2010

The Norm of a Truncated Toeplitz Operator

William T. Ross
University of Richmond, wross@richmond.edu

Stephan Ramon Garcia

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Algebra Commons

Recommended Citation

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.
The Norm of a Truncated Toeplitz Operator

Stephan Ramon Garcia and William T. Ross

ABSTRACT. We prove several lower bounds for the norm of a truncated Toeplitz operator and obtain a curious relationship between the H^2 and H^∞ norms of functions in model spaces.

1. Introduction

In this paper, we continue the discussion initiated in [6] concerning the norm of a truncated Toeplitz operator. In the following, let H^2 denote the classical Hardy space of the open unit disk \mathbb{D} and $K_\Theta := H^2 \cap (\Theta H^2)^\perp$, where Θ is an inner function, denote one of the so-called Jordan model spaces [2,4,7]. If H^∞ is the set of all bounded analytic functions on \mathbb{D}, the space $K_\Theta^\infty := H^\infty \cap K_\Theta$ is norm dense in K_Θ (see [2, p. 83] or [9, Lemma 2.3]). If P_Θ is the orthogonal projection from $L^2 := L^2(\partial \mathbb{D}, |d\zeta|/2\pi)$ onto K_Θ and $\varphi \in L^2$, then the operator

$$A_\varphi f := P_\Theta(\varphi f), \quad f \in K_\Theta^\infty,$$

is densely defined on K_Θ and is called a truncated Toeplitz operator. Various aspects of these operators were studied in [3,5,6,9,10].

If $\|\cdot\|$ is the norm on L^2, we let

$$\|A_\varphi\| := \sup\{\|A_\varphi f\| : f \in K_\Theta^\infty, \|f\| = 1\}$$

and note that this quantity is finite if and only if A_φ extends to a bounded operator on K_Θ. When $\varphi \in L^\infty$, the set of bounded measurable functions on $\partial \mathbb{D}$, we have the basic estimates

$$0 \leq \|A_\varphi\| \leq \|\varphi\|_\infty.$$

However, it is known that equality can hold, in nontrivial ways, in either of the inequalities above and hence finding the norm of a truncated Toeplitz operator can be difficult. Furthermore, it turns out that there are many unbounded symbols $\varphi \in L^2$ which yield bounded operators A_φ. Unlike the situation for classical Toeplitz operators on H^2, for a given $\varphi \in L^2$, there many $\psi \in L^2$ for which $A_\varphi = A_\psi$ [9, Theorem 3.1].

2000 Mathematics Subject Classification. 47A05, 47B35, 47B99.

Key words and phrases. Toeplitz operator, model space, truncated Toeplitz operator, reproducing kernel, complex symmetric operator, conjugation.

First author partially supported by National Science Foundation Grant DMS-0638789.
For a given symbol \(\varphi \in L^2 \) and inner function \(\Theta \), lower bounds on the quantity (1) are useful in answering the following nontrivial questions:

1. Is \(A_\varphi \) unbounded?
2. If \(\varphi \in L^\infty \), is \(A_\varphi \) norm-attaining (i.e., is \(\|A_\varphi\| = \|\varphi\|_\infty \))?

When \(\Theta \) is a finite Blaschke product and \(\varphi \in H^\infty \), the paper \([6]\) computes \(\|A_\varphi\| \) and gives necessary and sufficient conditions as to when \(\|A_\varphi\| = \|\varphi\|_\infty \). The purpose of this short note is to give a few lower bounds on \(\|A_\varphi\| \) for general inner functions \(\Theta \) and general \(\varphi \in L^2 \). Along the way, we obtain a curious relationship (Corollary 5) between the \(H^2 \) and \(H^\infty \) norms of functions in \(K_\Theta \).

2. Lower bounds derived from Poisson’s formula

For \(\varphi \in L^2 \), let

\[
(\mathcal{P}_\varphi)(z) := \int_{\partial \mathbb{D}} \frac{1 - |z|^2}{|\zeta - z|^2} \varphi(\zeta) \frac{|d\zeta|}{2\pi}, \quad z \in \mathbb{D},
\]

be the standard Poisson extension of \(\varphi \) to \(\mathbb{D} \). For \(\varphi \in C(\partial \mathbb{D}) \), the continuous functions on \(\partial \mathbb{D} \), recall that \(\mathcal{P}_\varphi \) solves the classical Dirichlet problem with boundary data \(\varphi \). Also note that

\[
k_\lambda(z) := \frac{1 - \Theta(\lambda)\Theta(z)}{1 - \lambda z}, \quad \lambda, z \in \mathbb{D},
\]

is the reproducing kernel for \(K_\Theta \) \([9]\).

