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1. Introduction 

Consider the following set of linear fractional maps 
z - a 

Ta(z) := _   , < l. 
az 

Each  Ta is an automorphism  of the open  unit  disk  ID>   := { z E C lzl < 1} and 

Ta(81D>) = 81D>. For an inner function ¢, the Prostman shifts 

</J( z) - a 

</Ja( z) := Ta 0 </J( z) = l_ a</J( z) 

are certainly inner functions. A celebrated theorem of Frostman [9] says that <Pa is 

actually a Blaschke product for every !al < 1 with the possible exception of a set 

of logarithmic capacity zero. In this survey paper, we explore the class of Blaschke 

products for which this exceptional set is empty. These Blaschke products are called 

indestructible and have some intriguing properties. 
 

2. Frostman's theorems 

If ( an)n l is a sequence of points in ID>, p E N U {O}, and 'Y E JR, a necessary 

and  sufficient  condition  that  the  infinite  product 
 

00   - 

an 
 
an :_: 

n=l lanl 1- anZ 

defines an analytic function on ID>  is that the series 
 

 

converges. Such sequences ( an)n l are called Blaschke sequences and the product 

B is called a Blaschke product. The function B is analytic on ID>, has zeros precisely 

at the origin and the an's (repeated according to their multiplicity),  and satisfies 
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N N 

 

IB(z)I < 1 for all z E ][)). Furthermore, by a well-known theorem of Fatou [3, Ch. 2] 

[8, Ch. 2], the radial limit  function 

B* (() := lim B(r() 
r-+1- 

exists and satisfies IB*(()I = 1 for almost every ( E cm, with respect to (normal­ 

ized) Lebesgue measure m on 8][)). 

REMARK 2.1. (1) In what follows, we use the notation B* (() to denote 

the radial limit value of B at ( whenever it exists (whether or not it is 

unimodular). 

(2) This paper will cover a selection of results about Blaschke products. All 

the basic properties of Blaschke products, and more, are covered in [3, 5, 
6, 8, 12, 18, 26]. 

For a particular point ( E 8][)), there is the following refinement of Fatou's 

theorem [10] (see also [3, p. 33]). 

THEOREM 2.2 (Frostman). A necessary and sufficient condition that a Blaschke 

product B, with zeros ( an)n i, and all its subproducts have radial limits of modulus 

one at ( E 8][)) is that 
 

 

(2.3) 
1- lanl 
1( - anl < oo. 

 

The Frostman  theorems (like Theorem 2.2 above and Theorem 2.13, Theo­ 

rem 2.14, and Theorem 2.18 below) are not always standard material for many 

complex analysts and so, for the sake of completeness and to give the reader a 

sense of how all these ideas are related, we will outline parts of the proofs of his 

theorems. 

In our discussion below, we will only use one direction of Theorem 2.2 so we 

prove this one direction and point the reader to [3, p. 34] for the proof of the other. 

Suppose, for fixed ( E 8][)), the condition in eq.(2.3) holds. We wish to show that 

B* (() := lim B( r( ) 
r-+1- 

 

exists and IB*(()I = l. The proof of the same result for any sub-product will follow 

in a similar way. Without loss of generality, we can assume ( = 1. First check the 

following  inequalities 

(2.4) I1- arl  > 1- r, 

 

11- ar l   > 
1 

2 1 1- al , 0 < r < 1, l al < 1. 

Second, use induction to verify that for a sequence ( bn)n l C (0, 1), we have 

 

(2.5) II(1 - bn) ;;:: 1- Lbn , VN E N. 
n=l n=l 

Third, one can verify, via a routine computation, the identity 

I r - 'lnl2 = 1- (1 - r2)(1 - lanl2) 

ll- anrl 2 ll- anr l 2 



 

 

 

 

1 1 "t 

2( tn 
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and so 

 

 

I B(r)l2 = roro Ir -51 2 

n=l 1 1 - a
n
rl 2 

= roro  {1- (1 - r2)(1 - lan l 2 ) } 

n=l 1 1 -a
n
rl 2 

1- f: (1 - r2)(1 - lan l 2) (by eq.(2.5)) 
,,... n=l l l - anr l 2 ' 

= 1- f: (1 - (1 - 1 2) . 

n=l l l - anr l l l - anrl 

Now  use the inequalities in eq.(2.4)  and the dominated  convergence theorem to get 

(2.6) lim   I B(r) I  = 1. 
r-+1- 

To finish, we need to show that 

 

 
exists. Use the identity 

 

 
 

to get 

 

lim  arg B(r) 
r-+1- 

 

 

From here, one can argue that the right-hand side of eq.(2.7) converges absolutely 

and uniformly in r and so 

lim arg B( r) 
r-+1- 

exists.  Combine this with eq.(2.6) to complete one direction of the proof.  See [3, 

p. 34] for the other direction. 

