
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

1-2007

Design and Implementation of Interactive Tutorials
for Data Structures
Lewis Barnett III

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Computer Sciences Commons, and the Curriculum and Instruction Commons

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for
inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information,
please contact scholarshiprepository@richmond.edu.

Recommended Citation
Barnett, Lewis, III, and Ross Gore. "Design and implementation of interactive tutorials for data structures." Journal of Computing
Sciences in Colleges 22, no. 3 (January 2007): 128-35.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

1This work was supported by a Collaborative Research Grant from the authors’
home institution and by NSF Grant DUE-9652982.

* Copyright © 2007 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

128

DESIGN AND IMPLEMENTATION OF INTERACTIVE

TUTORIALS FOR DATA STRUCTURES* 1

Lewis Barnett
Department of Math and Computer

Science
University of Richmond
Richmond, VA 23173

lbarnett@richmond.edu

Ross Gore
Department of Computer Science

School of Engineering and Applied Science
University of Virginia

Charlottesville, VA 22904-4740
rjg7v@cs.virginia.edu

ABSTRACT
The Tutorial Generation Toolkit (TGT) is a set of Java classes that supports
authoring interactive tutorial applications. This paper describes extensions to
the capabilities of the TGT to support styles of interaction identified as
effective in recent research. Several new tutorials aimed at the data structures
course built using the enhanced toolkit are also described.

1. INTRODUCTION
The Tutorial Generation Toolkit is a set of Java classes that implements a

framework for developing interactive tutorial applications in Java. The basic form of a
tutorial is an interactive slide show combining explanatory material and exercises that
provide students with immediate feedback. The toolkit provides facilities for flexible
sequencing of “slides,” use of Java GUI components to compose slide appearance, simple
animation of fixed images, voice-overs, and multiple choice self-tests with results logged
to a database if desired. A tutorial author creates a tutorial by writing a set of Java classes
that subclass the TGT_Slide class, which is itself a subclass of java.awt.Panel. Each of
these classes can use any of the Java GUI components to present information or solicit
user interaction. The original distribution contained a fairly complete set of tutorials on
CS 1 topics. The TGT is described more completely in [1].

CCSC: Eastern Conference

129

This paper describes the development of tutorial materials to support teaching of the
Data Structures course and enhancements to the TGT framework to support their
implementation. In light of recent experimental work on the effectiveness of algorithm
visualization as a pedagogic tool, it was clear that the capabilities of the existing toolkit,
particularly the support for only simple image-based animation, would not be sufficient
to support the new tutorials. This phase of development had the following design goals:
 ! the framework should support better interactive algorithm visualizations for the new

tutorials,
 ! the TGT framework should be modified to facilitate the addition of new tutorials,

and
 ! the frameworks should be extended to support a wider range of distribution

methods.
The focus of the modifications and enhancements was to create a more flexible

environment that allowed us to give users more control over actions within the tutorials.
This paper describes the design decisions that governed the extensions and modifications
of the framework, as well as design of the tutorials themselves. The overall design of our
project fell into three categories: reorganizing the packaging of tutorials, extending the
capabilities of the toolkit and determining the content and organization of individual
tutorial units. In many ways, this paper describes our attempt to overcome limitations in
the design and implementation of an existing, highly useful code base.

