercomb Am., Inc. v. Reynolds, 911 F.2d 970 (4th Cir. 1990), the Fourth Circuit found the non-compete
clauses in defendant's license agreement were contrary to public policy).

[168]. See Lasercomb Am., Inc. v. Reynolds, 911 F.2d 970, 978-79 (4th Cir. 1990).

[169]. Tamburo v. Calvin, No. 94 C 5206, 1995 WL 121539, at *7 (N.D. Ill. Mar. 17, 1995).

[170]. See generallyThe Business Case for Open Source (visited Mar. 15, 2000)
<http://www.opensource.org/for-suits.html> (describing the various products that have been created).

http://jolt.richmond.edu/v6i5/article3.html#n151
http://jolt.richmond.edu/v6i5/article3.html#n152
http://jolt.richmond.edu/v6i5/article3.html#n153
http://jolt.richmond.edu/v6i5/article3.html#n154
http://jolt.richmond.edu/v6i5/article3.html#n155
http://jolt.richmond.edu/v6i5/article3.html#n156
http://jolt.richmond.edu/v6i5/article3.html#n157
http://jolt.richmond.edu/v6i5/article3.html#n158
http://jolt.richmond.edu/v6i5/article3.html#n159
http://jolt.richmond.edu/v6i5/article3.html#n160
http://jolt.richmond.edu/v6i5/article3.html#n161
http://jolt.richmond.edu/v6i5/article3.html#n162
http://jolt.richmond.edu/v6i5/article3.html#n163
http://jolt.richmond.edu/v6i5/article3.html#n164
http://jolt.richmond.edu/v6i5/article3.html#n165
http://jolt.richmond.edu/v6i5/article3.html#n166
http://jolt.richmond.edu/v6i5/article3.html#n167
http://www.richmond.edu/jolt/v1i1/liberman.html
http://jolt.richmond.edu/v6i5/article3.html#n168
http://jolt.richmond.edu/v6i5/article3.html#n169
http://jolt.richmond.edu/v6i5/article3.html#n170
http://www.opensource.org/for-suits.html

[171]. See Pub. L. 106-160, 113 Stat. 1774 (1999), amending 17 U.S.C. § 504(c)(2) (Supp. IV. 1998).

[172]. See 17 U.S.C. § 502(a) (1994).

[173]. See Cadence Design Sys., Inc. v. Avant! Corp., No. 99-15048, 1999 WL 561261, at *1 (9th Cir. July
30, 1999).

[174]. See Open Source Definition, supra note 13.

[175]. Id.

[176]. See GNU GPL, supra note 17.

[177]. See id.; Microsoft Corporation, Microsoft End User License Agreement (EULA): Windows 98 - Online
(version 3/26/98) (visited Feb. 25, 2000) <http://www.linuxmall.com/misc/refund/eula/online032698.html>.
(reproducing the Microsoft End User License Agreement in whole) [hereinafter Microsoft, License
Agreement].

[178]. See GNU GPL, supra note 17; Microsoft, License Agreement, supra note 178.

[179]. See Microsoft Windows 98 End User license Agreement, OEM Version 4/10/1995 (noting that a copy
of the End-User License Agreement is included in every Windows 98 software packet); Microsoft, License
Agreement, supra note 178.

[180]. SeeGNU GPL supra note 17.

[181]. See Microsoft, License Agreement, supra note 178.

[182]. See GNU GPL, supra note 17.

[183]. Microsoft, License Agreement, supra note 178.

[184]. Id.

[185]. GNU GPL, supra note 17.

[186]. Microsoft, License Agreement, supra note 178.

[187]. See GNU GPL, supra note 17.

[188]. See Microsoft, License Agreement, supra note 178.

[189]. See GNU GPL, supra note 17.

[190]. See Microsoft, License Agreement, supra note 178; GNU GPL, supra note 17.

