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Introduction

This thesis originated from a specific problem from biology. Namely we need to study probabilistic models

that represent molecular interactions that take place inside living cells, such as the number of molecular

heat-shock proteins present in a cell. Because of the intrinsic discrete nature of the number of molecules

present in cells, the fundamental mathematical models are based on Markov processes. For such processes

a transition probability matrix describes the evolution of the state of the cell, whereas the state itself, i.e.

the number of molecules present at a specific time, is described by a vector. The components of this vector

represent the probabilities for finding specific molecule numbers. For example, consider a cell that contains

between zero and ten heat-shock protein molecules. The number of heat-shock proteins that help repair a

cell undergoing heat shock follows a random process. The components of our vector would represent the

probabilities for having between zero and ten protein molecules. The transition probability matrix would

include the probabilities of transitions between the number of molecules, in other words the probability

that given the cell had five protein molecules that it would increase to six, remain at five, or decrease to

four. Thus the next state of the cell is dependent upon the previous state of the cell.

We need also to consider, besides the probabilistic nature of the phenomenon,the appearance of thresholds

in biology. Namely, many biological processes do not take place unless the population size of a molecular

species reaches a threshold level. Once this level is reached, a cascade of events is opened and downstream

events propagate through the cell. The threshold may not necessarily be an integer number, as it was with

the molecular population size. So, on one side we need to work with discrete mathematical models built on

integer numbers, but on another side we need to consider thresholds that are real numbers. This thesis

focuses on this problem by investigating a mapping from discrete to continuous models. By mapping

discrete Markov processes into a continuous model we hope to develop a tool to better analyze biological

systems that have thresholds.

To be able to move from a discrete to a continuous model, we explore in this thesis a mapping from linear

spaces of type Rn+1 to the linear spaces of polynomial type Poln, the set of all polynomials of degree less

than or equal to n with complex variable z and real coefficients. Instead of working with n + 1 components

of a vector v we work with a polynomial Ψ(z) of degree n associated with the vector v by the following rule

Ψ(qk) = vk (1)

for k = 0, ..., n where q is a fixed number, and vk represents the (k + 1)th entry in the vector v. This
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process is known as polynomial interpolation.

The coefficients Ψk of the polynomial Ψ(z) = Ψ0 + Ψ1z + Ψ2z
2 + ...Ψnzn will depend on the components

vk of the vector v once the equation (1) is solved for Ψk. We now have a mapping from a discrete vector to

a continuous complex function. Namely, the argument z of the polynomial Ψ(z) will play the role of the

continuous variable, whereas the discrete variable n , expressing the number of components of v, is

captured by the degree of the polynomial Ψ(z).

The variable z will be considered a complex variable, giving us the possibility to ask for the roots of Ψ(z)

Ψ(z) = a

n∏
m=1

(z − zm) (2)

The information about the components of the vector v is now transferred to the roots of Ψ(z). We thus

have new and more freedom in working in the complex plane, than we previously had when working with a

set of n components of the vector v. Problems that are intractable in the component form become

manageable in the polynomial space. For example, when attacking an eigenvalue problem that may be

complicated we may work in the complex plane and find the roots zm instead of finding the eigenvector

components [1]. Moreover, the polynomial form lets us use the tools of calculus to integrate instead of doing

summation for probabilities. In many instances integration is much easier to perform than a discrete sum.

In order to perform this transition from discrete to continuous models, we need to map both our transition

probability matrix and our vector into polynomial form in the complex plane. To do this we will define two

mappings, ∆ and J , which will be used to map matrices and vectors respectively. In Section 1, we will

define our operator ∆, which maps polynomials to Laurent polynomials, ∆ : Pol 7→ PolL. We are

interested only in finding ∆ operators that preserve the space Poln, so we focus, in Section 2, on

restrictions of ∆ to the space Poln. In this context Poln refers to polynomials up to degree n with no

negative powers.We want the operator, when it acts on our function, to produce polynomials up to degree

n with no negative powers, thus preserving the Poln space. Our operator ∆ utilizes Laurent polynomials of

order L, so we show in Section 3 that there exist Laurent polynomials for which ∆ preserves Poln. In

Sections 4 and 5 we consider an expansion of our operator ∆, which increases the size of our operator by

increasing the number of Laurent polynomials utilized. We then switch gears in Section 6 to define our

mapping J : Rn+1 7→ Poln with our function Ψ(z). The function Ψ(z) of degree n + 1 is associated with

the vector v by equating (1). We illustrate this with two specific examples. In Section 7 we associate a

matrix M with our first operator, ∆M , such that ∆M can now map Ψv in Poln to ∆MΨv in Poln. We
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then detail the mapping of two-dimensional and three-dimensional matrices. When considering

four-dimensional matrices, finding ∆ operators that will satisfy our mapping becomes difficult because we

establish a system of equations with more equations than unknowns. To tackle this problem, we will use

Kronecker products of two-dimensional matrices to determine ∆ operators for a four-dimensional space.

1 Mapping Rn+1 to Poln

Definition of the operator ∆ acting on polynomials

Consider the linear space Pol of all polynomials of a complex variable z endowed with the usual algebraic

operations. Also, consider the subspace Poln of Pol, consisting of all members of Pol of degree 6 n. For

what follows we choose a complex number q to be fixed.

Definition

A function f(z) of a complex variable z is called a Laurent polynomial of order L if it has the form

f(z) =
F−L

zL
+ ... +

F−3

z3
+

F−2

z2
+

F−1

z
+ F+

0 F1z + F2z
2 + F3z

3 + ... + FLzL

where the Fk are real numbers, with Fα
−L 6= 0 and Fα

L 6= 0

Definition

An operator ∆ : Pol → PolL is called a Laurent operator of order L if it can be expressed as

∆ = f+(z)T+ + f0(z)T 0 + f−(z)T− (3)

where T 0 is the identity operator on Poln and T+, T− are the q-shift operators

T+Ψ(z) = Ψ(qz)

T−Ψ(z) = Ψ(q−1z)

and each of the f ’s is a Laurent polynomial of order L.

For clarification on the index notation, the lower index specifies positive and negative powers of z while the

upper index specifies positive and negative q shifts of Ψ(z).

Decomposition of ∆

By rearranging our Laurent polynomials into constant, strictly positive, and strictly negative degrees of z,

we can write our operator from (3) as
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∆ = (f+
− (z) + f+

0 (z) + f+
+ (z))T+ + (f0

−(z) + f0
0 (z) + f0

+(z))T 0 + (4)

(f−− (z) + f−0 (z) + f−+ (z))T− (5)

where, for α = −, 0, +,

fα
−(z) =

L∑
m=1

Fα
−m

1
zm

(6)

fα
+(z) =

L∑
m=1

Fα
+mzm (7)

and fα
0 is a constant.

∆ can also be decomposed into a lowering, raising, and diagonal operator

∆ = ∆− + ∆0 + ∆+, (8)

where

∆+ = f+
+ (z)T+ + f0

+(z)T 0 + f−+ (z)T− (9)

∆− = f+
− (z)T+ + f0

−(z)T 0 + f−− (z)T− (10)

∆0 = f+
0 T+ + f0

0 T 0 + f−0 T− (11)

2 Restriction of ∆ to Poln

We are interested in finding the ∆ operators that preserve the Poln space, in other words we want

∆Ψ ∈ Poln for every Ψ ∈ Poln, or equivalently

∆ : Poln → Poln. (12)

We need to establish conditions on ∆ for (12) to hold. We first consider ∆+. We apply ∆+ to the basis

{z0, z1, ..., zn} of Poln, and impose the condition that the transformed basis is a set in Poln. So we need to

focus on ∆+(zn), ∆+(zn−1), ..., ∆+(z0).
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Lemma 1 Necessary and sufficient conditions for ∆+ to preserve Poln are:

∆+(zn) = 0 (13)

∆+(zk) = Ak,k+1z
k+1 + Ak,k+2z

k+2 + ... + Ak,nzn, for0 6 k 6 n− 1

where Ak,k+1, Ak,k+2, ..., Ak,n are real numbers. In other words we can say ∆+(zk) ∈ Span{z0, z1, ..., zn}
Proof

Consider the ∆+ operator on the basis function zk for k = 0, 1, ...n,

∆+(zk) = Ak,k+1z
k+1 + Ak,k+2z

k+2 + ... + Ak,nzk+L (14)

If k + L 6 n, then ∆+(zk) ∈ Span{z0, z1, ..., zn}, and the result holds. We need restrictions if k + L > n,

which would prevent ∆+Ψ(z) being outside our Poln space. For k = n, n + L > n because L > 0. So the

constraint is

∆+(zn) = 0 (15)

Which is our first condition of Lemma 1.

