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Analytic Continuation in Bergman Spaces 
and the Compression of 

Certain Toeplitz Operators 

WILLIAM T. Ross 

ABSTRACT. Let G be a Jordan domain and K C G be rel­
atively closed with Area(K) = 0. Let A2(G\K) and A2 (G) 
be the Bergman spaces on G\K, respectively G and define 
N = A2(G\K) e A2 (G). In this paper we show that with a 
mild restriction on K, every function in N has an analytic 
continuation across the analytic arcs of 8G that do not in­
tersect K. This result will be used to discuss the Fredholm 
theory of the operator a, = PNTJIN, where I E C(G) and 
T1 is the Toeplitz operator on A2(G\K). 

1. Introduction. Let U be a bounded, open, connected, non-empty subset of 
C. Let L 2(U) denote the Hilbert space of complex valued measurable functions 
(with respect to two-dimensional Lebesgue measure) on U which are square 
integrable. The inner product is given by (f,g} = fu Jg dA and the norm of 

a function h E L2 (U) will be given by llhll 2 = (h,h)112 • The Bergman space, 
denoted A2 (U), is the closed subspace of all functions in L 2 (U) which are analytic 
on U. We motivate this paper with the following example. Let D be the unit 
disk and K CD, K compact with Area(K) = 0. If f E A2(D\K), then in some 
annulus A contained in D, f has a Laurent series 

n=-oo 

Define Ji and h in A by 

00 

fi(z) = LCnZn 

(1) 
n=O 

-1 

/2(z) = L CnZn 

n=-oo 
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1364 W. T. Ross 

and note that f1 and h have unique analytic continuations to D, respectively 
D\K. Thus f 1 E A2(D) and f2 E A2 (D\K) with f2 analytic across 8D. The 
decomposition f =Ji+ f2 is not, in general, orthogonal. However, if we define 
N = A2 (D\K) e A2 (D), then f E A2 (D\K) has an orthogonal decomposition 
f = fo + fN, where fo E A2 (D) and fN EN. The function fo is analytic on 
D and we will show that JN is analytic across 8D. Thus the orthogonal decom­
position of a function in A2 (D\K) is also a decomposition into two functions, 
one of which behaves well inside the disk while the other behaves well across the 
boundary of the disk. Moreover, the two decompositions are always equal (i.e. 
Ji = fn, h = !N for all f E A(D\K)) only in the trivial case where N = 0 (see 
Theorem 3.7). 

This result can be generalized for Jordan regions G and KC G, K relatively 
closed with Area(K) = 0. After placing a mild technical condition on K, we 
show that if N = A2(G\K) e A2 (G) then every function f EN has an analytic 
continuation across the analytic arcs of {)G which are "away" from K. In the 
Bergman space, point evaluations are bounded linear functionals whose norms 
are uniformly bounded on compact subsets. Using our analytic continuation, 
we will show that for functions in N, not only are point evaluations continuous 
in G\K but they are also continuous for the extended functions outside the 
region G\K. Hence for the space N, not is only is analyticity preserved across 
the analytic arcs of aa but the continuity of the evaluation functional is also 
preserved. 

Finally, our analytic continuation and bounded point evaluation results will 
be used in conjunction with techniques of [Ax] and [A-C-M] to discuss the Fred­
holm theory of the compression of certain Toeplitz operators on A2 (G\K) to the 
space N. 

Let C(U) denote the set of complex valued continuous functions on[! and 
let A(U) denote the set of functions in C(U) which are analytic on U. Let Pu 
denote the orthogonal projection of L 2(U) onto A2(U) and for f E C(U), define 
the Toeplitz operator Tf on A 2 (U) by 

Tf h = Pu(fh). 