[191]. See E-mail from Craig Ozancin, Engineer for Axent Technologies, to Shawn Potter (Oct. 6, 1999) (e-
mail on file with the author).

[192]. See id.

[193]. See id.

http://jolt.richmond.edu/v6i5/article3.html#n171
http://jolt.richmond.edu/v6i5/article3.html#n172
http://jolt.richmond.edu/v6i5/article3.html#n173
http://jolt.richmond.edu/v6i5/article3.html#n174
http://jolt.richmond.edu/v6i5/article3.html#n175
http://jolt.richmond.edu/v6i5/article3.html#n176
http://jolt.richmond.edu/v6i5/article3.html#n177
http://www.linuxmall.com/misc/refund/eula/online032698.html
http://jolt.richmond.edu/v6i5/article3.html#n178
http://jolt.richmond.edu/v6i5/article3.html#n179
http://jolt.richmond.edu/v6i5/article3.html#n180
http://jolt.richmond.edu/v6i5/article3.html#n181
http://jolt.richmond.edu/v6i5/article3.html#n182
http://jolt.richmond.edu/v6i5/article3.html#n183
http://jolt.richmond.edu/v6i5/article3.html#n184
http://jolt.richmond.edu/v6i5/article3.html#n185
http://jolt.richmond.edu/v6i5/article3.html#n186
http://jolt.richmond.edu/v6i5/article3.html#n187
http://jolt.richmond.edu/v6i5/article3.html#n188
http://jolt.richmond.edu/v6i5/article3.html#n189
http://jolt.richmond.edu/v6i5/article3.html#n190
http://jolt.richmond.edu/v6i5/article3.html#n191
http://jolt.richmond.edu/v6i5/article3.html#n192
http://jolt.richmond.edu/v6i5/article3.html#n193

[194]. See id.

[195]. Seeid.

[196]. E-mail from Steve Jackson, Engineer for Axent Technologies, to Shawn Potter (Oct. 6, 1999) (e-mail
on file with the author).

[197]. See Paul Ferris, Fixing Security Holes on Internet Time, LINUX TODAY (last modified June 21, 1999)
<http://linuxtoday.com/stories/6947.html/> (noting the users fixed a bug in a matter of hours)[hereinafter
Ferris, Fixing Security] ; see also E-mail from Craig Ozancin, supra note 192 (stating that problems may be
fixed relatively quickly because the source code is widely accessible).

[198]. See generally E-mail from Craig Ozancin, supra note 192 (alluding to the fact that proprietary
software from producers like Microsoft has a longer wait period for locating and fixing problems, based on
the fact that the source code is not accessible to everyone).

[199]. Ferris, Fixing Security, supra note 198.

[200]. Id.

[201]. Free Software Foundation, Inc., Frequently Asked Questions About Open Source: Doesn't Closed
Source Help Protect Against Crack Attacks? (visited Feb. 24, 2000) <http://www.opensource.org/faq.html>.

[202]. See Ferris, Fixing Security, supra note 198.

[203]. See Email from Craig Ozancin, supra note 192.

[204]. See id.

[205]. See generally GNU GPL, supra note 17 (allowing users to modify the program).

[206]. Information regarding Underwriters Laboratories ("UL") services can be found at Underwriters
Laboratories, Inc., About UL -- Who We Are and What We Do (visited Mar. 26, 2000)
<http://www.ul.com/about/index.html>.

[207]. See ProCD, Inc. v. Zeidenberg, 86 F.3d 1447 (7th Cir. 1996) (holding that a shrinkwrap license to be
binding on a software buyer under the UCC).

[208]. See Gomulkiewicz, Copyleft Uses License Rights, supra note 131, at 190.

[209]. Seeid. at 191-92.

[210]. Id. at 192.

[211]. Richard Stallman, Updated: Richard Stallman -Why We Must Fight UCITA, LINUX TODAY (last
modified Feb. 6, 2000) <http://linuxtoday.com/stories/15948.html> [hereinafter Stallman, Updated].