REMARK 2.8. (1) If the zeros (an)n l do not accumulate at (, the con- 

dition in eq.(2.3) is easily satisfied and in fact, B extends analytically to 

an open neighborhood of ( [18, p. 68]. 

(2) The zeros can accumulate at ( and eq.(2.3) can still hold. For example, 

let tn !0 satisfy En tn < oo and let 

an = 2 + 2e' ". 

Notice how these zeros lie on the circle Iz - I = , which is internally 

tangent to 8DJ> at ( = 1, and accumulate at ( = 1. A computation shows 

that 

1- l anl 
2 

= 
1 

1 - cos tn) 
2 
, jl - anl =2

v'2
v'l - cos tn tn 
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g 

 

and so  
oo   1- lan l 2 oo 

11 - an l :;:::: tn < 00. 

Notice how this infinite Blaschke product B with zeros ( an)n l satisfies 

I B*(() I  = 1 for every ( E 81Dl . 
(3) With more work, one can even arrange the zeros of B to satisfy the much 

stronger condition 

1- l an l 
sup L.,, I;- I  < oo. 
(E8Illi n=l '> - an 

We will get to this in the last section. 

(4) So far, we have examined when B* (( ) exists and has modulus one. Frost­ 

man [9) showed that the Blaschke product with zeros an = 1-n-2 satisfies 

B*(l) = 0. 
(5) If B* (( )  exists for  every ( E 81Dl , then results in [1, 5) say that if E is 

the set of accumulation points of ( an)n 1, then (a) E is a closed nowhere 

dense subset of 81Dl , (b) the function ( ---+ B* (() is discontinuous at (0 if 
and only if (o E E. 

By Fatou's theorem, the radial limit function 

¢*(() := lim <f>( r( ), 
r-+1- 

for a bounded analytic function </> on IDl, exists for m-almost every ( E 81!)) [8, p. 6). 

If 1¢* (()1 = 1 for almost every (, then </> is called an inner function and can be 

factored as 

(2.9) <f>( z )  = {ei'Y zP          1        1  t ; z }exp (- lailli       ;dµ(( ) ) · 

Here µ is a positive finite measure on 81!)) with µ 1- m. The first factor in eq.(2.9) is 

the Blaschke factor and is an inner function. The second term in eq.(2.9) is called 
the singular inner factor.  By a theorem of Fatou [8, p. 4), 

(2.10) lim  i  l- r2 
I ( .012 

 
dµ(() = ( Dµ)( 

·o 
e' ) 

r-+1- 8Illi - re• 

whenever Dµ( ei0 ), the symmetric derivative of µ at ei0 , exists (and we include the 

possibility that ( Dµ)( eilJ ) = oo). By the Lebesgue differentiation theorem, Dµ 

exists at m-almost every eilJ . Moreover, since µ 1- m, we know that 

(2.11) Dµ = 0  m-a.e.    and    Dµ = oo  µ-a.e. 

See [30, p. 156 - 158) for the proofs of eq.(2.11). The first identity in eq.(2.11), 

along with the identity 

 
(2.12) l exp (-lailli    :::dµ(()) l  = exp (-lailli l(      i l2 dµ(()) , 

shows that the radial limits of this second factor are unimodular m-almost every­ 

where and hence this factor is an inner function. Furthermore, if µ ¢. 0 (i.e., the 

inner function </> has a non-trivial singular inner factor), we can use the second iden­ 

tity in eq.(2.11) along with eq.(2.12) once again to obtain the following theorem of 

Frostman [9). 
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Jail> 

1 

 

THEOREM 2.13 (Frostman). If an inner function ¢ has a non-trivial singular 

inner factor, there is a point ( E 81!)) such that ¢*( ( ) = 0. 

From Remark 2.8 (4), the condition ¢*(() = 0 for some ( E 81!)) does not 

completely determine the presence of a non-trivial inner factor. Another result of 

Frostman (see [9, p. 107] or [3, p. 32]) completes the picture. 