For k = n− 1, then k + L = n− 1 + L, therefore we must have constraints when L > 1 such that the

polynomial does not exceed degree n. For example, for L > 1 and k = n− 1 we have the constraint

∆+(zn−1) = An−1,nzn (16)

For k = n− 2, then k + L = n− 2 + L, therefore we must have constraints when L > 2. Likewise, for k = 0,

then 0 + L > n, therefore we must have constraints when L > n.

Thus for k > n− L we have

∆+(zk) = Ak,k+1z
k+1 + Ak,k+2z

k+2 + ... + Ak,nzn (17)

Which is the second condition from Lemma 1.

Remark For k 6 n− L we can still write

∆+(zk) = Ak,k+1z
k+1 + Ak,k+2z

k+2 + ... + Ak,nzn (18)
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and look at it as a parameterization in terms of the constants Ak,m and not as a constraint. There will be

instances where we will need to produce more equations than just the necessary constraints in order to

solve a system of equations. These conditions from Lemma 1 now become additional equations that will

help us determine parameters for our unknown Laurent polynomials in the system, thus it is termed a

parameterization. For example, in Section 7 our ∆ operator for the two-dimensional case will not only

depend on the entries from the associated matrix, but also on free parameters that come directly from the

equations that appear in Lemma 1.

So

∆+(zk) = Ak,k+1z
k+1 + Ak,k+2z

k+2 + ... + Ak,nzn (19)

for 0 6 k 6 n− 1 and

∆+(zn) = 0 (20)

Of course, for k 6 n− L

Ak,n = 0 (21)

A,n−1 = 0 (22)
... (23)

Ak,k+L+1 = 0 (24)

Let us now consider ∆−. We apply ∆− to the basis of Poln, {z0, z1, ..., zn}, and impose the condition that

the transformed basis is a set in Poln. So we need to focus on ∆−(zn),∆−(zn−1), ..., ∆−(z0).

Lemma 2 Necessary and sufficient conditions for ∆− to preserve Poln are:

∆−(z0) = 0 (25)

∆−(zk) = Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1

for k < L the conditions (25) impose constraints on ∆. For k > L the conditions (25) are naturally fulfilled.

Proof

Consider the ∆− operator on the basis zk for k = 0, 1, ...n,
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∆−(zk) = Bk,k−Lzk−L + ... + Bk,k−2z
k−2 + Bk,k−1z

k−1 (26)

We need restrictions if k − L < 0, which would prevent a polynomial ∆−Ψ(z) outside our Poln space. For

k = 0, −L < 0 which is always true because L is positive. So the constraint is

∆−(z0) = 0 (27)

which is our first condition of Lemma 2.

For k = 1, then 1− L < 0, therefore we must have constraints when L > 1 such that the polynomial does

not contain negative degrees. For example, for L > 1 and k = 1 we have the constraint

∆−(z1) = B1,0z
0 (28)

For k = 2, then 2− L < 0, therefore we must have constraints when L > 2. Likewise, for k = n, then

n− L < 0, therefore we must have constraints when L > n.

Thus for k < L we have

∆−(zk) = Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1 (29)

which is the second condition from Lemma 2.

Remark Similarly to ∆+, for k > L we can still write

∆−(zk) = Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1 (30)

and look at it as a parametrization in terms of the constants Bk,m and not as a constraint. So

∆−(zk) = Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1 (31)

for 0 < k 6 n and

∆−(z0) = 0 (32)
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Of course, for k > L

Bk,0 = 0 (33)

Bk,1 = 0 (34)
... (35)

Bk,k−L−1 = 0 (36)

3 ∆ Operator

Theorem 1

For q 6= ±1, there exist Laurent polynomials fα(z), α = −, 0,+, for which ∆ maps Poln into Poln for any

n ∈ N
Proof

We have a total of three unknown Laurent polynomials f+(z), f0(z), f−(z). From Lemma 1 and Lemma 2,

k > n− 2 from ∆+ and k < 2 from ∆−, which give us four constraints,

∆+(zn) = qnf+
+ (z) + f0

+(z) + q−nf−+ (z) = 0 (37)

∆+(zn−1) = qn−1f+
+ (z) + f0

+(z) + q−n+1f−+ (z) = An−1,nz

∆−(z0) = f+
− (z) + f0

−(z) + f−− (z) = 0

∆−(z−1) = qf+
− (z) + f0

−(z) + q−1f−− (z) = B1,0z
−1

We can look at the four constraints as a system of equations for f+
+ (z), f0

+(z), f−+ (z), f+
− (z), f0

−(z), f−− (z).

However, we have six unknowns and only four equations. We can add two more equations by noting the

following from Lemma 1 and Lemma 2, ∆+(zn−2) = An−2,nzn + An−2,n−1z
n−1 and

∆−(z2) = B2,0z
0 + B2,1z

1. This relation is not a constraint on ∆, but it provides a way of parameterizing

the six unknown functions in terms of An−2,n, An−2,n−1, An−2,n, B1,0, B2,0, B2,1. So now we have two

additional equations

qn−2f+
+ (z) + f0

+(z) + q−n+2f−+ (z) = An−2,nz2 + An−2,n−1z (38)

q2f+
− (z) + f0

−(z) + q−2f−− (z) = B2,0z
−2 + B2,1z

−1

8



This technique of determining these conditions was used by P.B. Weigmann and A.V. Zabrodin in [1]. In

this thesis we generalize their method.

We are then able to determine the decompositions of the Laurent polynomials by solving this system of

linear equations.The solutions for the six unknown polynomials are

f+
+ (z) =

−q2−nz(An−1,n + qAn−1,n − zAn−2,n −An−2,n−1)
(q − 1)2(1 + q)

f0
+(z) =

zAn−1,n + q2zAn−1,n − qz2An−2,n − qzAn−2,n−1

(q − 1)2

f−+ (z) =
qnz(−An−1,n − qAn−1,n + qzAn−2,n + qAn−2,n−1)

(q − 1)2(q + 1)

f+
− (z) = −zB1,0 + qzB1,0 − qB2,0 − qzB2,1

(q − 1)2(1 + q)z2

f0
−(z) = −−zB1,0 − q2zB1,0 + qB2,0 + qzB2,1

(q − 1)2z2

f−− (z) = −q2(zB1,0 + qzB1,0 −B2,0 − zB2,1)
(q − 1)2(1 + q)z2

therefore now f+(z), f0(z) and f−(z) are functions dependent on An−1,n, An−2,n, An−2,n−1,

B1,0, B2,0, B2,1, f
+
0 , f0

0 , f−0 and q

f+(z) =
−q2−nz(An−1,n + qAn−1,n − zAn−2,n −An−2,n−1)

(q − 1)2(1 + q)
(39)

−zB1,0qz + B1,0 − qB2,0 − qzB2,1

(q − 1)2(1 + q)z2
+ f+

0

f0(z) = −−zAn−1,n − q2zAn−1,n + qz2An−2,n + qzAn−2,n−1

(q − 1)2
(40)

−−zB1,0 − q2zB1,0 + qB2,0 + qzB2,1

(q − 1)2z2
+ f0

0

f−(z) =
qnz(−An−1,n − qAn−1,n + qzAn−2,n + qAn−2,n−1)

(q − 1)2(q + 1)
(41)

−q2(zB1,0 + qzB1,0 −B2,0 − zB2,1)
(q − 1)2(1 + q)z2

+ f−0

4 Expanding ∆ for powers of q from λ to Λ

So far we have only considered q shifts up to the first degree. Let us expand our ∆ operator to larger

powers of q, in other words we can rewrite our ∆ from (3) as

∆ =
Λ∑

λ=1

fλ+(z)Tλ+ + f0(z)T 0 +
Λ∑

λ=1

fλ−(z)Tλ− (42)
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where Tλ+ represents the positive q-shifts, Tλ+ = Ψ(qλz) for λ = 1, 2, ...Λ, and Tλ− represents the

negative q-shifts, Tλ− = Ψ(q−λz) for λ = 1, 2, ...Λ.The fλ+(z) and fλ−(z) are the Laurent polynomials

corresponding to their respective q-shift Ψ function that they act upon.