Our first result provides a general lower bound for \(\|A_\varphi\| \) which yields a number of useful corollaries:

Theorem 1. If \(\varphi \in L^2 \), then

\[
\sup_{\lambda \in \mathbb{D}} \frac{1 - |\lambda|^2}{1 - |\Theta(\lambda)|^2} \left| \int_{\partial \mathbb{D}} \varphi(z) \left| \frac{\Theta(z) - \Theta(\lambda)}{z - \lambda} \right|^2 \frac{|dz|}{2\pi} \right| \leq \|A_\varphi\|.
\]

In other words,

\[
\sup_{\lambda \in \mathbb{D}} \left| \int_{\partial \mathbb{D}} \varphi(z) d\nu_\lambda(z) \right| \leq \|A_\varphi\|
\]

where

\[
d\nu_\lambda(z) := \frac{1 - |\lambda|^2}{1 - |\Theta(\lambda)|^2} \left| \frac{\Theta(z) - \Theta(\lambda)}{z - \lambda} \right|^2 \frac{|dz|}{2\pi}
\]

is a family of probability measures on \(\partial \mathbb{D} \) indexed by \(\lambda \in \mathbb{D} \).

Proof. For \(\lambda \in \mathbb{D} \) we have

\[
\|k_\lambda\| = \sqrt{\frac{1 - |\Theta(\lambda)|^2}{1 - |\lambda|^2}},
\]

from which it follows that

\[
\|A_\varphi\| \geq \frac{1 - |\lambda|^2}{1 - |\Theta(\lambda)|^2} |\langle A_\varphi k_\lambda, k_\lambda \rangle| = \frac{1 - |\lambda|^2}{1 - |\Theta(\lambda)|^2} |\langle P_\Theta \varphi k_\lambda, k_\lambda \rangle|
\]

\[
= \frac{1 - |\lambda|^2}{1 - |\Theta(\lambda)|^2} |\langle \varphi k_\lambda, k_\lambda \rangle|
\]

\[
= \frac{1 - |\lambda|^2}{1 - |\Theta(\lambda)|^2} \left| \int_{\partial \mathbb{D}} \varphi(z) \left| \frac{\Theta(z) - \Theta(\lambda)}{z - \lambda} \right|^2 \frac{|dz|}{2\pi} \right|.
\]
That the measures $d\nu_\lambda$ are indeed probability measures follows from (4).

Now observe that if $\Theta(\lambda) = 0$, the argument in the supremum on the left hand side of (3) becomes the absolute value of the expression in (2). This immediately yields the following corollary:

Corollary 1. If $\varphi \in L^2$, then
\[
\sup_{\lambda \in \Theta^{-1}(\{0\})} |(\mathfrak{P}\varphi)(\lambda)| \leq \|A\varphi\|
\]
where the supremum is to be regarded as 0 if $\Theta^{-1}(\{0\}) = \emptyset$.

Under the right circumstances, the preceding corollary can be used to prove that certain truncated Toeplitz operators are norm-attaining:

Corollary 2. Let Θ be an inner function having zeros which accumulate at every point of $\partial \mathbb{D}$. If $\varphi \in C(\partial \mathbb{D})$ then $\|A\varphi\| = \|\varphi\|_\infty$.

Proof. Let $\zeta \in \partial \mathbb{D}$ be such that $|\varphi(\zeta)| = \|\varphi\|_\infty$. By hypothesis, there exists a sequence λ_n of zeros of Θ which converge to ζ. By continuity, we conclude that
\[
\|\varphi\|_\infty = \lim_{n \to \infty} |(\mathfrak{P}\varphi)(\lambda_n)| \leq \|A\varphi\| \leq \|\varphi\|_\infty
\]
whence $\|A\varphi\| = \|\varphi\|_\infty$.

The preceding corollary stands in contrast to the finite Blaschke product setting. Indeed, if Θ is a finite Blaschke product and $\varphi \in H^\infty$, then it is known that $\|A\varphi\| = \|\varphi\|_\infty$ if and only if φ is the scalar multiple of the inner factor of some function from K_Θ [6] Theorem 2.

At the expense of wordiness, the hypothesis of Corollary 2 can be considerably weakened. A cursory examination of the proof indicates that we only need ζ to be a limit point of the zeros of Θ, $\varphi \in L^\infty$ to be continuous on an open arc containing ζ, and $|\varphi(\zeta)| = \|\varphi\|_\infty$.