THEOREM 2.14 (Frostman). An inner function ¢ is a Blaschke product if and 

only if 

 
(2.15) 

 
lim 

 

211" 

log l<P(r ei9 )ld0 = 0. 
r-+1-   o 

Again, for the sake of giving the reader a feel for how all these ideas are related, 

and since this result will be used later, we outline a proof. We follow [3, p. 32]. 
Indeed, suppose ¢ = B, a Blaschke product. Let Bn be the product of the first n 

terms of B and, given E > 0, choose a large n so that 
 

 

Thus, 

0 ;;::: r rr- lall> log I B(r() ldm(() 
 

=   lim [   log I BB (r() I dm(( ) - lim [   log I Bn(r()ldm(() 
r-+1- la11> n r-+1- la11> 

=  lim f  log I BB (r() I dm(( ) 
r-+1- n 

;;::: log(l - c-). 

The last inequality comes from the sub-mean value property applied to the subhar­ 

monic function log l B/Bn l   [12, p. 36]. It follows that eq.(2.15) holds for ¢ = B. 

Now suppose that ¢ is inner and eq.(2.15) holds. Factor ¢ = Be9 , where 

g( z ) := - f  ;+ z dµ(( ) 

la11> ., - z 

and notice, using the fact that !Rg is non-positive and harmonic along with the mean 

value property for harmonic functions, that if !Rg has a zero in II)), then !Rg = 0 on 

II))  and consequently  µ = 0.  Use the mean value property  again to see that 

[   log 1¢(r()ldm(() =  [   log IB(r() ldm(() + !Rg(O). 

la11> la11> 

As r ---+ 1-, the integral on the right-hand side approaches zero since B is a Blaschke 

product (see above) and the integral on the left-hand side approaches zero by as­ 

sumption. This means that !Rg(O) = 0 and so, by what we said before, µ = 0 and 

so ¢ = B is a Blaschke product.  This completes the proof. 

The linear fractional maps 
 Ta( z ) := z - a , lal < 1, 

-_ 
- az 
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are automorphisms  of ]]))  (the complete set of  automorphisms  of ]]))  is { (Ta : ( E 

alill , a E lill}) and also satisfy Ta(alill) = alill. So certainly the Frostman shifts 

<Pa := Ta o </>, lal < 1, 

are all inner functions.  However, some of them might not be Blaschke products - 

even if </> is a Blaschke product. For example (see eq.(4.6)) the function 

 

B( z )  := Tl/2  (exp (- ;) ) 

turns out to be a Blaschke product. However, 

B-1;2(z) := 7-1/2 o B( z ) = exp (- ;) 

is a singular inner function. Define the exceptional set c(</>) for </> to be 

(2.16) £(¢) := {a E ]])) : Ta o </> is not a Blaschke product}. 

This exceptional set £(¢) has some very special properties.  The first was ob­ 

served in [16] (see also [22]). 

PROPOSITION  2.17.  The exceptional set £(¢) of an inner function </>  is of  type 

Fa .  
PROOF.  We follow the proof from [22, p. 53]. For each a E lill, we the function 

r 
la
r
fil 

log l <Pa (r() ldm(() 

is increasing on [O, 1)  [8, p. 9] and so from Theorem 2.14, we see that a E £(¢) if 

and only if 

lim r  log l <Pa (r() l dm(() < 0. 
r-+1- 

For r E [O, 1) and a E lill, let 
 

I( r, a) := 
la

{
fil 

log l </>a(r() ldm(() 

and observe how, for fixed r, I( r, a) is a continuous function of a. 
For fixed r E (0, 1) and k E N, let 

F( r, k) := {a E ]])) : I( r, a) -}. 
Notice that F( r, k )  is relatively closed in lill. Finally, we observe that 

£(¢) = 91!52 F (l - ,k ) 
which proves the result. 0 

The exceptional set c(</>) satisfies one more special property. In order to explain 

this, we need the definition of logarithmic capacity. We follow [12, p. 78]. For a 

compact set K c ]])) and positive finite measure supported on K , consider the Green potential 

Ga( z ) := J log 1 
1

(
-(z

z 

 

da(() 
l 
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r1r- l 

 

and note that  

0 G,,.( z ) oo, z E ][]). 

Since K is a compact subset of ][]), G,,. is continuous near 8][]) and in fact 

G,,.(() = 0, ( E 8][]). 