Definition of ∆+, ∆0,∆−

Now we can rewrite the z-decomposition of ∆ as the following:

∆+ =
Λ∑

λ=1

fλ+
+ (z)Tλ+ + f0

+(z)T 0 +
Λ∑

λ=1

fλ−
+ (z)Tλ− (43)

∆0 =
Λ∑

λ=1

fλ+
0 (z)Tλ+ + f0

0 (z)T 0 +
Λ∑

λ=1

fλ−
0 (z)Tλ− (44)

∆− =
Λ∑

λ=1

fλ+
− (z)Tλ+ + f0

−(z)T 0 +
Λ∑

λ=1

fλ−
− (z)Tλ− (45)

Finding ∆

We now have Λ + 1 + Λ = 2Λ + 1 unknown Laurent polynomials, namely fλ+(z), f0(z) and fλ−(z),

λ = 1, 2, ...Λ. We will find the polynomials fλ+
+ (z), f0

+(z) and fλ−
+ (z) from the constraints on ∆+ and we

will find the polynomials fλ+
− (z), f0

−(z) and fλ−
− (z) from the constraints on ∆−. The numbers fλ+

0 , f0
0 and

fλ−
0 do not impose any constraints.

Lemma 3 Necessary and sufficient conditions for ∆+ to preserve Poln for an expanded ∆ are:

Λ∑

λ=1

fλ+
+ (z)qλk + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λk (46)

= Ak,k+1z + Ak,k+2z
2 + ... + Ak,nzn−k (47)

and

Λ∑

λ=1

fλ+
+ (z)qλn + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λn = 0 (48)

For k > n− L the relations (46) impose constraints on ∆+. For k 6 n− L the relations (46) are naturally

fulfilled.

Proof We have the following ∆+ constraints from Lemma 1

∆+(zn) = 0 (49)

∆+(zk) = Ak,k+1z
k+1 + Ak,k+2z

k+2 + ... + Ak,nzn (50)
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for k > n− L.

We now use (43) to find ∆+(zk) and ∆+(zn). The result will be equated with the above constraint.

∆+(zk) =
Λ∑

λ=1

fλ+
+ (z)Tλ+(zk) + f0

+(z)T 0(zk) +
Λ∑

λ=1

fλ−
+ (z)Tλ−(zk) (51)

∆+(zn) =
Λ∑

λ=1

fλ+
+ (z)Tλ+(zn) + f0

+(z)T 0(zn) +
Λ∑

λ=1

fλ−
+ (z)Tλ−(zn) (52)

which can be rewritten as

∆+(zk) =
Λ∑

λ=1

fλ+
+ (z)(zqλ)k + f0

+(z)zk +
Λ∑

λ=1

fλ−
+ (z)(zq−λ)k (53)

for k > n− L and

∆+(zn) =
Λ∑

λ=1

fλ+
+ (z)(zqλ)n + f0

+(z)zn +
Λ∑

λ=1

fλ−
+ (z)(zq−λ)n (54)

Applying the constraints we get

Λ∑

λ=1

fλ+
+ (z)(zqλ)k + f0

+(z)zk +
Λ∑

λ=1

fλ−
+ (z)(zq−λ)k (55)

= Ak,k+1z
k+1Ak,k+2z

k+2 + ... + Ak,nzn (56)

for k > n− L and

Λ∑

λ=1

fλ+
+ (z)(zqλ)n + f0

+(z)zn +
Λ∑

λ=1

fλ−
+ (z)(zq−λ)n = 0 (57)

These can both be simplified to

Λ∑

λ=1

fλ+
+ (z)qλk + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λk (58)

= Ak,k+1z + Ak,k+2z
2 + ... + Ak,nzn−k (59)

for k > n− L and

11



Λ∑

λ=1

fλ+
+ (z)qλn + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λn = 0 (60)

These are the two relations that result in constraints that preserve Poln.

Similar to the argument from earlier, if more equations are needed to establish a system of equations then

we can parameterize using

Λ∑

λ=1

fλ+
+ (z)qλk + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λk (61)

= Ak,k+1z + Ak,k+2z
2 + ... + Ak,nzn−k (62)

for k 6 n− L.

Lemma 4 Necessary and sufficient conditions for ∆− to preserve Poln for an expanded ∆ are:

Λ∑

λ=1

fλ+
+ (z)qλk + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λk (63)

= Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1 (64)

and

Λ∑

λ=1

fλ+
+ (z) + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z) = 0 (65)

For k < L the relations (63) impose constraints on ∆−. For k > L the relations (63) are naturally fulfilled.

Proof We have the following ∆− constraints from Lemma 2

∆−(z0) = 0 (66)

∆−(zk) = Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1 (67)

for k < L.

We now use (45) to find ∆−(zk) and ∆−(z0). The result will be equated with the above constraint.

∆−(zk) =
Λ∑

λ=1

fλ+
− (z)Tλ+(zk) + f0

−(z)T 0(zk) +
Λ∑

λ=1

fλ−
− (z)Tλ−(zk) (68)

12



∆−(z0) =
Λ∑

λ=1

fλ+
− (z)Tλ+ + f0

−(z)T 0 +
Λ∑

λ=1

fλ−
− (z)Tλ− (69)

which can be rewritten as

∆−(zk) =
Λ∑

λ=1

fλ+
− (z)(zqλ)k + f0

−(z)zk +
Λ∑

λ=1

fλ−
− (z)(zq−λ)k (70)

for k < L and

∆−(z0) =
Λ∑

λ=1

fλ+
− (z) + f0

−(z) +
Λ∑

λ=1

fλ−
− (z) (71)

Applying the constraints we get

Λ∑

λ=1

fλ+
− (z)(zqλ)k + f0

−(z)zk +
Λ∑

λ=1

fλ−
− (z)(zq−λ)k (72)

= Bk,0z
0 + Bk,1z

1 + ... + Bk,k−1z
k−1 (73)

for k < L and

Λ∑

λ=1

fλ+
− (z) + f0

−(z) +
Λ∑

λ=1

fλ−
− (z) = 0 (74)

These can both be simplified to

Λ∑

λ=1

fλ+
− (z)qλk + f0

−(z) +
Λ∑

λ=1

fλ−
− (z)q−λk (75)

= Bk,0z
−k + Bk,1z

1−k + ... + Bk,k−1z
−1 (76)

for k < L and

Λ∑

λ=1

fλ+
− (z)qλn + f0

−(z) +
Λ∑

λ=1

fλ−
− (z)q−λn = 0 (77)

These are the two relations that result in constraints that preserve Poln.
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Similar to the argument from earlier, if more equations are needed to establish a system of equations then

we can parameterize using

Λ∑

λ=1

fλ+
− (z)qλk + f0

−(z) +
Λ∑

λ=1

fλ−
− (z)q−λk (78)

= Bk,0z
−k + Bk,1z

1−k + ... + Bk,k−1z
−1 (79)

for k > L

5 ∆ Operator for Λ > 1

Theorem 2

Let L, Λ ∈ N and q 6= ±1. If n ∈ N ∪ {0}, n > L− 1, then there exist Laurent polynomials

fλα(z), 1 6 λ 6 Λ, k = −, 0,+, each of order L, for which ∆+ and ∆− each map Poln into Poln.

Proof

Given Λ > 1, then we have Λ + 1 + Λ = 2Λ + 1 unknown polynomials, namely fλ+
+ (z), f0

+(z) and fλ−
+ (z),

λ = 1, 2, ...Λ.

We always have one constraint on ∆+, namely ∆+(zn) = 0. We have constraints on the basis zk when

k > n− L, in other words when k = n− L + 1, n− L + 2, ..., n− 1. This provides us with a total of

1 + L− 1 = L constraints. We do not want to have more constraints than unknown polynomials, so

L 6 2Λ + 1.

The largest L can be is 2Λ + 1 and when L < 2Λ + 1 we need to add more equations to be able to solve for

our unknown polynomials. By noting the relation on zk when k 6 n− L is naturally fulfilled, we can use

this relation to add equations and parameterize our unknowns. So 0 < L 6 2Λ + 1.

However, Lemma 3 does not hold for all n. Lemma 3 gives us the constraint

Λ∑

λ=1

fλ+
+ (z)qλk + f0

+(z) +
Λ∑

λ=1

fλ−
+ (z)q−λn (80)

= Ak,k+1z + Ak,k+2z
2 + ... + Ak,nzn−k (81)

For k > n− L. We need to make sure k is always positive. Our necessary constraints on zk are when

k = n− L + 1, n− L + 2, ..., n− 1. So the smallest necessary constraint is when k = n− L + 1, therefore k

will always be positive when n− L + 1 > 0, which gives us n > L− 1.