Tf is a bounded operator on A 2 (U) with llTf 11 :::; llfll<X,, where llflloo = 

sup{if(z)i : z E U}. When f E A(U), Tf is just a multiplication operator 

and when f(z) = z, Tf is called a Bergman shift. The authors in [Ax], and 

[A-C-M] have studied the Fredholm properties of Tf and have pointed out the 

relationship between the essential spectrum of Tf and certain boundary points 

of U where functions in A 2 (U) admit analytic continuation. 
Let G be a Jordan domain and KC G with Area(K) = 0 and G\K is open 

and connected. We define N = A2(G\K)eA2 (G) and we let Pa\K• Pa, and 
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PN to be the orthogonal projections of L2 (G\K) onto A2 (G\K) (respectively 
A2 (G) and N). Let f E C(G). With respect to the decomposition A2(G\K) = 

A2 (G) ffiN we can write TJ\K in matrix form as 

where BJ = PaM1IN, X1 = PNMJIA2(G)• and C1 = PNM1IN· (MJ is the 
multiplication operator M1(h) = fh.) 

The main object of study here is the operator Cf and the relationship be­
tween its Fredholm properties and the geometry of the set K. We also look at the 
Fredholm theory for Tf, X f, and Bf, and how these contribute to the spectral 

and Fredholm picture of TJ\K. If f E A( G), then N would be a semi-invariant 

subspace for TJ\K and Cf would be called the compression of TJ\K to N. (Note 

that in this case X1 = 0, see [SJ.) In the special case of Cz, a rough analog has 
been studied by Conway in the Hardy space H 2(G\K), [Co3, Sections 4 and 5]. 
In Conway's case, the role of the decomposition f = fD +JN is replaced by the 
decomposition f = f 1 + h defined above. We also mention that there are results 
on the lattice of invariant subspaces for the operator Cz, see [Ro]. 

Many of the techniques of [A-C-M] will be used here but our main tool 
will be the analytic continuation and bounded point evaluation properties of the 
space N which we will obtain using the reproducing kernel functions for N and 
various conformal mapping techniques. 

2. Fredholm Theory and Analytic Continuation. As mentioned in the in­
troduction, there is a close relationship between the essential spectrum of the 
Toeplitz operator TY and analytic continuation of functions in A 2 (U) across cer­
tain boundary points of U. We now lay down some basic Fredholm theory facts 
and discuss the essential spectrum of the Toeplitz operator TY. 

Let H be a separable Hilbert space and let B(H) denote the set of all 
bounded operators on H. Let /C(H) be the two sided ideal of compact operators 
on H. An operator T E B(H) is said to be Fredholm if Ran(T) is closed and both 
ker(T) and ker(T*) are finite dimensional. The essential spectrum of T, denoted 
by ae(T), is the set of complex numbers>. such that T- >. is not Fredholm. Let 
7r: B(H)-+ B(H)/JC(H) be the natural map from B(H) onto the Calkin algebra 
B(H)/JC(H). A corollary to Atkinson's theorem says that Tis Fredholm if and 
only if 7r(T) is invertible in the Calkin algebra. The essential norm of T, llTlle, 
is the norm of 7r(T). That is 

l!Tlle = inf{llT- Kii : KE /C(H)}. 
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The index of a Fredholm operator T, denoted by ind(T), is defined by ind(T) = 
dim(ker T) - dim(ker T*). The index is a continuous map from the set of Fred­
holm operators (with the norm topology) to the integers (with the discrete topol­
ogy). Finally, we mention that the essential spectrum, essential norm, and index 
are invariant under compact perturbations. 

Let W be a bounded connected region in C. A point >. E aw is said to 
be removable with respect to A 2(W) if there is an open neighborhood V of>. so 
that every function in A 2 (W) can be extented to be analytic in W U V. Define 
arW = {>. E aw : >.is removable} and aeW = aw\arW. aeW is called the 
Bergman essential boundary of W. By definition, ar W is a relatively open subset 
of aw and hence ae W is compact. This next proposition lists some basic facts 
about the Bergman essential boundary. The proof can be found in [A-C-M]. 

Proposition 2.1. 

(a) If >. is an isolated point of aw, then >. E ar W. 
(b) ar W has zero area. 

(c) aw c aeW. 
( d) Let >. E aw. If the connected component of aw containing >. contains more 

than one point, then >. E ae W. (That is, ar W is totally disconnected.) 

We remark that there is a relationship between removable singularities in 
the Bergman space and logarithmic capacity, see [A-C-M, Lemma 15, Theorem 
16], [Ca, p. 73], and [A-P, Theorem BJ. We state these here for future reference. 