We will say K has positive logarithmic capacity if there is a positive (non-zero) 

measure a supported on K such that G,,. is bounded on ][]). Otherwise, we say 

that K has zero logarithmic capacity. We say a Borel set E c ][]) has positive 

logarithmic capacity if it contains a compact subset of positive logarithmic capacity. 

For example, if A denotes two-dimensional Lebesgue area measure in the plane and 

A( E) > 0, a computation shows that GA is bounded on ][]). Thus any set of 

positive area has positive logarithmic capacity. However sets of zero logarithmic 
capacity  are much  'thinner'.   For example,  Borel subsets of logarithmic capacity 

zero must have zero area and compact subsets of zero logarithmic capacity must be 

totally disconnected. There are various other ways to define logarithmic capacity, 

depending on the particular application. However, they all have the same sets of 

logarithmic capacity zero. Two excellent sources which sort all this out are [11, 29]. 

This next result of Frostman [9] says that e(¢) is a small set. 

THEOREM  2.18 (Frostman).  For an inner function  </J, e(</J)  has logarithmic 

capacity zero. 

PROOF.  Suppose  e(</J)  has  positive  logarithmic  capacity.   By Theorem  2.14, 

there is a compact  subset  K  of positive  logarithmic  capacity such that 

 
(2.19) h.m la log , l - w<¢/J(( r(()) I dm(( ) > 0, Vw E K. 

r-+1- aII> w - r 

Moreover,  by the definition of logarithmic capacity, there is a positive non-zero 

measure a supported on K such that G,,. is bounded on ][]). We than have 

0 =  lim f  G,,.( </J ( r( ) )dm( ()   (dominated convergence theorem) 
r-+1- laII> 

= (fall> log I lw--w () I dm(()) da( w) (Fubini's theorem) 

l c - la][) log / 1w--w () I dm(()) da( w) (Fatou's lemma) 

> 0 (by eq.(2.19)) 

which is a contradiction. D 
 

Let us make a few remarks about the limits of Theorem 2.18. 

REMARK 2.20. (1) Frostman [9, p.  113] showed that if E is relatively 

closed in ][]) and has logarithmic capacity zero, then there is an inner 

function ¢ with C,(¢) = E (see also [3, p. 37] and the next two comments). 

(2) Recall from Proposition 2.17 and Theorem 2.18 that C,(¢) is an F,,. set of 

logarithmic capacity zero. The authors in [22] showed that if E C ][]) is of 

type F,,. and has logarithmic  capacity zero, then there is an inner function 

¢ such that e(¢) = E. 



 

 

 

 

= 

1 
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(3) Suppose that E is a closed subset of IDl, 0 </. E , and E has logarithmic 

capacity zero. We claim that  there is a Blaschke  product  B such that 

Ba := ra o B is a Blaschke product whenever a  E lDl \ E and Ba is a 

singular inner function whenever a E E. To see this, let B be the universal 

covering map from lDl onto lDl \ E [7, p. 125]. Notice that B* (() E 81Dl U E. 

First note that B is inner. Indeed, suppose that  IB*(()I < 1 for ( E A 

and m( A) > 0. Then B* (A) C E and, since E has logarithmic capacity 

zero, we see that B 0 [3, p. 37] which is a contradiction.  Second, note 

that Ba  is a Blaschke product  for all a E lDl \ E .  Indeed, Ba  maps lDl 

onto ][]) \ ra( E)  and 0 </. ra( E).   Moreover, B ( ( )  E 81Dl U ra( E)  and so 

B (() can never be zero. An application of Theorem 2.13 completes the 
proof. Third, Ba is a singular inner function whenever a E E. To see this, 

note that B maps ][]) onto ][]) \ E and so a </. B(IDl) which means the inner 

function Ba has no zeros. Thus Ba must be a singular inner function. 

(4) If one is willing to work even harder in the previous example, one can 

find an interpolating Blaschke product B such that Ba is an interpolating 

Blaschke product for all a E lDl \ E while Ba is a singular inner function 

whenever a E E [14, Theoerm 1.1]. In fact, the above proof is part of this 

one. 

3. Indestructible Blaschke products 

From Frostman's theorem (Theorem 2.18), we know that the exceptional set 

e(¢) of an inner function ¢ is small. A Blaschke product B is indestructible if 

e( B) = 0. This next technical result from [21] helps show that indestructible 

Blaschke products actually exist. 

PROPOSITION 3.1. If B is a Blaschke product such that B* (( ) is never equal 

to a E ][]) \ {0}, then B is indestructible. 