14



For example, if we let Λ = 1 and L = 2Λ + 1, so there are restrictions on zk when k = n− 2, n− 1. If

n = 1, so n < L− 1, then k = −1, 0 and we can not have k negative thus the restriction does not hold.

Therefore given Λ > 1 then ∆+ will preserve Poln if

L = 1 n = 0, 1, 2, 3...
L = 2 n = 1, 2, 3, ...
L = 3 n = 2, 3, ...

...
...

L = 2Λ + 1 n = 2Λ, 2Λ + 1, ...

.

Similarly, given Λ > 1, then we have Λ + 1 + Λ = 2Λ + 1 unknown polynomials, namely fλ+
− (z), f0

−(z) and

fλ−
− (z), λ = 1, 2, ...Λ.

We always have one constraint on ∆−, namely ∆−(z0) = 0. We have constraints on the basis zk when

k < L, in other words when k = L− 1, L− 2, ..., 1. This provides us with a total of 1 + L− 1 = L

constraints. We do not want to have more constraints then unknown polynomials, so L 6 2Λ + 1.

The largest L can be is 2Λ + 1 and when L < 2Λ + 1 we need to add more equations to be able to solve for

our unknown polynomials. By noting the relation on zk when k > L is naturally fulfilled, we can use this

relation to add equations and parameterize our unknowns. So 0 < L 6 2Λ + 1.

However, Lemma 4 does not hold for all n. Lemma 4 gives us the constraint

Λ∑

λ=1

fλ+
− (z)qλk + f0

−(z) +
Λ∑

λ=1

fλ−
− (z)q−λk (82)

= Bk,0z
−k + Bk,1z

1−k + ... + Bk,k−1z
−1 (83)

for k < L. We need to make sure k is always positive. Our necessary constraints on zk are when

k = L− 1, L− 2, ..., 1. We can not have our basis bigger than n, so L− 1 6 n. This gives us the same

conditions as ∆+. Therefore there exist Laurent polynomials fλα(z), 1 6 λ 6 Λ, k = −, 0, +, for which ∆+

and ∆− each map Poln into Poln.

6 Definition of the mapping J from Rn+1 to Poln

Definition :

The mapping

Jq : Rn+1 7→ Poln (84)
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sends a vector v =




v0

v1

...
vn


 into the polynomial Ψv(z) = Ψ0 + Ψ1z + Ψ2z

2 + ... + Ψnzn whose coefficients

are determined by the following n + 1 rules

Ψv(qk) = vk (85)

for k = 0, 1, ..., n. In principle Ψ0, Ψ1, ...Ψn should carry the index v. However, for clarity of notation we

will use the vector index v only for Ψv(z).

Note that, to find the coefficients Ψk, k = 0, .., n, we can use the inverse of a Vandermonde matrix. The

paper [2] defines a Vandermonde matrix as

v =




1 1 ... 1
x0 x1 ... xn

x2
0 x2

1 ... x2
n

...
...

...
...
...

...
xn

0 xn
1 ... xn

n




(86)

Our rule Ψv(qk) = vk implies

Ψ0 + Ψ1 + Ψ2 + ... + Ψn = v0 (87)

Ψ0 + Ψ1q + Ψ2q
2 + ... + Ψnqn = v1 (88)

... =
... (89)

Ψ0 + Ψ1q
n + Ψ2q

2n + ... + Ψnqn2
= vn (90)

which can also be written as




1 1 ... 1
1 q ... qn

1 q2 ... q2n

...
...

...
...
...

...
1 qn ... qn2







Ψ0

Ψ1

Ψ2

...
Ψn




=




v0

v1

v2

...
vn




(91)

Notice that the matrix above is a (n + 1)× (n + 1) Vandermonde matrix of the form xk = qk for

k = 0, ..., n. So, to solve for Ψk, k = 0, 1, 2, ..., n, we need the inverse Vandermonde matrix V −1. Since V

must be invertible, our q must satisfy the rule that det(V ) 6= 0, thus V −1 does not exist for all q.

Lemma 5
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The mapping Jq : Rn+1 7→ Poln is linear.

Proof

We need to show that

(a)

Jq(αv) = αJq(v) (92)

Using the definition of Jq

Ψαv(qk) = (αv)k = α(vk) = αΨv(qk) (93)

where vk is the k component of the vector v. We also need to show that

(b)

Jq(v1 + v2) = Jq(v1) + Jq(v2) (94)

Using the definition of Jq, we have that

Ψv1+v2(q
k) = (v1 + v2)k = v1k

+ v2k
= Ψv1(q

k) + Ψv2(q
k) (95)

where (v1 + v2)k is the k component of the vector (v1 + v2). Therefore Jq is linear.

In what follows we will work mainly with 2× 2 and 3× 3 matrices. For these cases we will work the

mapping Jq in detail below. For simplicity, we will omit the q subscript from Jq in what follows.

6.1 The mapping J : R2 7→ Pol1

The 2-dimensional case

v =
(

v0

v1

)
∈ R2 (96)

is mapped by J into Ψ(z) = Ψ0 + Ψ1z. Using our rule that Ψ(qk) = vk,

v0 = Ψ0 + Ψ1 (97)

v1 = Ψ0 + Ψ1q (98)
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or in matrix form

(
v0

v1

)
=

(
1 1
1 q

)(
Ψ0

Ψ1

)
(99)

The coefficients matrix

V =
(

1 1
1 q

)
(100)

is invertible when q 6= 1, and

V −1 =
1

q − 1

(
q −1
−1 1

)
(101)

We use the inverse Vandermonde to solve for Ψ0 and Ψ1,

(
Ψ0

Ψ1

)
= V −1

(
v0

v1

)
=

(
qv0−v1

q−1−v0+v1
q−1

)
(102)

Now our vector is mapped into the polynomial

Ψ(z) =
qv0 − v1

q − 1
+
−v0 + v1

q − 1
z (103)

where the values for v0, v1 are taken from the original vector.

6.2 The mapping J : R3 7→ Pol2

Following a similar argument as the 2-dimensional case, we are now mapping a 3-dimensional vector

v =




v0

v1

v2


 ∈ R3 (104)

to Ψv(z) = Ψ0 + Ψ1z + Ψ2z
2. Using our rule that Ψv(qk) = vk,

v0 = Ψ0 + Ψ1 + Ψ2 (105)

v1 = Ψ0 + Ψ1q + Ψ2q
2 (106)

v2 = Ψ0 + Ψ1q
2 + Ψ2q

4 (107)
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or in matrix form




v0

v1

v2


 =




1 1 1
1 q q2

1 q2 q4







Ψ0

Ψ1

Ψ2


 (108)

The coefficients matrix

V =




1 1 1
1 q q2

1 q2 q4


 (109)

(110)

is invertible if q 6= 0,±1, with inverse

V −1 =
1

(q − 1)2




q3

q+1 −q 1
q+1

−q q2+1
q − 1

q
1

q+1 − 1
q

1
q2+q


 (111)

We use our V −1 to solve for Ψ0,Ψ1,Ψ2,

Ψ0 =
q3v0 + qv1 + q2v1 − v2

(q − 1)2(1 + q)

Ψ1 =
q2v0 − v1 − q2v1 + v2

(q − 1)2q

Ψ2 =
−qv0 + v1 + qv1 − v2

(q − 1)2q(1 + q)

where the values for v0, v1, v2 are taken from the original vector. So,

Ψv(z) =
(q2 − z)(q(q − z)v0 + (1 + q)(z − 1)v1) + (z − 1)(z − q)v2

(q − 1)2q(1 + q)

which is defined for q 6= 0,±1

7 Mapping a linear transformation M : Rn+1 7→ Rn+1 to the operator
∆M : Poln 7→ Poln

For each linear transformation defined by a matrix M from Rn+1 to itself we are going to associate an

operator ∆M , such that the following diagrams commute:

In other words, for each v ∈ Rn+1

∆MJv = JMv (112)
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ΔM

J J

Figure 1: The mapping diagram, a)component b) space

The usefulness of the mapping of M into ∆ will be clarified by the following theorem and its application.

