2000

Shedding New Light on the Ararat Anomaly

Porcher L. Taylor III
University of Richmond, ptaylor@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/spcs-faculty-publications

Part of the Biblical Studies Commons, and the History of Religion Commons

Recommended Citation

This Article is brought to you for free and open access by the School of Professional and Continuing Studies at UR Scholarship Repository. It has been accepted for inclusion in School of Professional and Continuing Studies Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.
For more than 5,000 years, Turkey’s Mount Ararat has been the reputed resting place of Noah’s Ark. At nearly 17,000 feet and usually shrouded in clouds and covered by a permanent icecap, Mount Ararat has allowed few glimpses of its peak or clues into its mysterious past. But that all may have changed on the sunny, cloudless morning of Aug. 5, 2000, when Space Imaging’s (Thornton, Colo.) IKONOS satellite captured an image of the one-mile-by-half-mile plateau. That image revealed an “anomaly” more than 400-feet long, which may be a man-made structure and thought by many to be the remnants of Noah’s Ark.

The “object” imaged on Mount Ararat is anomalous for several reasons. It doesn’t align with any of the mountain’s geological features and appears to be detached. It’s darker than surrounding shadows cast on the snow and isn’t entirely covered by snow. The symmetrical-appearing object has remained in the same spot for at least 51 years when it was first discovered in 1949 by a U.S. Air Force photo reconnaissance plane on a classified mission (see “A Chronicle of Imaging Ararat,” below).

Until IKONOS was launched last fall, no commercial satellite had the technological capability of imaging an exact spot on Mount Ararat with an appreciable degree of photographic clarity to determine if the anomaly might be man made. IKONOS first imaged the mountain top on Oct. 6, 1999, as part of the satellite’s calibration and testing after its September launch from Vandenberg Air Force Base in California. IKONOS’ 1999 flight over Ararat constitutes the satellite’s first use for potential archaeological purposes. Not only can IKONOS image land sites for scientists, but its ability to see 60 feet under water may aid the discovery of sunken ships, map coral reefs and look into submerged civilizations.

In making the globe transparent for scientists, IKONOS can dramatically affect the way research and exploration are conducted. Consider the cost savings. For example, a National Geographic expedition to Canada’s Hudson Bay to observe walrus bulls on ice slabs could take advantage of IKONOS imagery of ice flow conditions taken before the expedition at a significant cost savings over aerial or ground surveillance. In addition, satellites, unlike planes, can fly far above adverse Arctic weather conditions.

Next, consider the time savings. If a suspected ancient city is hidden in a remote part of an Amazon jungle, an archaeological team could quickly examine IKONOS imagery to determine whether an expedition was merited. Finally, consider safety. Plunging into the depths of an Amazon jungle on a reconnaissance mission can be risky business.

Despite dozens of private expeditions to Mount Ararat in this century, no one has ever walked away with conclusive proof that a large man-made structure is entombed in the mountain’s icecap, except perhaps noted French explorer Fernand Navarra, who found a five-foot piece of apparently ancient, handcrafted wood near the anomaly area in July 1955. No one has ever found or photographed the remains of Noah’s Ark.

Now, due to Turkey’s virtual war with Kurdish guerrillas in eastern Turkey during the 1980s and 1990s, Mount Ararat is essentially under emergency military rule. All expeditions and tourist visits are banned. Even so, IKONOS was able to conduct its own surveillance of the mountain, quickly, at little cost and at no risk. As Turkey suffered through its hottest summer in 60 years—with temperatures reaching 130 degrees melting highway asphalt—weather conditions on ice-clad Ararat should be ideal for IKONOS to image the entire anomaly.

Serving as a space-based Indiana Jones, IKONOS could become an indispensable tool for archaeologists. For this high-tech eye in the sky to shed new light on an enduring ancient mystery could enhance U.S. diplomatic relations with Turkey, a key NATO ally.

A Chronicle of Imaging Ararat

In addition to the Aug. 5, 2000, image, IKONOS captured the anomaly a second time on Sept. 13, 2000. The Mount Ararat area also has been imaged by France’s SPOT satellite in September 1989, Landsat in the 1970s and NASA’s space shuttle in 1994, as well as military satellite images captured by the U.S. Central Intelligence Agency’s (CIA) Keyhole 9 (KH-9) in 1973 and Keyhole 11 (KH-11) in 1976 and 1990-1992.

In addition, a U.S. Air Force plane on a low-level, classified aerial mission on June 17, 1949, captured the anomaly, which is nearly fully exposed in those photos. Neither the U.S. Defense Intelligence Agency nor CIA have declassified their KH-9 and KH-11 satellite imagery of the anomaly.

By Porcher L. Taylor III, senior associate, Center for Strategic and International Studies (CSIS), Washington, D.C., and assistant professor, University of Richmond, Richmond, Va.

© 2000 Space Imaging, www.imaginingnotes.com