PROOF. Suppose that for some a E lDl \ {O}, Ba = ra o B has a non-trivial 
singular inner factor. By Theorem 2.13, there is a ( E 81Dl such that B(() = 0. 

However, for 0 < r < 1, 

IBa(r()I ;;::: 2IB(r() - al 

and so, taking limits as r --+  1-, we see that B* (() = a, which contradicts our 

assumption.

 

D 

COROLLARY 3.2. If B is a Blaschke product whose zeros ( an)n l satisfy 

 
(3.3) 

 
L....J 1- lanl 
--- 

n=l 1 ( -anl 

for every ( E 81Dl, then B is indestructible. 

PROOF. By Theorem 2.2, IB*(()I = 1 for every ( E 11.". 

tion 3.1. 

 

 

 
Now apply Proposi­ 

D 

Certainly any finite Blaschke product satisfies eq.(3.3). The infinite Blaschke 

product in Remark 2.8 (2) also satisfies eq.(3.3) and thus is indestructible. 

Let us say a few words about the origins of the concept of indestructibility.  The 

following idea was explored by Heins [15, 16] for analytic functions on Riemann 

surfaces but,  for the sake of simplicity,  we outline this idea when the Riemann 

< 00 
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surface is the unit disk.  Our discussion has not only historical value, but will be 

useful when we discuss a fascinating example of Morse later on. 

If f  : lDl  ---+  lDl  is analytic and a E lDl,  the function z  f-+  - log l fa( z ) I , where 

fa = Ta o J , is superharmonic on lDl (i.e., log l fa l is subharmonic on lDl). Using the 
classical  inner-outer  factorization  theorem  (8, Ch. 2], one can show that 

 

(3.4) -log l fa( z ) I  =  L -n( w) log l rw (z)I + ua( z ), 
f  ( w)=a 

where n( w) is the multiplicity of the zero of f ( z ) - a at z = w, and Ua is a non­ 

negative harmonic function on lDl. The focus of Heins' work is the residual term 

Ua. His first observation is that Ua is the greatest harmonic minorant of -log l fa l· 

Moreover, since Ua is a non-negative harmonic function on lDl, Herglotz's theorem 

(8, p. 2] yields a positive measure µa on 8lDl such that 

[ 1- l zl 2 

ua( z ) = ( Pµa )( z ) = JaD I( - zl 2 dµa( ( ), 

the Poisson integral of µa. Heins proves that if µa = Va + O'a is the Lebesgue 

decomposition of µa , where Va «: m and O'a J_ m, then the m-almost everywhere 
defined  function 

 

 

is integrable on 8lDl and 

(3.5) 

1-af*(()  I 
Qa(( ) := log 1  a _ f*(() 

In the general setting, and the actual focus of his work,  Heins examines the 

residual term Ua in Lindelof 's theorem 

Gs1 (J ( z ),a ) =   L n( w)Gs 2 ( z ,w) + ua( z ), 
f  (w)=a 

where 81and 82 are Riemann surfaces with positive ideal boundary, f is a conformal 

map from 81 to 82 , and Gs3 is the Green's function for 8j. To study the residual 

term Ua in this general setting, Herglotz's theorem and the Lebesgue decomposition 

theorem are replaced by an old decomposition theorem of Parreau (27, Theoreme 

12] (see also (17, p. 7]). When 81 = 82 = lDl, observe that 

 
Gs3 ( z , a) = -log l t=- z l . 

 

We state this next theorem in the special case of the disk but refer the reader to 

Heins' paper where an analog of this theorem holds for Riemann surfaces. 

THEOREM 3.6 (Heins). The functions Ua and Pva satisfy the following proper­ 
ties. 

(1) Either Pva( z )  = 0 for all ( a, z )  E lDl x lDl or Pva( z ) =f 0 for  all ( a, z )  E 

JD) x lDl. 

(2) The set {a E lDl : Ua - Pva > O} is an F17   set of logarithmic capacity zero. 