Theorem from [1]

Let n ∈ N. For any matrix M of the form




v0 a0 0 0 d0

d1 v1 a1 0 0
0 d2 ... ... 0
0 0 ... ... an−1

an 0 0 dn vn




, (113)

there exists an operator ∆M : Poln 7→ Poln, of the form (42) with L = 2 and λ = 1, for which

∆MJv = JMv.

The matrices from the previous theorem are very special, they are tridiagonal. There are many situations

for which the matrix is not tridiagonal. For example the transition matrix in a discrete Markov chain may

not be tridiagonal for many applications encountered in epidemiology, demographics and biological system.

We are thus led to explore the mapping of a general matrix M into the operator ∆.

7.1 2× 2 Matrix Mapping

Consider a 2× 2 matrix of the form

M =
(

p11 p12

p21 p22

)
. (114)

We will now construct the corresponding ∆M for L = 2 and λ = 1. For Ψv ∈ Pol1, (3) yields

∆M (Ψv(z)) = f+(z)Ψv(qz) + f0(z)Ψv(z) + f−(z)Ψv(q−1z) (115)
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From (39), (40), and (41), with n = 1 we can choose

f+(z) =
−q1z(A0,1 + qA0,1 − zA−1,1 −A−1,0)

(q − 1)2(1 + q)

−zB1,0qz + B1,0 − qB2,0 − qzB2,1

(q − 1)2(1 + q)z2
+ f+

0

f0(z) = −−zA0,1 − q2zA0,1 + qz2A−1,1 + qA−1,0

(q − 1)2

−−zB1,0 − q2zB1,0 + qB2,0 + qzB2,1

(q − 1)2z2
+ f0

0

f−(z) =
q1z(−A0,1 − qA0,1 + qzA−1,1 + qA−1,0

(q − 1)2(q + 1)

−q2(zB1,0 + qzB1,0 −B2,0 − zB2,1)
(q − 1)2(1 + q)z2

+ f−0

where the coefficients Aj,k and Bj,k are defined in Lemmas 1 and 2.

Now we impose ΨMv(z) = ∆M (Ψv(z)) for all z ∈ C in order to solve for our parameters

A−1,1, A−1,0, A0,1, B1,0, B2,0, B2,1, f
−
0 , f+

0 , f0
0 . We know ΨMv(z) and Ψv(z), so by equating

ΨMv(z) = ∆M (Ψv(z)) we can solve for the parameters in our unknown Laurent polynomials of ∆M .

The parameters depend on p11, p12, p21, p22, and are listed in the following system of equations:

A0,1 = −−p11 + p12 − p21 − p22

q − 1

B1,0 = −−qp11 − q2p12 + p21 + qp22

q − 1

f0
0 = −2q(p11 + p12 − p21 − p22)

(q − 1)2
− −f10 + q2f10 + qp12 + p21 + p22 − qp22

q − 1

f−0 = −qf10 − q2f10 − qp12 − qp21

q − 1
+

(q + q2)(p11 + p12 − p21 − p22)
(q − 1)2

A−1,1, A−1,0, B2,0, B2,1, f
+
0 remain free parameters. Thus the Laurent polynomial mappings of a two

dimensional matrix when n = 1 are

f+(z) = f+
0 +

(−1 + q)qB2,0 + z((q − 1)qB2,1 − (1 + q)(−p21 + q(p11 + qp12 − p22)))
(q − 1)3(1 + q)z2

qz((q − 1)zA−1,1 + (q − 1)A−1,0 + (q + 1)(p11 + p12 − p21 − p22))
(q − 1)3(1 + q)

f0(z) = − 1
(q − 1)2

(qz2A−1,1 + qzA−1,1 +

(q − 1)qB2,0 + z((q − 1)qB2,1 − (1 + q2)(−p21 + q(p11 + qp12 − p22)))
(q − 1)z2
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+2q(p11 + p12 − p21 − p22) +
z(p11 + p12 − p21 − p22)

q − 1
+

q2z(p11 + p12 − p21 − p22)
q − 1

+(q − 1)((q2 − 1)f+
0 + qp12 + p21 − (−(q − 1)p22)))

f−(z) =
1

(q − 1)2
q((q − 1)((q − 1)f+

0 + p12 + p21) +

q((q − 1)B2,0 + z((q − 1)B2,1 − (1 + q)(−p21 + q(p11 + qp12 − p22))))
(q2 − 1)z2

+
z((q − 1)qzA−1,1 + (q − 1)qA−1,0 + (1 + q)(p11 + p12 − p21 − p22))

q2 − 1
+

(1 + q)(p11 + p12 − p21 − p22)

These Laurent polynomials still depend on a few free parameters, but when the operator ∆ is applied to

vector functions these free parameters disappear. When the operator ∆M is applied on our function Ψv for

the two-dimensional case, then these free parameters cancel out and do not appear in the resulting ΨMv.

7.2 3× 3 Matrix Mapping

Now consider a 3× 3 matrix of the form

M =




p11 p12 p13

p21 p22 p23

p31 p32 p33


 (116)

We will now construct the corresponding ∆M for L = 2 and λ = 1. For Ψv ∈ Pol2, (3) yields

∆M (Ψv(z)) = f+(z)Ψv(qz) + f0(z)Ψv(z) + f−(z)Ψv(q−1z) (117)

From (39), (40), and (41), with n = 2 we can choose

f+(z) =
−q2z(A1,2 + qA1,2 − zA0,2 −A0,1)

(q − 1)2(1 + q)

−zB1,0qz + B1,0 − qB2,0 − qzB2,1

(q − 1)2(1 + q)z2
+ f+

0

f0(z) = −−zA1,2 − q2zA1,2 + qz2A0,2 + qA0,1

(q − 1)2

−−zB1,0 − q2zB1,0 + qB2,0 + qzB2,1

(q − 1)2z2
+ f0

0

f−(z) =
q2z(−A1,2 − qA1,2 + qzA0,2 + qA0,1

(q − 1)2(q + 1)

−q2(zB1,0 + qzB1,0 −B2,0 − zB2,1)
(q − 1)2(1 + q)z2

+ f−0
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where the coefficients Aj,k and Bj,k are defined in Lemmas 1 and 2.

Now we enforce ΨMv(z) = ∆M (Ψv(z)) for all z ∈ C in order to solve for our parameters

A−1,1, A−1,0, A0,1, B1,0, B2,0, B2,1, f
−
0 , f+

0 , f0
0 . Now all parameters can be solved for since there are nine

equations, thus there will be no free parameters. The linear system of equations using the entries of the

matrix M produces, as in the 2× 2 case, the parameters

A1,2 =
−p21 + p31 + q(p11 + qp12 + q2p13 − p21 − (q − 1)(p22 + qp23) + p32 + qp33)

(q − 1)2q(q + 1)

A0,2 =
−p21 − p22 + q(p11 + p12 + p13 − p21 − p22 − p23)− p23 + p31 + p32 + p33

(q − 1)2q(1 + q)

A0,1 =
p21 + p22 + p23 + q2(−p11 − p12 − p13 + p21 + p22 + p23)− p31 − p32 − p33

(q − 1)2q

B1,0 =
q3p11 + q4p12 + p31 + q(q4p13 − (1 + q)(p21 + q(p22 + qp23)) + p32 + qp33)

(q − 1)2(1 + q)

B2,0 =
q3p11 + q5p12 + p31 + q(q6p13 − (q + 1)p21 + q(−q(1 + q)(p22 + q2p23) + p32 + q2p33))

(q − 1)2(1 + q)

A2,1 =
p21 − p31 + q2(−p11 + p21 + p22 − p32 + q2(−p12 + p22 + p23 + q2(−p13 + p23)− p33))

(q − 1)2q

as well as three f parameters,

f−0 =
1

(q − 1)4q(1 + q)2
(2q2(1 + q + q2)p11 + p13 − p21 + q(q2(1 + q(4 + q))p12 (118)

+(1 + q(2 + q + q2))p13 − 3p21 − p22 + p31 + 2p32 + p33 + q(− ∗ 4 + q(3 + q))p21

−(3 + q(4 + q(3 + q)))p22 − 2p23 + p33 + q(−(3 + 2q)(1 + q2)p23 + (1 + q(2 + q + q3))p31

+2p32 + (2 + q + q2)p33)))

f0
0 =

1
(q − 1)4q

(q2(−2 + q − 2q2)p11 − p13 + p21 + q(p21 + p22 − p32 +

q(1 + q + q2)p12 − (1 + q2)p13 + 2p21 + p23 − p31 − p32 − 2p33 + q((1 + q)p21 +

(4 + q2)p22 + p23 − p32 + q((2 + q + q2)p23 − (1 + q2)p31 − 2p33))))

f+
0 =

1
(q − 1)4(1 + q)2

(p13 + q(q(1 + q2)(1 + q + q2)p11 + 2p3(1 + q + q2)p12 −

2p21 + q((1 + q(2 + q + q3))p13 − (3 + 2q)(1 + q2)p21 − p22 + p32 + q((−3− q(4 +

q(3 + q)))p22 − (1 + q)2(1 + q + q2)p23 + p31 + 4p32 + 2p33 + q((1 + q(2 +

q + q2))p31 + p32 + 2(1 + q)p33)))))
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8 Kronecker product as a tool to find mappings for matrices of higher
dimensionality than 2 or 3

Once we reach matrices of four-dimensions, we are no longer able to follow this same technique. The reason

for this is that we have 16 entries in our probability matrix, but only 9 parameters,

A−1,1, A−1,0, A0,1, B1,0, B2,0, B2,1, f
−
0 , f+

0 , f0
0 , thus we are no longer able to solve our system of equations.