2. BACKGROUND
Many of the tutorials described here make extensive use of algorithm visualization

in the context of a rich multi-mode presentation of material describing the algorithm. In
recent years, a great deal of attention has been focused on the effectiveness of algorithm
visualization. The meta-study of visualization effectiveness research by Hundhausen, et.
al. [3] indicates that visualizations that do not offer an opportunity for interaction by the
student have little effect on learning, and that the most effective uses of visualization
included student control of the execution of visualizations and use of visualizations for
“what-if” and prediction exercises. Grissom, et. al. studied learning differences between
students who were involved in interaction with visualizations at varying levels based on
the taxonomy put forward in the report of the Working Group on Improving the
Educational Impact of Algorithm Visualization [4]. This study confirmed that increasing
levels of interaction corresponded positively with increases in understanding. Work by
Saraiya, et. al. [5] confirmed that allowing the student to control the execution of a
visualization step-by-step (not just the pace of the visualization) was significant, while
casting doubt on the effectiveness of some other widely used techniques such as
providing pseudocode displays of the algorithm being visualized. This work also
indicated that providing students with good example data sets was more effective than
just allowing them to construct their own data sets. Hansen, et. al. report on experiments
using the HalVis system [2], which is similar to our tutorials in that it embeds
visualizations within a richer hypermedia context that includes multiple visual
representations of an algorithm with textual, spoken and hyperlinked explanatory
information. Students using the HalVis system recorded larger learning gains than
students using more traditional visualization applications. The work described in this

JCSC 22, 3 (January 2007)

130

paper extended the TGT framework to support the types of interactive visualizations that
have been identified as most effective in these studies.

3. MODIFICATION OF TUTORIAL PACKAGING
The original TGT distribution consisted of a set of tutorials for CS 1 bundled as a

single application with a hand-crafted menu screen that allowed the user to select which
of the tutorials they wanted to work through. The resulting application thus consisted of
the classes that implemented all of the individual tutorials and the shared toolkit classes,
plus additional data files (for voice-overs, etc).

This presented two significant problems. First, it did not allow for any additional
units to be added to the bundle without the significant overhead of redesigning the menu
screen, which was essentially an image map with interactive highlighting. This was
inconvenient, and the problem would only become larger and more time consuming with
every additional unit. Second, the packaging did not have the flexibility of allowing
tutorial units to be distributed individually. A user interested in only one tutorial unit
would be forced to download the entire bundle. Again, this was undesirable, as the size
of the bundle would only grow with continued additions. To solve both of these
problems, we decided to break out each tutorial from the bundle into its own separate
package. Though this required that each tutorial have its own copies of the files shared
by all of the tutorials, it made the addition of tutorial units and individual tutorial unit
distribution extremely simple. This is a necessary first step to take advantage of recently
developed distribution options such as Java Web Start.

4. TGT FRAMEWORK MODIFICATIONS AND EXTENSIONS
The major change we decided to make was in the design of the animation system

provided by the class TGT_AnimatorBox. This class originally provided a framework
for a user to create animation sequences from previously created images, referred to as
“sprites.” However, this approach came with some serious limitations. The type of
animation supported was that of moving previously created images around the screen
according to commands in a configuration file for the TGT_AnimatorBox instance. This
approach works reasonably well for planned animation sequences such as algorithm
animation for fixed inputs, but was simply not capable of the kind of animation controlled
by user interaction that we had in mind for the new tutorial units. The enhancements to
the animation facility fell into three areas. First, we needed sprites that could draw
themselves rather than relying upon an image file for their appearance, thus allowing the
appearance of a sprite to change over the course of an animation if necessary. Second, we
needed to be able to change the set of sprites that an animation was using on the fly.
Finally, we needed to be able to adjust the movements of the sprites as the animation
progressed in response to user input, rather than simply following a fixed script read from
a configuration file.

4.1. Self Drawable Sprites

CCSC: Eastern Conference

131

Figure 2: Sprites for constructing
linked lists.

The typical way of illustrating many data structures is the “box and arrow diagram,”
where nodes in the structure are indicated by a box, and links between nodes are shown
as arrows. Consider the task of deleting a node from a linked list from the point of view
of animating the steps required with the original TGT animation framework. We start
with three nodes and some connections among them. During the course of the deletions,
the links from the two adjacent nodes may be changed, and one of the nodes is “moved
out” of the list. This is not so bad for a straightforward, scripted animation. However, we
want the student involved in the process, making decisions about what action to do next.
In order to support this type of animation without having to produce a huge number of
image files to handle all possible scenarios, we need for our sprites to support the notion
of connections that could automatically redraw themselves when the sprites they are
connected to move. We also need to be able to change which sprites connections are
attached to during the animation, and to change the “contents” (i.e. the values stored in
a node, or the addresses corresponding to links, etc.) of the nodes on the fly.