PROOF. Observe that if a E lDl is fixed and Pva( z ) = 0 for some z E lDl, we 

can use the fact that Pva is a non-negative harmonic function along with the mean 



128 WILLIAM T. ROSS 

 

 

 

 

f   (() 

= = 

value property of harmonic functions to argue that Pva = 0. Thus, from eq.(3.5), 

we have, this particular a, 

. 0 =  hm Pva( r( ) = log 
1 1-af*(() I  

, 
 

a.e. ( E 8][)). 
r-+1- a - * 

Whence it follows that l f*(() I  = 1almost everywhere, i.e., f is inner. The fact that 

f is inner along with the fact that Tb maps 8][)) to 8][)) for each b E ][)) shows that 

lim  Pvb(( ) = 0   a.e. ( E 8][)). 
r-+1- 

Thus, from eq.(2.10), we see that for each b E ][)), 

0 =  lim Pvb(( ) = Dvb(( ) a.e. ( E 8][)) 
r-+1- 

and so vb 1- m.  But since Vb «m it must  be the case that  Vb = 0.  Thus we have 

shown part  (1) of the theorem. 

To avoid some technicalities,  and to keep our focus on Blaschke products, let 

us prove part (2) of the theorem in the special case when Pva = 0 for some (equiv­ 

alently all) a. Note that f is inner. If Ua has a zero in ][)), then, as argued before 

using the mean value property of harmonic functions, Ua = 0.  Recall from our 

earlier discussion that 

Ua = m(-log l fa l), 

where m denotes the greatest harmonic minorant.  If we factor fa  = bg as the 

product of a Blaschke product b and a singular inner function g , one can argue that 

m(- log l fa l) = m(- log l bl) + m(- log lgl). 

It follows from Theorem 2.14 and a technical fact about greatest harmonic mino-­ 
rants [12, p. 38], that m(- log l bl)    0. But since we are assuming Ua    0, we have 

m(- log lgl) = 0.  However,  g has no zeros in ][))  and so -log IYI   is a non-negative 

harmonic function on ][)) and thus 

0 = m(- log lgl) = -log IY I· 

Hence g = eic , c E JR., equivalently, fa  is a Blaschke product. Thus we have shown 

Ua = 0 => fa is a Blaschke product. If fa is a Blaschke product, then, as pointed 

out before, Ua  = m(- log l fa l) = 0. It follows that 

(3.7) { a E ][)) : Ua > O} = e(f ). 

Now use Proposition 2.17 and Theorem 2.18. D 

In summary, Ua = 0 if and only if fa is a Blaschke product. Moreover, Ua = 0 

for every a E ][)) if and only if f is an indestructible Blaschke product. Heins did 

not coin the term 'indestructible' in his work. McLaughlin [21] was the first to use 

this term and to explore the properties of these products. 

 

4. Zeros of indestructible  Blaschke products 

McLaughlin [21] determined a characterization of the indestructible Blaschke 

products in terms of their level sets. Suppose ¢ is inner and a E ][)) \ {¢(0)}. Let 

(wj )F; l  be the solutions to ¢(z) - a = 0 and factor 

¢-a 
<Pa = 1 - a¢ = b . s, 
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where b is a Blaschke product whose zeros are (w3 )n 1 and s is a singular inner 

function. Taking absolute values of both sides of the above equation and evaluating 
at z = 0, we get 

I :o;,;( ;) I (ll lw;I) ls(O)I. 

As discussed in the proof of Theorem 2.14, notice that js(O)I = 1 if and only if s is 
a unimodular constant, i.e., </>a is a Blaschke product. In other words, for a # </>(O), 
</>a is a Blaschke product if and only if 

</>(O ) - a I Iool 
1 - a<f>(O)  = j=l jw3 j. 

 

What happens when a = </>(O)? Let 

</>( z) - </>(O) = bnzn + bn+1zn+1 + ··· 

be the Taylor series of </> - </>(O)  about z = 0 and let ( z3 )r 1 be the non-zero zeros 

of </>( z) - </>(O). As before, write 

I_ </> - </>(O)  = b ·s 
zn 1- </>(O)</> ' 

where s is a singular inner function and b is the Blaschke product whose zeros 
are (z3 )r 1· Again, take absolute values of both sides of the above expression and 

evaluate at z = 0 to get 
 

 

Moreover, </> = </>o is a Blaschke product if and only if 

bn l 00 

1 - j</>(O) j2 = l z3 j. 
 

Combining these observations, we have shown the following theorem. 

THEOREM 4.1 (McLaughlin).  Using the notation above, a Blaschke product  B 

is indestructible  if and  only if 

B(O ) - a I Iool 
1 - aB(O)  = j=l jw3 j, Va # B(O), 

 
and 

 

Though the above theorem gives necessary and sufficient conditions (in terms 

of the level sets of B) to be indestructible, characterizing indestructibility just in 

terms of the zeros of B seems almost impossible. Consider the following theorem 

of Morse [23]. 