To tackle this problem we will build four-dimensional matrices and vectors from two-dimensional matrices

and vectors using Kronecker Product.

Definition of Kronecker Product of Vectors

The Kronecker Product of two vectors v, u ∈ R2 is

v ⊗ u =
(

v0

v1

)
⊗

(
u0

u1

)
=




v0u0

v0u1

v1u0

v1u1


 . (119)

We will denote by R2 ⊗R2 the space of all Kronecker products of pairs of vectors in R2. Next, we define

the mapping J⊗ : R2 ⊗R2 7→ Pol3 as follows:

J⊗(v ⊗ u)(z) = Ψv⊗u(z) (120)

where Ψv⊗u(z) satifies

Ψv⊗u(q0) = v0u0 = Ψv(q0)Ψu(q0) (121)

Ψv⊗u(q1) = v0u1 = Ψv(q0)Ψu(q1) (122)

Ψv⊗u(q2) = v1u0 = Ψv(q1)Ψu(q0) (123)

Ψv⊗u(q3) = v1u1 = Ψv(q1)Ψu(q1), (124)

where Ψu(z) = Ju(z) and Ψv(z) = Jv(z).

Lemma 6

The operator J⊗ is slotwise linear, i.e. for each v1, v2, u1, u2 ∈ R2 and α1, α2, β1, β2 ∈ R,

J⊗((α1v1 + α2v2)⊗ u1) = α1J⊗(v1 ⊗ u1) + α2J⊗(v2 ⊗ u1) (125)
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and

J⊗(v1 ⊗ (β1u1 + β2u2)) = β1J⊗(v1 ⊗ u1) + β2J⊗(v1 ⊗ u2). (126)

Proof

We need to show that

(a)

J⊗((v1 + v2)⊗ u) = J⊗(v1 ⊗ u) + J⊗(v2 ⊗ u) (127)

Using our definition of J⊗(v ⊗ u)(z) = Ψv⊗u(z) we have

J⊗((v1 + v2)⊗ u)(qk) = Ψv1+v2(q
k)Ψu(qk) = [Ψv1(q

k) + Ψv2(q
k)]Ψu(qk)

Ψv1(q
k)Ψu(qk) + Ψv2(q

k)Ψu(qk) = J⊗(v1 ⊗ u)(qk) + J⊗(v2 ⊗ u)(qk)

for k = 0, 1, 2, 3

since

Ψv1+v2(q
k) = (v1 + v2)k = v1k

+ v2k
= Ψv1(q

k) + Ψv2(q
k) (128)

where (v1 + v2)k is the k component of the vector (v1 + v2).

(b) We also need to show that

J⊗((αv)⊗ u) = αJ⊗(v ⊗ u) (129)

Using the definition of J(v ⊗ u)(z) = Ψv⊗u(z) we have that

J⊗((αv)⊗ u)(qk) = Ψ(αv)⊗u(qk) = Ψαv(qk)Ψu(qk)

= αΨv(qk)Ψu(qk) = αΨv⊗u(qk) = αJ⊗(v ⊗ u)(qk) (130)

since

Ψαv(qk) = (αv)k = α(vk) = αΨv(qk) (131)
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where vk is the k component of the vector v.

Therefore J⊗ : R2 ⊗R2 7→ Pol3 is slotwise linear.

Theorem 3

There exist four functions of q and z S00(z), S01(z), S10(z), S11(z) such that

Ψv⊗u(z) = S00Ψv(z)Ψu(z) + S01Ψv(z)Ψu(qz) + S10Ψv(qz)Ψu(z) + S11Ψv(qz)Ψu(qz)

Proof

Let’s consider the corresponding basis

e1 =
(

1
0

)
, e2 =

(
0
1

)
(132)

for R2. The basis for R2 ⊗R2 is

e1 ⊗ e1 =




1
0
0
0


 , e1 ⊗ e2 =




0
1
0
0


 , e2 ⊗ e1 =




0
0
1
0


 , e2 ⊗ e2 =




0
0
0
1




We want to show that there exist four functions of z and q such that:

Ψv⊗u(z) = S00Ψv(z)Ψu(z) + S01Ψv(z)Ψu(qz) + S10Ψv(qz)Ψu(z) + (133)

S11Ψv(qz)Ψu(qz)

For the left side of (133) we can decompose Ψv⊗u(z) into its basis components so we have

Ψv⊗u(z) = Ψ(β1e1+β2e2)⊗(γ1e1+γ2e2) (134)

Applying the slotwise linearity of the J⊗ mapping, we now have

Ψ(β1e1+β2e2)⊗(γ1e1+γ2e2) = β1γ1Ψe1⊗e1 + β1γ2Ψe1⊗e2 (135)

+β2γ1Ψe2⊗e1 + β2γ2Ψe2⊗e2

where

Ψe1⊗e1 = Ψ(1,0,0,0) =
(z − q)(z − q2)(z − q3)
(1− q)(1− q2)(1− q3)

(136)

26



Ψe1⊗e2 = Ψ(0,1,0,0) =
(z − q0)(z − q2)(z − q3)
(q − q0)(q − q2)(q − q3)

(137)

Ψe2⊗e1 = Ψ(0,0,1,0) =
(z − q0)(z − q)(z − q3)

(q2 − q0)(q2 − q)(q2 − q3)
(138)

Ψe2⊗e2 = Ψ(0,0,0,1) =
(z − q0)(z − q)(z − q2)

(q3 − q0)(q3 − q)(q3 − q2)
(139)

which we obtain by solving for the Ψ(z) functions of the four-dimensional basis vectors. When we

substitute the Ψ(z) basis kronecker products with their third degree polynomials we have

Ψv⊗u(z) = β1γ1Ψe1⊗e1 + β1γ2Ψe1⊗e2 + β2γ1Ψe2⊗e1 + β2γ2Ψe2⊗e2 = (140)

β1γ1
(z − q)(z − q2)(z − q3)
(1− q)(1− q2)(1− q3)

+ β1γ2
(z − q0)(z − q2)(z − q3)
(q − q0)(q − q2)(q − q3)

β2γ1
(z − q0)(z − q)(z − q3)

(q2 − q0)(q2 − q)(q2 − q3)
+ β2γ2

(z − q0)(z − q)(z − q2)
(q3 − q0)(q3 − q)(q3 − q2)

For the right side of (133) we combine the linearity of Jq from Lemma 5:

Ψv = Ψβ1e1+β2e2 = β1Ψe1 + β2Ψe2 (141)

Ψu = Ψγ1e1+γ2e2 = γ1Ψe1 + γ2Ψe2 (142)

and equation (103), which yields

Ψe1(z) =
q

q − 1
− 1

q − 1
z (143)

Ψe2(z) =
−1

q − 1
+

1
q − 1

z (144)

Ψe1(qz) =
q

q − 1
− q

q − 1
z = −qΨe2(z) (145)

Ψe2(qz) =
−1

q − 1
+

q

q − 1
z = Ψe1 + (1 + q)Ψe2 (146)

to obtain

S00Ψv(z)Ψu(z) + S01Ψv(z)Ψu(qz) + S10Ψv(qz)Ψu(z) + S11Ψv(qz)Ψu(qz) = (147)