We began by redesigning the TGT_Sprite class to fit into an inheritance hierarchy
of sprite types which would include a new type of sprite called a “drawable sprite.” These
new sprites would create their own appearance using the drawing primitives from the
Java Graphics classes rather than displaying an existing image. Special purpose classes
were derived from the basic drawable sprite class for linked list nodes and “connectors”
(used for pointers between nodes), along with a helper class that acted as an attachment
point in the nodes for the pointers. Drawable sprites can still be moved around, and when
they are, any connectors attached to them redraw themselves in specified ways. We did
not include a general edge routing algorithm for redrawing connections between sprites,
but instead subclassed the connector sprite for straight connections, connections with
right angles, and so forth. This approach was less complex and in addition gives the slide
programmer an added measure of control over the appearance of the animation.

With this arrangement, we were able to proceed with development of tutorials
involving linked list data structures, and we had also left the door open for the
development of other node-like sprites such as binary tree nodes. Figures 1 and 2 show
the organization and use of some of the new sprite classes. The current sprite hierarchy
is shown in Figure 1. All of the classes implement the TGT_AbstractSprite interface,
which dictates a draw method as well as
accessors and mutators for properties that all

implementing sprites are expected to

TGT_AbstractSprite TGT_Sprite

TGT_DrawableSprite TGT_ImageSprite

TGT_NodeSprite TGT_ConnectionPoint TGT_BasicConnector

TGT_HeaderNodeSprite TGT_RefNodeSprite TGT_ListNodeSprite

TGT_RtAngleConnector

TGT_UTurnConnector

Interface
Abstract class
Concrete class

Implements

Extends

Figure 1: TGT Sprite heirarchy

JCSC 22, 3 (January 2007)

132

provide. The TGT_Sprite class is now an abstract class that contains definitions of many
of the common methods, such as accessors and mutators for the properties that all sprites
must support. The draw method remains abstract in this class. The old TGT_Sprite class
which supports animation of images from files is now called TGT_ImageSprite.

An example of special-purpose sprites for displaying linked lists is shown in Figure
2. To facilitate making the cognitive connection between the diagram and the allocation
of dynamic structures in main memory, the node sprites can display their pointer values
both visually as arrows from the source of the pointer to the referenced object and as the
memory address (shown in parentheses) actually stored in the “next” or “head” field of
a node. Display of the addresses can be turned off. The TGT_HeaderNodeSprite
represents the head of a linked list maintaining head and tail pointers to nodes within the
list. The TGT_NodeSprite has a data field and a “next” field, which is null in the example
shown here. Two of the “connector” sprites are shown, a straight arrow and an arrow with
a right-angle bend, which can be oriented in any of the eight possible directions (think of
the knight’s moves in chess). Not shown are the TGT_ConnectionPoint instances
contained within each of the node classes. These objects serve as anchors for the
connectors. The connection points have positions relative to the position of the sprite
they belong to, and connectors anchored to them take their endpoint positions from the
connection point objects. When a sprite with connection points is moved, the connectors
attached to the connection points are automatically redrawn to reflect the movement.

4.2. Run-time Sprite Additions
A driving factor in the design of the new animation structure was the desire to create

a “workshop” where students could perform different actions, for example, operations on
a linked list, and then see the individual results of each of their actions, step-by-step.
What we envisioned was a way to allow students to piece together code snippets into an
algorithm, and to then animate the outcome of their work, whether correct or not. The
existing TGT_AnimatorBox class operated by reading a configuration file containing the
steps of the animation and all of the images for the sprites at instantiation. It did not
provide any ability to modify an animation sequence after instantiation. We wanted to
be able to create an environment where we could display unique animation sequences
based on user input. To do this using the old framework, we would have had to create
an animation configuration file for every possible combination of user choices, and then
pick the correct one to display. We wanted to allow users many different choices, the
results of which often depended upon the previous choices. For any reasonably complex
task, such as adding a node to a linked list, the number of possible combinations, and thus
the number of “canned” animation sequences required, is unworkable. To avoid this
problem, we subclassed the existing TGT_AnimatorBox to support runtime additions of
sprites based upon user input. This allowed us to create an environment for individual
TGT_Slides where we could add or remove sprites as the user made their choices. The
subclass can accept animation data in the form of vectors of sprites rather than as
descriptive information from an existing file. When the user was done, we could create
the vectors to for the animation from their choices.