Theorem 1 yields yet another lower bound for $\|A\varphi\|$. Recall that an inner function Θ has a finite angular derivative at $\zeta \in \partial \mathbb{D}$ if Θ has a nontangential limit $\Theta(\zeta)$ of modulus one at ζ and Θ' has a finite nontangential limit $\Theta'(\zeta)$ at ζ. This is equivalent to asserting that
\[
\frac{\Theta(z) - \Theta(\zeta)}{z - \zeta}
\]
has the nontangential limit $\Theta'(\zeta)$ at ζ. If Θ has a finite angular derivative at ζ, then the function in (6) belongs to H^2 and
\[
\lim_{r \to 1^-} \int_{\partial \mathbb{D}} \left| \frac{\Theta(z) - \Theta(r\zeta)}{z - r\zeta} \right|^2 |dz| = \frac{1}{2\pi} \int_{\partial \mathbb{D}} \left| \frac{\Theta(z) - \Theta(\zeta)}{z - \zeta} \right|^2 |dz|.
\]
Furthermore, the above is equal to
\[
\lim_{r \to 1^-} \frac{1 - |\Theta(r\zeta)|^2}{1 - r^2} = |\Theta'(\zeta)| > 0.
\]

See [1,8] for further details on angular derivatives. Theorem 1 along with the preceding discussion and Fatou's lemma yield the following lower estimate for $\|A\varphi\|$.
Corollary 3. For an inner function Θ, let D_{Θ} be the set of $\zeta \in \partial \mathbb{D}$ for which Θ has a finite angular derivative $\Theta'(\zeta)$ at ζ. If $\varphi \in L^\infty$ or if $\varphi \in L^2$ with $\varphi \geq 0$, then

$$
\sup_{\zeta \in D_{\Theta}} \frac{1}{|\Theta'(\zeta)|} \left| \int_{\partial \mathbb{D}} \varphi(z) \left| \frac{\Theta(z) - \Theta(\zeta)}{z - \zeta} \right|^2 \frac{|dz|}{2\pi} \right| \leq \|A_{\varphi}\|.
$$

In other words,

$$
\sup_{\zeta \in D_{\Theta}} \left| \frac{1}{|\Theta'(\zeta)|} \int_{\partial \mathbb{D}} \varphi(z) d\nu_{\lambda}(z) \right| \leq \|A_{\varphi}\|,
$$

where

$$
d\nu_{\lambda}(z) := \frac{1}{|\Theta'(\zeta)|} \left| \frac{\Theta(z) - \Theta(\zeta)}{z - \zeta} \right|^2 \frac{|dz|}{2\pi}
$$

is a family of probability measures on $\partial \mathbb{D}$ indexed by $\zeta \in D_{\Theta}$.

3. Lower bounds and projections

Our next several results concern lower bounds on $\|A_{\varphi}\|$ involving the orthogonal projection $P_{\Theta}: L^2 \to K_{\Theta}$.

Theorem 2. If Θ is an inner function and $\varphi \in L^2$, then

$$
\|P_{\Theta}(\varphi) - \overline{\Theta(0)}P_{\Theta}(\Theta \varphi)\| \leq \|A_{\varphi}\|.
$$

Proof. First observe that $\|k_0\| = (1 - |\Theta(0)|^2)^{1/2}$. Next we see that if $\varphi \in L^2$ and $g \in K_{\Theta}$ is any unit vector, then

$$(1 - |\Theta(0)|^2)^{1/2}\|A_{\varphi}\| \geq |\langle A_{\varphi}k_0, g \rangle| = |\langle P_{\Theta}(\varphi k_0), g \rangle| = |\langle P_{\Theta}(\varphi) - \overline{\Theta(0)}P_{\Theta}(\Theta \varphi), g \rangle|. $$

Setting

$$
g = \frac{P_{\Theta}(\varphi) - \overline{\Theta(0)}P_{\Theta}(\Theta \varphi)}{\|P_{\Theta}(\varphi) - \overline{\Theta(0)}P_{\Theta}(\Theta \varphi)\|}
$$

yields the desired inequality. \square

In light of the fact that $P_{\Theta}(\Theta \varphi) = 0$ whenever $\varphi \in H^2$, Theorem 2 leads us immediately to the following corollary:

Corollary 4. If Θ is inner and $\varphi \in H^2$, then

$$
\|P_{\Theta}(\varphi)\| \leq \|A_{\varphi}\|.
$$

It turns out that (7) has a rather interesting function-theoretic implication. Let us first note that for $\varphi \in H^\infty$, we can expect no better inequality than

$$
\|\varphi\| \leq \|\varphi\|_\infty
$$

(with equality holding if and only if φ is a scalar multiple of an inner function). However, if φ belongs to K_{Θ}^∞, then a stronger inequality holds.