S00(q, z)[β1Ψe1(z) + β2Ψe2(z)][γ1Ψe1(z) + γ2Ψe2(z)] +

S01[β1Ψe1(z) + β2Ψe2(z)][γ1Ψe1(qz) + γ2Ψe2(qz) +
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S10[β1Ψe1(qz) + β2Ψe2(qz)][γ1Ψe1(z) + γ2Ψe2(z)] +

S11[β1Ψe1(qz) + β2Ψe2(qz)][γ1Ψe1(qz) + γ2Ψe2(qz)]

= S00(q, z)[β1(
q

q − 1
− 1

q − 1
z) + β2(

−1
q − 1

+
1

q − 1
z)][γ1(

q

q − 1
− 1

q − 1
z) + γ2(

−1
q − 1

+
1

q − 1
z)] +

S01[β1(
q

q − 1
− 1

q − 1
z) + β2(

−1
q − 1

+
1

q − 1
z)][γ1(

q

q − 1
− q

q − 1
z) + γ2(

−1
q − 1

+
q

q − 1
z)] +

S10[β1(
q

q − 1
− q

q − 1
z) + β2(

−1
q − 1

+
q

q − 1
z)][γ1(

q

q − 1
− 1

q − 1
z) + γ2(

−1
q − 1

+
1

q − 1
z)] +

S11[β1(
q

q − 1
− q

q − 1
z) + β2(

−1
q − 1

+
q

q − 1
z)][γ1(

q

q − 1
− q

q − 1
z) + γ2(

−1
q − 1

+
q

q − 1
z)]

When we compare and equate (140) with (147) and match powers of z, we obtain four equations that we

can use to solve for our four unknowns, S00, S01, S10, S11:

S00 =
1

(q − 1)4q2(1 + q)(1 + q + q2)z2
∗ −q5(1 + q) + q(1 + q + q2 − q3 + 2q4 + 3q5 + 2q6 − q7)z +

(1 + q)(1 + q + q2)(−1 + q3(−1 + (q − 2)(q − 1)q)z2 + (2 + q + 2q2 + q4 + q5 + q6)z3 − (1 + q3)z4

S01 =
(q − z)(z − 1)(z + q2(−q2 + q(−1 + q + q2)z − z2))

(q − 1)4q2(1 + q + q2)z2

S10 =
(z − 1)(−q6(1 + q)− q2(1 + q + q2)(−1 + (q − 2)q4)z − q(2 + q + 2q2 + q4)z2 + (q + 1)z3

(q − 1)4q3(1 + q)(1 + q + q2)z2

S11 = − (q − z)(z − 1)(−q5 + q(1 + q4)z + (−1 + q − q2)z2)
(q − 1)4q3(1 + q)(1 + q + q2)z2

Definition of Kronecker Product of Matrices

The Kronecker Product of matrices A,B is

A⊗B =
(

p11 p12

p21 p22

)
⊗

(
r11 r12

r21 r22

)
= (148)




p11

(
r11 r12

r21 r22

)
p12

(
r11 r12

r21 r22

)

p21

(
r11 r12

r21 r22

)
p22

(
r11 r12

r21 r22

)


 =




p11r11 p11r12 p12r11 p12r12

p11r21 p11r22 p12r21 p12r22

p21r11 p21r12 p22r11 p22r12

p21r21 p21r22 p22r21 p22r22


 (149)

where A and B are 2× 2 matrices. Next, we define the operator ∆A⊗B as follows:

Definition of ∆A⊗B : Pol3 7→ Pol3

Define ∆A⊗B such that

∆A⊗BJ(v ⊗ u) = J(Av ⊗Bu) (150)

where

J(Av) = ∆AJ(v) (151)
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Theorem 4 We can find three Laurent polynomials, f+
A⊗B , f0

A⊗B , f−A⊗B such that

∆A⊗B = f+
A⊗BT+ + f0

A⊗BT 0 + f−A⊗BT− (152)

for four specific matrix pairs A and B:

A1 =
(

1 0
0 0

)
B1 =

(
1+q+q2

q
1+q+q2

q2(1+q)
q2

1+q 1

)
(153)

A2 =
(

0 1
0 0

)
B2 =

(
1+q+q2+q3

q3
−1
q3

1 0

)

A3 =
(

0 0
1 0

)
B3 =

(
0 1

1+q+q2+q3

−q3

1+q+q2+q3 1

)

A4 =
(

0 0
0 1

)
B4 =

( q
1+q+q2

1
1+2q+2q2+q3

q
1+q 1

)

Proof

Following the operator application from (112) we have that

∆A⊗BΨv⊗u = (f+
A⊗BT+ + f0

A⊗BT 0 + f−A⊗BT−)Ψv⊗u(z) =

f+
A⊗BΨv⊗u(qz) + f0

A⊗BΨv⊗u(z) + f−A⊗BΨv⊗u(q−1z) (154)

In Theorem 3 we proved that there exist S00, S01, S10, S11 for which

Ψv⊗u(z) = S00Ψv(z)Ψu(z) + S01Ψv(z)Ψu(qz) + S10Ψv(qz)Ψu(z) + S11Ψv(qz)Ψu(qz)

So now

∆A⊗BJ(v ⊗ u) = ∆A⊗BΨv⊗u =

f+
A⊗BS00(qz)Ψv(qz)Ψu(qz) + S01(qz)Ψv(qz)Ψu(q2z) + S10(qz)Ψv(q2z)Ψu(qz)

+S11(qz)Ψv(q2z)Ψu(q2z) +

f0
A⊗BS00(z)Ψv(z)Ψu(z) + S01(z)Ψv(z)Ψu(qz) + S10(z)Ψv(qz)Ψu(z) + S11(z)Ψv(qz)Ψu(qz) +

f−A⊗BS00(q−1z)Ψv(q−1z)Ψu(q−1z) + S01(q−1z)Ψv(q−1z)Ψu(z) + S10(q−1z)Ψv(z)Ψu(q−1z)

+S11(q−1z)Ψv(z)Ψu(z) (155)
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Once again using Theorem 3, if we now consider the right side of (150) we have

ΨAv⊗Bu = S00(z)ΨAv(z)ΨBu(z) + S01(z)ΨAv(z)ΨBu(qz) + (156)

S10(z)ΨAv(qz)ΨBu(z) + S11(z)ΨAv(qz)ΨBu(qz)

=

S00(z)(∆AΨv)(z)(∆BΨu)(z) +

S01(z)(∆AΨv)(z)(∆BΨu)(qz) +

S10(z)(∆AΨv)(qz)(∆BΨu)(z) +

S11(z)(∆AΨv)(qz)(∆BΨu)(qz)

=

S00(z)[f+
A (z)Ψv(qz) + f0

A(z)Ψv(z) + f−A (z)Ψv(q−1z)]

[f+
B (z)Ψu(qz) + f0

B(z)Ψu(z) + f−B (z)Ψu(q−1z)] +

S01(z)[f+
A (z)Ψv(qz) + f0

A(z)Ψv(z) + f−A (z)Ψv(q−1z)]

[f+
B (qz)Ψu(q2z) + f0

B(qz)Ψu(qz) + f−B (qz)Ψu(z)] +

S10(z)[f+
A (qz)Ψv(q2z) + f0

A(qz)Ψv(qz) + f−A (qz)Ψv(z)]

[f+
B (z)Ψu(qz) + f0

B(z)Ψu(z) + f−B (z)Ψu(q−1z)] +

S11(z)[f+
A (qz)Ψv(q2z) + f0

A(qz)Ψv(qz) + f−A (qz)Ψv(z)]

[f+
B (qz)Ψu(q2z) + f0

B(qz)Ψu(qz) + f−B (qz)Ψu(z)]

By equating (155) with (156) we get a system of sixteen equations,

S11(qz)f+
A⊗B(z) = S11(z)f+

A (qz)f+
B (qz) (157)

S10(qz)f+
A⊗B(z) = S10(z)f+

A (qz)f+
B (z) + S11(z)f+

A (qz)f0
B(qz)

0 = S10(z)f+
A (qz)f0

B(z) + S11(z)f+
A (qz)f−B (qz)

0 = S10(z)f+
A (qz)f−B (z)

S01(qz)f+
A⊗B(z) = S01(z)f+

A (z)f+
B (qz) + S11(z)f0

A(qz)f+
B (qz)

S00(qz)f+
A⊗B(z) + S11(z)f0

A⊗B(z) = S00(z)f+
A (z)f+

B (z) + S01(z)f+
A (z)f0

B(qz) + S10(z)f0
A(qz)f+

B (z) +

S11(z)f0
A(qz)f0

B(qz)
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S10(z)f0
A⊗B(z) = S00(z)f+