[212]. See 17 U.S.C. § 1201(f)(1) (Supp. IV. 1998).

[213]. Stallman, Updated, supra note 212.

[214]. See, e.g., Dana Gardner, Linux 2.2 Boosts Server Scaling, INFOWORLD (last modified Nov. 16, 1998
<http://www.infoworld.com/cgi-bin/displayArchive.pl?/98/46/t06-46.8.htm> (noting use by the U.S. Navy's

http://jolt.richmond.edu/v6i5/article3.html#n194
http://jolt.richmond.edu/v6i5/article3.html#n195
http://jolt.richmond.edu/v6i5/article3.html#n196
http://jolt.richmond.edu/v6i5/article3.html#n197
http://linuxtoday.com/stories/6947.html/
http://jolt.richmond.edu/v6i5/article3.html#n198
http://jolt.richmond.edu/v6i5/article3.html#n199
http://jolt.richmond.edu/v6i5/article3.html#n200
http://jolt.richmond.edu/v6i5/article3.html#n201
http://www.opensource.org/faq.html
http://jolt.richmond.edu/v6i5/article3.html#n202
http://jolt.richmond.edu/v6i5/article3.html#n203
http://jolt.richmond.edu/v6i5/article3.html#n204
http://jolt.richmond.edu/v6i5/article3.html#n205
http://jolt.richmond.edu/v6i5/article3.html#n206
http://www.ul.com/about/index.html
http://jolt.richmond.edu/v6i5/article3.html#n207
http://jolt.richmond.edu/v6i5/article3.html#n208
http://jolt.richmond.edu/v6i5/article3.html#n209
http://jolt.richmond.edu/v6i5/article3.html#n210
http://jolt.richmond.edu/v6i5/article3.html#n211
http://linuxtoday.com/stories/15948.html
http://jolt.richmond.edu/v6i5/article3.html#n212
http://jolt.richmond.edu/v6i5/article3.html#n213
http://jolt.richmond.edu/v6i5/article3.html#n214
http://www.infoworld.com/cgi-bin/displayArchive.pl?/98/46/t06-46.8.htm

Fleet Numerical Meteorologic and Oceanographic Center, in Monterey, California); Mitch Stoltz, The Case
for Government Promotion of Open Source Software (visited Jan. 29, 2000)
<http://www.netaction.org/opensrc/oss-recommend.html> (noting the U.S. Postal Service's use of a modified
version of Linux) [Stoltz, Government Promotion]; see generally Torsten Busse, et al., Linux Continues to
Pick up Steam: Customers, Vendors Wrestle with Issues But Remain Excited, INFOWORLD (last modified
Nov. 30, 1998) <http://www.infoworld.com/cgi-bin/displayArchive.pl?/98/48/c08-48.34.htm> (reporting
recent corporate interest in Linux).

[215]. See Stoltz, Government Promotion, supra note 215 (stating that a Congressional initiated study by the
GAO would be a "risk-free way to assess the benefits of OSS [open source software] to particular
government agencies"). Id.

[216]. See id.

[217]. See Unix for the Masses, LAN TIMES, August 1990, at 44.

Related Browsing

Copyright 2000 Richmond Journal of Law & Technology

http://www.netaction.org/opensrc/oss-recommend.html
http://www.infoworld.com/cgi-bin/displayArchive.pl?/98/48/c08-48.34.htm
http://jolt.richmond.edu/v6i5/article3.html#n215
http://jolt.richmond.edu/v6i5/article3.html#n216
http://jolt.richmond.edu/v6i5/article3.html#n217
http://jolt.richmond.edu/v6i5/article3_related.html
http://jolt.richmond.edu/admin/copyright.html

	Richmond Journal of Law and Technology
	2000

	Opening Up to Open Source
	Shawn W. Parker
	Recommended Citation

	tmp.1469930188.pdf.Papwe

