Imaging the Ararat Anomaly (Mapplet: CARTOGRAPHY, ANALYSIS, AND BEYOND)

Porcher L. Taylor III
University of Richmond, ptaylor@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/spcs-faculty-publications
Part of the Earth Sciences Commons, and the History of Religion Commons

Recommended Citation

This Article is brought to you for free and open access by the School of Professional and Continuing Studies at UR Scholarship Repository. It has been accepted for inclusion in School of Professional and Continuing Studies Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.
Since 1973, very high-resolution U.S. spy satellites have hinted that a huge, ship-shaped object obscured by the permanent ice cap on Mt. Ararat in Turkey might be the remains of the biblical Noah's Ark. Unfortunately, its remote, glacial, and cloud-covered location makes imaging and measuring the "Ararat Anomaly" a challenge. However, after 13 years of lobbying the intelligence community to declassify the spy satellite imagery, I submit that commercial imagery, not declassification, is likely to solve this geospatial puzzle.

Two space-based Indiana Joneses--IKONOS and QuickBird--and world-class geospatial software have come to the rescue of this satellite archaeology project, and have shed some light on the form and size of the anomalous object. IKONOS, the world's first one-meter commercial-resolution satellite, zoomed in over Ararat during 1999, 2000, and last summer, strongly suggesting that the object has ship-like features. These missions built upon the classified aerial photos of Ararat taken by a U.S. Air Force plane on a low-level reconnaissance mission on June 17, 1949, that I had the Defense Intelligence Agency release under the Freedom of Information Act in 1995.

QuickBird, the world's first two-foot commercial-resolution satellite, took the most compelling images of the object on February 1, 2003. That "bird" had fought thick cloud cover over the Anomaly in at least five earlier attempted missions. The February mission over Ararat, however, was cloud-free, and confirmed that the object was an elongated, symmetrical, Titanic-sized structure.

Thanks to QuickBird's high-resolution imagery, Rod Franz, a satellite imagery analyst, was able to make a near-precise determination of the Anomaly's length. Using RemoteView Professional, he determined the length of the object to be about 1,015 feet long from what is apparently the "bow" to the "stern." The software also has the ability to adjust brightness, contrast, haze, sharpness, and other factors in imagery of the deeply buried object of interest. Using this technology, Franz was unable to detect anything hidden under the ice and snow.

This satellite archeology project is set to make a quantum leap in space imaging technology within the next year, with the expected launch of IKONOS' 0.4-meter-resolution successor, GeoEye-1, in February 2007, and DigitalGlobe's high-tech WorldView, which will have similar resolution. With these advances, we might finally gain a complete solution to Ararat's ice-bound geospatial mystery.

PROJECT METADATA

Objective: Photograph and measure what may be the ice-covered remains of Noah's Ark at 15,300 feet on Mt. Ararat in Turkey.

Participants: Ararat Anomaly researcher Porcher Taylor, and Rod Franz, a satellite imagery analyst with SunTek Media Group/ Ritelmage Inc., Henderson, Nevada.


Porcher Taylor, Associate Professor, University of Richmond