A (z)f0
B(z) + S01(z)f+

A (z)f−B (qz) + S10(z)f0
A(qz)f0

B(z) +

S11(z)f0
A(qz)f−B (qz)

0 = S00(z)f+
A (z)f−B (z) + S10(z)f0

A(qz)f−B (z)

0 = S01(z)f0
A(z)f+

B (qz) + S11(z)f−A (qz)f+
B (qz)

S01(z)f0
A⊗B(z) = S00(z)f0

A(z)f+
B (z) + S01(z)f0

A(z)f0
B(qz) + S10(z)f−A (qz)f+

B (z) +

S11(z)f−A (qz)f0
B(qz)

S00(z)f0
A⊗B(z) + S11(q−1z)f−A⊗B(z) = S00(z)f0

A(z)f0
B(z) + S01(z)f0

A(z)f−B (qz) +

S10(z)f−A (qz)f0
B(z) + S11(z)f−A (qz)f−B (qz)

S10(q−1z)f−A⊗B(z) = S00(z)f0
A(z)f−B (z) + S10(z)f−A (qz)f−B (z) (158)

0 = S01(z)f−A (z)f+
B (qz)

0 = S00(z)f−A (z)f+
B (z) + S01(z)f−A (z)f0

B(qz)

S01(q−1z)f−A⊗B(z) = S00(z)f−A (z)f0
B(z) + S01(z)f−A (z)f−B (qz)

S00(q−1z)f−A⊗B(z) = S00(z)f−A (z)f−B (z)

However, we can not solve this system of equations for all matrices A and B because the mapping of

Kronecker product vector multiplication, J(Av ⊗Bu) is nonlinear. However, we were able to successfully

solve for our unknown polynomials f+
A⊗B , f0

A⊗B , f−A⊗B for specific matrices. when we decompose our

matrix A into basis form

A =
(

p11 p12

p21 p22

)
= p11

(
1 0
0 0

)
+ p12

(
0 1
0 0

)
+ p21

(
0 0
1 0

)
+ p22

(
0 0
0 1

)

We can then use the unit basis vectors

e1 =
(

1
0

)
e2 =

(
0
1

)
(159)

to help solve our system of equations. We are now able to solve the system, which also provides us with

specific conditions for the B matrix. Thus there are at least four pairs of A and B that can now be

mapped as a Kronecker product,

A1 =
(

1 0
0 0

)
B1 =

(
1+q+q2

q
1+q+q2

q2(1+q)
q2

1+q 1

)
(160)
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A2 =
(

0 1
0 0

)
B2 =

(
1+q+q2+q3

q3
−1
q3

1 0

)

A3 =
(

0 0
1 0

)
B3 =

(
0 1

1+q+q2+q3

−q3

1+q+q2+q3 1

)

A4 =
(

0 0
0 1

)
B4 =

( q
1+q+q2

1
1+2q+2q2+q3

q
1+q 1

)

The three polynomial functions, f+
A⊗B , f0

A⊗B , f−A⊗B , are

f+
A⊗B =

1
(q − 1)4(q + 1)2(1 + q + q2)(q4 − z)z2

(−q(q2 − z)(q3 − z)(z − 1)p11 (161)

(−q2(1 + q + q2)(q − z)(−1 + qz)r11 + q4(1 + q)(q − z)2r12 + (1 + q + q2)

(z − 1)((−1− q − q2)q2 − q)r21 + q2(q + 1)(q − z)r22)) + (q − z)(q4

(q2 − z)2(q3 − z)p12(q2(q − z)r11 − (1 + q + q2)(z − 1)r21 +

(z − 1)(−q3(q − z)(q2 − z)p22((1 + q + q2)(q3 − z)r11 + (z − q2)r22

(z − 1)p21(−(1 + q + q2)2(q3 − z)(qz − 1)r11 + q2(1 + q)(1 + q + q2)

(q − z)(q3 − z)r12 + (q2 − z)((1 + q + q2)(qz − 1)r21 − q2(1 + q)(q − z)r22))))))

f0
A⊗B =

1
(q − 1)4q2(1 + q)(1 + q + q2)(q3 − z)q4 − z)z2

(q3 − zq−1)(q(q2 − z)(q3 − z)p11(q2(1 + q + q2)(q − z)2(qz − 1)r11 +

(z − 1)((q − z)(q4(1 + q)(q2 − z)r12 + (1 + q + q2)2(−1 + qz)r21) + q2(1 + q)

(1 + q + q2)(q2 − z)(z − 1)r22))− (q − z)(q4(q2 − z)(q3 − z)2p12(q2

(q − z)r11 + (1 + q + q2)(−1 + z)r21) + (z − 1)(q3(q − z)(q3 − z)p22

((−1− q − q2)(q3 − z)r11 + (q2 − z)r21) + p21((1 + q + q2)2(q − z)(q3 − z)

qz − 1)r11 + (q2 − z)(q2(1 + q)(1 + q + q2)(q3 − z)(z − 1)r12 − (1 + q + q2)(q − z)

(−1 + qz)r21 − q2(1 + q)(q2 − z)(z − 1)r22))))

f−A⊗B =
1

(q − 1)4q3(1 + q)2(1 + q + q2)(q2 − z)(q4 − z)z2

(q3 − zq−1)(q3(q2 − z)2(q3 − z)2p12(q2(q − z)r11 + (1 + q + q2)(z − 1)r21)

+q(q − z)(q2 − z)(q3 − z)p11(−q2(1 + q + q2)(q − z)(z − 1)((−1− q − q2)(z − 1)r21

+q(1 + q)(q2 − z)r22))− (q − z)(z − 1)q2(q2(q2 − z)(q3 − z)p22((1 + q + q2)

(q3 − z)r11 + (z − q2)r21) + (q − z)p21(−(1 + q + q2)2(q3 − z)(z − 1)r11
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(q
2 − z)((1 + q + q2)(q(1 + q)(q3 − z)r12 + (z − 1)r21 − q(q + 1)(q2 − z)r22)))))

where p11, p12, p21, p22 are the fixed entrees in the A basis matrix and r11, r12, r21, r22 are the entrees from

the corresponding B matrix.

Now we have that

∆A⊗B = ∆
(p11


 1 0

0 0


)+p12


 0 1

0 0


+p21


 0 0

1 0


+p22


 0 0

0 1


)

⊗B

∆
p11


 1 0

0 0


⊗B1+p12


 0 1

0 0


⊗B2+p21


 0 0

1 0


⊗B3+p22


 0 0

0 1


⊗B4

We now have a set of 4x4 matrices that can be mapped using our technique. Namely, when A is fixed,

A⊗B can be mapped when we have our B matrix such that (160) is satisfied.
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Conclusion

The goal of this thesis project was to study the mappings of discrete stochastic models into the complex

plane in polynomial form. We were successful in establishing two mappings, namely ∆ and J , that were

based off our operator ∆ and our function Ψ that enabled us to complete this transition from discrete to

continuous. By associating a matrix M with our operator ∆ and a vector v with our function Ψ(z) we can

compute ∆MΨv(z) instead of the matrix product Mv. We detailed both the 2-dimensional case and the

3-dimensional case, and illustrated how operators associated with Kronecker products of 2-dimensional

matrices can be used to map a subset of 4-dimensional matrices. Namely, when a 2-dimensional matrix A

is broken down into basis decomposition, each basis has a matrix B paired with it and these pairs of

matrices can successfully be mapped using ∆A⊗BΨv⊗u. So while not all of 4-dimensional space can be

mapped using our technique, a subset of matrices can be. We now have more freedom in working in the

complex plane than we previously had when working with a discrete set.

We also considered an expansion of our ∆ operator, which opens up possibilities for further work on this

topic. We narrowed our focus on Λ = 2 and L = 2, but further work could focus on the expansion of our

operator and considering polynomial spaces of higher degree using larger degree Laurent polynomials for ∆.

Another area of exploration is in using our mappings for representing matrices in larger polynomial spaces,

so rather than Rn+1 7→ Poln we could have Rn+1 7→ Polk where k = n + 2, n + 3, n + 4, ... and study the

representation of these mappings in larger spaces. By understanding these representations further we could

possibly look at combinations of networks with differing degrees, which would be impossible in linear

algebra where matrix-vector multiplication is restricted to matrices and vectors of the same dimension.
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