High-Tech Archaeology Supports Quest for Noah's Ark: Can High-Resolution Satellite Imagery Certify One of Ancient History's Most Coveted Prizes?

Porcher L. Taylor III
University of Richmond, ptaylor@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/spcs-faculty-publications

Part of the Biblical Studies Commons, Classical Archaeology and Art History Commons, and the History of Christianity Commons

Recommended Citation
High-Tech Archaeology Supports Quest for NOAH'S ARK

Can high-resolution satellite imagery certify one of ancient history's most coveted prizes?

By Porcher L. Taylor, associate professor, University of Richmond (www.richmond.edu), Richmond, Va.

Thanks to CSI-like exploits of a space-based Indiana Jones, a new age of discovery through high-resolution satellite archaeology was born when GeoEye’s IKONOS satellite zoomed in on the ice cap of a remote mountain in northeastern Turkey on Oct. 5, 1999, during its calibration mission. IKONOS, the world’s first commercial imaging satellite with 1-meter resolution, was in hot pursuit of solving an enduring ancient mystery—whether an intriguing, boat-shaped “object” partially submerged under the mountain’s ice cap might be something of biblical proportions.

Indeed, Mt. Ararat is not your typical mountain. For thousands of years it has been reputed to be the resting place of Noah’s Ark. According to the book of Genesis, the Ark landed on “the mountains of Ararat” after a global deluge. Subsequent to its calibration mission, IKONOS flew three more successful missions over the Ararat Anomaly in 2000: Aug. 5, Aug. 11 and Sept. 13. The June-September timeframe is the best time to image Mt. Ararat because summer is generally when the greatest amount of melting of the ice cap occurs. Building upon the satellite archaeology foundation begun in 1999, IKONOS flew its most recent mission over the Anomaly in July 2005.

My analysis of these missions might provide a window into the future of satellite archaeology and intriguing details as to whether the 1,015-foot-long “object” at 15,300 feet on the northwest corner of Mt. Ararat’s western plateau might be the remains of a priceless archaeological treasure.

An Able Explorer

As a technological threshold, it’s important to note that IKONOS is superior to ground expeditions in two important aspects. Mt. Ararat’s 17-square-mile ice cap (as deep as 300 feet of ice and snow in some places) and often thick cloud cover would pose a daunting task for a ground expedition to cover that much ground in search of a specific “object.” It would take perhaps dozens of ground expeditions over several years to cover every square foot of the ice cap. Additionally, given the past geopolitical volatility of the Ararat area—a proverbial stone’s throw from Iran and the former Soviet Union’s border—and the past geopolitical volatility of the Ararat area—a proverbial stone’s throw from Iran and the former Soviet Union’s border—

A series of IKONOS images in 1999 and 2000 reveal intriguing details about the “ship-shaped” 1,015-foot-long “object” partially submerged under Mt. Ararat’s ice cap.
The difficulty of obtaining a permit for a private expedition from the Turkish government, actually climbing Mt. Ararat is difficult at best. Imaging the entire ice cap on Mt. Ararat from about 10,000 feet wide. This could be significant, because the Genesis architectural blueprint gives Noah's Ark a 61 length-width-to-height ratio at 300 cabins in length and 50 cubits in width. At about 1,015 feet long and 160 feet wide, the Anomaly appears to fall into this biblical proportions ballpark. That could merely be a coincidence, but then again, maybe the Anomaly size has more secrets to reveal. With the launch of ICONOS' high-tech successor, GeoEye-1, in February 2007, my satellite archaeology project is poised to shed new high-tech light on an enigmatic and ancient mystery. This new high-tech eye in the sky will have an astounding 4-meter resolution, nearly twice the resolution of IKONOS. In March 2003, Insight on the News, the Washington Times Corp's weekly news magazine, contracted GeoEye to task ICONOS to fly three missions over the "object of interest" on Mt. Ararat.

Astronomically, the clear weather in summer 2000 peeled back another layer of secrecy covering the "object." Another thick, straight line running about 400 feet long was evident in the Aug. 5 image. It was "connected to" and ran parallel to an area that I’ll call, for lack of a better word, the "deck" of the "ship-like object." This time, much more of the "ship" was visible in the sub-surface ice. We were even more fortunate with the results of the Aug. 11, 2000, ICONOS mission over this deeply buried "object." Some of the key pieces in this puzzle seemed to be falling into place. Both the 200- and 400-foot symmetrical lines were more visible than ever. For the first time, the "deck" or "frame" area could be seen with relatively good detail. Significantly, I could see two more parallel lines running about 400 feet, connected by what appeared to be many cross-connecting lines. Although there was heavy cloud cover over the south end of the "object," what was visible suggested that there was "connecting" parallel lines continued toward the cloud-covered part of the "object." There was a hint that these lines ended up in the form of a "bow-type" shape.

Totally free of cloud-cover, Mt. Ararat on Sept. 13, 2000, granted us a great glimpse of the Anomaly.