Corollary 5. If Θ is an inner function, then

$$
\|\varphi\| \leq (1 - |\Theta(0)|^2)^{1/2}\|\varphi\|_\infty
$$

holds for all $\varphi \in K_{\Theta}^\infty$. If Θ is a finite Blaschke product, then equality holds if and only if φ is a scalar multiple of an inner function from K_{Θ}.
PROOF. First observe that the inequality
\[\|\varphi\| \leq (1 - |\Theta(0)|^2)^{\frac{1}{2}} \|\varphi\|_\infty \]
follows from Corollary 4 and the fact that \(P_\Theta \varphi = \varphi \) whenever \(\varphi \in K_\Theta \). Now suppose that \(\Theta \) is a finite Blaschke product and assume that equality holds in the preceding for some \(\varphi \in K_\Theta^\infty \). In light of (7), it follows that \(\|A_\varphi\| = \|\varphi\|_\infty \). From [6, Theorem 2] we see that \(\varphi \) must be a scalar multiple of the inner part of a function from \(K_\Theta \). But since \(\varphi \in K_\Theta^\infty \), then \(\varphi \) must be a scalar multiple of an inner function from \(K_\Theta \). \(\square \)

When \(\Theta \) is a finite Blaschke product, then \(K_\Theta \) is a finite dimensional subspace of \(H^2 \) consisting of bounded functions [3, 5, 9]. By elementary functional analysis, there are \(c_1, c_2 > 0 \) so that
\[c_1 \|\varphi\| \leq \|\varphi\|_\infty \leq c_2 \|\varphi\| \]
for all \(\varphi \in K_\Theta \). This prompts the following question:

Question. What are the optimal constants \(c_1, c_2 \) in the above inequality?

4. Lower bounds from the decomposition of \(K_\Theta \)

A result of Sarason [9, Theorem 3.1] says, for \(\varphi \in L^2 \), that
\[A_\varphi \equiv 0 \iff \varphi \in \Theta H^2 + \overline{\Theta} H^2. \]

It follows that the most general truncated Toeplitz operator on \(K_\Theta \) is of the form \(A_{\psi + \chi} \) where \(\psi, \chi \in K_\Theta \). We can refine this observation a bit further and provide another canonical decomposition for the symbol of a truncated Toeplitz operator.

Lemma 1. Each bounded truncated Toeplitz operator on \(K_\Theta \) is generated by a symbol of the form
\[\varphi = \begin{cases} \psi & \text{in } H^2 \\ \chi/\overline{\Theta} & \text{in } \Theta H^2 \end{cases} \]
where \(\psi, \chi \in K_\Theta \).

Before getting to the proof, we should remind the reader of a technical detail. It follows from the identity \(K_\Theta = H^2 \cap \Theta z H^2 \) (see [2, p. 82]) that
\[C : K_\Theta \to K_\Theta, \quad Cf := \overline{z} \Theta, \]
is an isometric, conjugate-linear, involution. In fact, when \(A_\varphi \) is a bounded operator we have the identity \(CA_\varphi C = A_{\varphi^*} [9, \text{Lemma 2.1}] \).

Proof of Lemma 1. If \(T \) is a bounded truncated Toeplitz operator on \(K_\Theta \), then there exists some \(\varphi \in L^2 \) such that \(T = A_\varphi \). We claim that this \(\varphi \) can be chosen to have the special form (10). First let us write \(\varphi = f + zg \) where \(f, g \in H^2 \). Using the orthogonal decomposition \(H^2 = K_\Theta \oplus \Theta H^2 \), it follows that \(\varphi \) may be further decomposed as
\[\varphi = (f_1 + \Theta f_2) + z(g_1 + \Theta g_2) \]
where \(f_1, g_1 \in K_\Theta \) and \(f_2, g_2 \in H^2 \). By (9), the symbols \(\Theta f_2 \) and \(\overline{\Theta (z g_2)} \) yield the zero truncated Toeplitz operator on \(K_\Theta \). Therefore we may assume that
\[\varphi = f + zg \]
for some \(f, g \in K_\Theta \). Since \(Cg = \overline{gz} \Theta \), we have \(\overline{zg} = (Cg)\overline{\Theta} \) and hence (10) holds with \(\psi = f \) and \(\chi = Cg \). \(\square \)
Corollary 6. Let Θ be an inner function. If $\psi_1, \psi_2 \in K_\Theta$ and $\varphi = \psi_1 + \psi_2 \overline{\Theta}$, then
\[
\frac{\|\psi_1 - \overline{\Theta(0)}\psi_2\|}{(1 - |\Theta(0)|^2)^{1/2}} \leq \|A_{\varphi}\|.
\]

Proof. If $\varphi = \psi_1 + \psi_2 \overline{\Theta}$, then, since $\psi_1, \psi_2 \in K_\Theta$ and $\psi_2 \overline{\Theta} \in \mathbb{z}H^2$, we have
\[
P_\Theta(\varphi) - \overline{\Theta(0)}P_\Theta(\Theta \varphi) = \psi_1 - \overline{\Theta(0)}\psi_2.
\]
The result now follows from Theorem 2.

References