4.3. Dynamic Animation Sequences

CCSC: Eastern Conference

133

While the previous extension allowed to us to create a unique animation sequence
on the fly based upon user input, once the sequence was created it could not be modified.
The remaining requirement was the ability to let a student single-step through the
sequence of actions they had constructed, animating each step based on the state of the
previous step. The dynamic animations in the Linked List tutorial described below also
take advantage of the fact that the TGT_Slide class supports the notion of “sub-slides,”
which are basically a set of panels that can be successively displayed within a single
TGT_Slide instance. This is somewhat similar the way a Java CardLayout works. So,
each step through a student’s constructed algorithm involved creating the vectors for an
animation that was displayed on a subslide. Even with these enhancements, the kind of
interaction present in these tutorials requires painstaking work to set up, and once an
animation is in progress, there is no real way to change its course. What we have done is
provided a way for an application to construct and play a sequence of animations on the
fly.

5. NEW TUTORIALS
The Data Structures course is typically where students are introduced to dynamically

allocated linked data structures and some of the more sophisticated and efficient sorting
algorithms. The current set of tutorials addresses these two topics. We chose to break up
the sorting subject matter into three tutorials on different sorts.

5.1. Insertion Sort

We decided it was necessary to cover one basic and fairly straightforward sorting
algorithm. This tutorial covers not only the details of the algorithm itself, but introduces
students to terminology and common themes shared by sorting algorithms. This tutorial
could be used as background in a Data Structures course or to introduce this algorithm
in a CS 1 course.

5.2. Quicksort
This tutorial first traces through the top-level code for Quicksort while showing its

effects on a small array, without going into the details of the partitioning algorithm. The
student can either single-step through the code or let it run at a fixed pace. Next, the
partitioning algorithm is demonstrated by providing an array and allowing the student to
interactively pick the pivot index. The partition algorithm with the student’s selected
index is then simulated to show how balanced the subarrays would be using the student’s
selected index. Finally, we show students various Quicksort optimizations.

5.3. Heap sort
The last sort we chose to present was heap sort. While heap sort is usually not

thought of as the fastest sorting algorithm, it is still very efficient, and presented us with
a great opportunity to display animation and graphics to accompany the source code.
Without illustrations to visually depict what the algorithm is doing, it is very difficult to
fully understand this sort. Also, heap sort gave us an opportunity to familiarize students

JCSC 22, 3 (January 2007)

134

with the “heap” data structure and introduce them to trees. We felt this would be a good
stepping stone to build on for some of our future data structures tutorials.

5.4. Linked Lists
The tutorial on linked lists was the generator for most of the new development in the

tutorial framework described earlier. Programming linked structures for the first time is
often difficult for students, and much of the difficulty arises from confusion about how
pointers (or references, depending on what your language chooses to call the construct)
work, what using them in various ways means, and what the effects of code that modifies
pointers look like.

We wanted to address these problems by providing an interactive workbench for
playing with code that operates on linked lists. By allowing the student to “write the
code” to add or delete nodes and traverse lists and then animating their code for them, the
tutorial allows students to “see” the results of common mistakes and helps them develop
a deeper understanding of programming dynamic structures. The tutorial first asks
students to choose the condition for a while loop that traverses an existing linked list from
a set of candidate conditions. The candidates include conditions that result in
“off-by-one” errors in both directions, causing both references through null pointers and
missing the last element of the list. Subsequent exercises give students the opportunity
to build their own code fragments for the “insert at front” operation. The code is
constructed interactively from operations like “create a new node reference,” “set the
value of the next field,” “change the value of the list’s head reference,” and so forth, with
dialog boxes used to collect user input such as the name of the node to modify or create.
The student is then allowed to step through their code on an example list to see whether
it correctly performs the insertion. Incorrect solutions are actually the most effective
demonstrations for this exercise, as incorrectly initialized reference variables, self-loops,
and omitted operations like resetting head or tail are clearly visualized. A correct solution
is available in case of mounting frustration.