THEOREM  4.2  (Morse).   There is a Blaschke  product  B for  which e( B) # 0 

but such that if c is any zero of B, then e( B/ rc) = 0. 

I 

I 
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In other words, there are 'destructible' Blaschke products which become inde­ 

structible when one of their zeros are removed. We will not give all of the technical 

details here since they are done thoroughly in Morse's paper. However, since they 

do relate directly to the earlier work of Heins, from the previous section, we will 

give an outline of Morse's theorem. 

Suppose B is a Blaschke product such that the set 

{( E 8lIJ) : IB*(()I < 1} 

is at most countable. For a E JD), let 

Ua := m(- log I Ba l), 

be the greatest  harmonic  minorant  of  the non-negative  superharmonic  function 

-log IBal· This function is the residual function covered in the previous section (see 

eq.(3.4)). Since Ua is a non-negative harmonic function on JD), Herglotz's theorem 

says that 

Ua = Pµa , 

the Poisson integral of a measure µa on 8lIJ). Moreover, since log IB (()I = 0 for m­ 

almost every (, it follows that u(() = 0 m-almost everywhere. By Fatou's theorem 

(see eq.(2.10)), 

u(() = ( Dµa )(( ) 

at every point where ( Dµa )(( ) exists (and we count the possibility that ( Dµa )(( ) 

might be equal to +oo). We see two things from this. First, ( Dµa )(( ) = 0 for m­ 

almost every ( and so, by the Lebesgue decomposition theorem, µa ..l m. Second, 

since we are assuming that {( E 8lIJ) : IB*(()I < 1} is at most countable, we can use 
the facts that 

{( E 8lIJ) : ( Dµa )(( ) = +oo} = {( : u(() = +oo} C {( : IB*(()I < 1} 

and {( : ( Dµa )(( ) = +oo} is a carrier for µa (since µa ..l m) [30, p. 158] to see that 

µa is a discrete measure.  It might be the case that µa = 0, i.e., Ba is a Blaschke 

product (see eq.(3.7)). 

If we make the further assumption that not only is {( : IB*(()I < 1} at most 
countable but B is also destructible, i.e., Ba is not a Blaschke product for some 

a E JD), we see (see eq.(3.7)) that Ua > 0 and so, for this particular a, the discrete 

measure µa above is not identically zero. Define Q( B) to be the union of the carriers 

of the measures {µa : Ua = Pµa > O}. Notice that 

(4.3) Q( B) c {( E 8lIJ) : IB*(()i < 1}, 

and hence is at most countable, and that Q( B) is contained in the accumulation 

points of the zeros of B. We also see in this case that B is destructible if and only 

if Q( B) =/:- 0. 

A technical theorem of Morse [23, Proposition 3.2] says that if ( E Q( B), then 

there is an inner function g, a point a E JD),  and a    > 0 such that 

Ba( z ) = g( z ) exp ( -/3 =;) . 
Morse says in this case that B is exponentially destructible at (. It follows from 

here that for some a > 0 

(4.4) 
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An argument using this growth estimate (see [23, Proposition 3.4]) shows that if c 

is any zero of B, then 

(4.5) Q( B) n Q( B/ rc) = 0. 

Morse gives a treatment  of exponentially destructible Blaschke products beyond 

what we cover here. 

We are now ready to discuss Morse's example.  Choose a E ID> \ {O} and define 

(4.6)  

One can see that B is an inner function, B*(() exists for every ( E 81Dl, and 

IB*(()i = { 1, f ( E 81Dl \ {1}; 

J aJ ,   if ( = 1. 

By Theorem 2.13, B is a Blaschke product. It is also the case, by direct computa­ 

tion, that the zeros of B can only accumulate at ( = 1. Finally, notice from eq.(4.3) 
and the identity 

 

 

 

that 

B_a( z ) = exp (- 1+_ zz ) , 

Q( B) = {1} 

and so B is destructible, in fact exponentially destructible at 1. 

We claim that if c is a zero of B, then B/ rc ( B with the zero at c divided out) 

is indestructible.  Indeed, since 

{( : J (B/rc)*(() J   < 1} = {( : J B*(() J   < 1} = {1} 

we can apply eq.(4.3) to get 

Q( B/ rc) C {1}. 

However, from eq.(4.5) we see that Q( B/ rc)  = 0 which means, from our discussion 

above, that B/Tc is indestructible. 

5. Classes of indestructible Blaschke products 

So far, we have discussed conditions on a Blaschke product that make it in­ 

destructible.   We now  examine  a refinement  of  this  question.   Suppose that  '.B  is 

a particular class of Blaschke products and B E '.B. What extra assumptions are 

required of B so that Ba E '.B for all a E ID>? 

We focus on the class (and certain sub-classes)  of e, the  Carleson-Newman 

Blaschke products. These are Blaschke products B whose zeros ( an)n l satisfy the 

so-called 'conformal invariant' version of the Blaschke condition 
00 

)1- Jani) < oo, 
n=l 

i.e.,  
 

sup  { (1 - J cp(an) I) : <p E Aut(ID>)} < oo. 

There are several equivalent definitions of e. For  example,  B  E  e <==?  B  is the 

finite product of interpolating Blaschke products <==?  the measure En(l - l anl 2 )8an 
is  a  Carleson  measure.    The  standard  reference  for  this  is  [12]  but  another  nice 
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1-lan l 

 

exposition with further references is [24, Theorem 2.2].  Two important examples 
of Blaschke products which belong to e are 'J, the thin Blaschke products B which 

satisfy the condition 

 

and 9", the F'rostman  Blaschke  products which satisfy the condition 

 

sup  L.,;  Ir I < oo. 
{E8Illi n=l ., - an 

An example of a thin Blaschke product is one whose zeros ( an)n:;,,1  satisfy 

lim 1- lan+i l  = 0 
n--+oo    1- lan l 

[13, Prop. 1.1], while an example of a Frostman Blaschke product is one with zeros 

an = rnei9n , where (rn)n:;,,1 C (0, 1), (On)n:;,,1 C (0, 1), 

sup { 
(} +1 

: n 
}
< 1  and L.,;  

1-rn
 < oo 

 
 

[2, p. 130]. 

n(}n 1 -- 
n=l (}n 

The thin Blaschke products relate to Douglas algebras and the structure of the 

bounded analytic functions [31] as well as composition operators on the Bloch space 

[4]. The Frostman Blaschke products turn out to be the only inner multipliers of 

the space of Cauchy transforms of measures on ()IIJ) [19] (see also [2]). 
Following the definition of f.( B), the exceptional set of a Blaschke product in 

eq.(2.16), define 

f.e(B) := {a E lIJ) : Ba </. e}; 

£.,(B) := {a E lIJ) : Ba </. 'J}; 

f.:7( B) := {a E lIJ) : Ba </. 9"}. 

Gorkin and Martini [14, Lemma 3.2] use a result of Tolokonnikov  [31, p. 884] 

to show the following. 

THEOREM  5.1.  If B E 'J then f..,(B) = 0. 

The current author and Matheson [20] use the theory of inner multipliers for 

the space of Cauchy transforms and the ideas of Tolokonnikov [31] and Pekarskil 

[28] to prove the following. 

THEOREM 5.2. If B E 9", then f.:J' ( B) = 0. 

Nicolau [25] states necessary and sufficient conditions, in terms of the zeros of 

B, so that f.e(B) = 0 - which are a bit technical to get into here. We do point out 

the following. 

THEOREM 5.3. (1)  If B is a Blaschke product,  then f.e(B) is closed in IIJ). 

(2)  Given any 0 < s < 1, there is a B E e such that f.e(B) = {s l zl < 1}. 

REMARK 5.4. (1) Compare this to f.( B) which is an Fu set of logarithmic 

capacity zero (Proposition 2.17 and Theorem 2.18). 

(2) The first result of the above theorem is contained in [25, Lemma 1]. A 

version of the second result is found in [25, §3]. See [14, Theorem 4.2] for 

the version we state here. 
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There is a sizable literature of deep results which relate the class of Blaschke 

products 

'.P := {B : ee(B) = 0} 

to many  ideas in function  algebras.   We refer  the reader  to  [24,  p.  287]  for  a 

discussion of this and for the exact references. 

So far we have discussed when a Blaschke product has the property that all its 

Frostman shifts belong to a certain class of Blaschke products. We point out two 

papers [14, 24] which discuss when an inner function ¢ (not necessarily a Blaschke 

product) has the property that <Pa belongs to a certain class of Blaschke products 
(the class e for example) for all a E ][)) \ {O}. 

Acknowledgement:  The author wishes to thank Raymond Mortini for his sug­ 
gestions and corrections. 
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