6. FUTURE WORK
While the packaging modifications simplified extension and distribution of the

tutorials, each tutorial still consists of a Java application and a large number of ancillary
files including image files and sound files. The ultimate goal is to come up with a good
Web-based distribution system that will circumvent any installation issues that users may
experience. Java Web Start is an obvious candidate, but there are difficulties. In order to
use Java Web Start, an application must be completely packaged in a JAR file, and at
present, it is not possible to play sounds that are stored in a JAR file directly.

We are also interested in developing tutorials on other data structures, as well as
tutorials for topics from architecture and algorithms.

7. CONCLUSIONS
Creating interactive tutorials with the toolkit described in this paper is not for the

faint of heart; commercial packages such as Macromedia Director allow many of the

CCSC: Eastern Conference

135

same effects. What the TGT classes provide is complete flexibility in the construction of
tutorials. If you can program your idea in Java, the TGT classes provide a framework in
which to implement your idea. This paper documents significant improvements in the
packaging strategy used by the toolkit and increased flexibility and power in the
TGT_AnimatorBox and the corresponding TGT_Sprites it supports. These improvements
in the animation and display capabilities leave us with a tool that will allow development
of further highly interactive tutorials in the area of data structures and algorithms.

The modifications to the tutorial framework can also be construed as an object
lesson for software designers. All of the modifications required for the current set of
tutorials sprang from a failure to pay appropriate attention to potential changes in
requirements over the life of the software system during the original design phase. A
packaging strategy that was driven more by esthetic concerns than by thoughts of
potential extensibility had to be replaced. An animation facility with a configuration
policy that proved to be too restrictive was expanded to allow dynamic creation of
animation instances. In terms of the sprites, the benefits of using interfaces and abstract
classes to separate the construction of special purpose sprites from the mechanism of
displaying sprites is evident, and has left us with a greatly improved framework for the
development of future sprite subtypes.

8. GETTING THE TGT PACKAGE AND TUTORIAL UNITS
Information about downloading the TGT package with documentation is

available by following the Tutorial Generation Toolkit link from
http://www.mathcs.richmond.edu/~lbarnett/.

REFERENCES

[1] L. Barnett, J. Kent, J. Casp and D. Green. Design and Implementation of an
interactive tutorial framework. Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education, pp. 87 – 91, Atlanta, Georgia,
February 25 – March 1, 1998.

[2] S. Hansen, N. H. Narayanan and M. Hegarty. Designing educationally effective
algorithm visualizations. Journal of Visual Languages and Computing, 13(3):
291 – 317, 2002. Academic Press.

[3] C. D. Hundhausen, S. A. Douglas and J. T. Stasko, A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and Computing, 13(3):
259 – 290, 2002.

[4] T. L. Naps, G. Rößling, et. al. Exploring the role of visualization and
engagement in computer science education. Inroads – The SIGCSE Bulletin,
35(2): 131 – 152, 2003.

[5] P. Saraiya, C. A. Shaffer, D. S. McCrickard and C. North. Effective features of
algorithm visualizations. Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education, pp. 382 – 386, Norfolk, VA, Mar. 3 – 7, 2004.

	University of Richmond
	UR Scholarship Repository
	1-2007

	Design and Implementation of Interactive Tutorials for Data Structures
	Lewis Barnett III
	Recommended Citation

	C:\Documents and Settings\John Meinke\My Documents\myfiles\CCSC\ccsc06\JCSC22_3Text.wpd