Proposition 2.2. Let K be a compact subset of a region U. Then A 2 (U\K) 
is equal to A2 (U) if and only if K has logarithmic capacity zero. Moreover, if 
K has positive logarithmic capacity, there is a measure µ on K whose Cauchy 
transform 

µ,(z) = r dµ(e) 
jK e-z 

is a non-zero element of A2 (U\K). 

Proposition 2.3. A point >. E au is removable if and only if there is a 

8 > 0 such that B(>.;8)\U has logarithmic capacity zero. 

We now state the connection between the Bergman essential boundary and 
the Fredholm theory for the Toeplitz operator Tj". The proof of this next 

proposition can be found in [A-C-MJ. 
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Proposition 2.4. Let f E C(W) 

(a) Tf is compact if and only if f vanishes on 8eW. 

(b) D"e(Tf) = f(8eW). 

(c) llTf lie= 11/la.wlloo· 

1367 

Let G be a Jordan region and KC G be such that Area(K) = 0 and G\K 
is open and connected. Define the essential part of K by 

(2) Ke= Kn8e(G\K). 

To facilitate our construction, we make the following mild restriction on K. 
We refer to this restriction as property 'P. 

Property P. Ke Cf<, where Area(f<) = 0 and G\i< is simply connected. 

3. Reproducing Kernels and Analytic Continuation. A key element in the 
analysis of the space N' and the operator CJ is the reproducing kernel. We now 
state the basic facts about the reproducing kernels for the Bergman space. For 
further information and proofs of these facts, see [Ar], [Be], [Kr], [N]. 

For any open set U and w E U, the linear functional iw : A2 (U) -+ C 
defined by iw(f) = f(w) is continuous. Hence, there is a function ku(w,z) such 
that 

(3) f(w) = l f(z)kU(w,z)dA(z). 

The functions ku ( w, z) are called the reproducing kernels for A 2(U). As a func­
tion of two variables, ku(z,w) is analytic in the variable z and co-analytic in 
the variable w, where z, w E U. We sometimes write k~ ( z) for ku ( w, z). If Pu 
denotes the orthogonal projection of L 2(U) onto A2(U), then Pu can be given 
in terms of kernel functions by the following formula 

(4) (Puf)(w) = fut(z)k~(z)dA(z) = (!,k~}. 

We also mention that since k~(z) has the reproducing property, we have 

(5) 

If cp is a conformal map from the region U1 onto U2, then cp will induce the 
unitary map from A2 (U2 ) to A2 (U1 ) by f-+ (! o cp)cp'. Thus the kernel functions 
ku1 and ku2 are related by 

(6) 
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The reproducing kernel for A2(D), where Dis the unit disk, is given by kD(w,z) 
= ?r- 1(1-wz)-2 and if U is any region that is mapped conformally onto D by 
<p, then applying (6), we get 

(7) ku( ) _ _!. <p'(w)<p'(z) 
w,z -

7r (1- <p(w)<p(z)) 2 

(We remark that the kernel functions are unique so the above formula is in­
dependent of the choice of conformal map <p.) Let N = A2 (D\K) eA2 (D), 
where KC D such that D\K is simply connected. Let Pv\K• Pv, and P./\f be 

the orthogonal projections from L2(D\K) onto A2(D\K) (respectively A2(D), 

N). We know that (Pvf)(w) = (f,kE} and (Pv\Kf)(w) = (f,k~\K}, and since 
P./\f = Pv\K - Pv we see that 

(8) (PN f)(w) = (f,k~\K - k~}, 

hence 

(9) 

is the reproducing kernel for the space N. Let <p be the conformal map from 
D\K on to D. By (7) we get 

(10) kD\K (w,z) = _!. "?(W)<p'(z) 
7r (1- <p(w)<p(z))2 

Since Area(K) = 0, then kD(w,z) = ?r-1 (1-wz)-2 and thus 

(11) k./\f ( w, z) = _!. "?(W)<p' (z) - _!. 1 . 
7r (1- <p(w)<p(z))2 7r (1-wz)2 

Our first use of the kernel functions k./\f ( w, z) will be to show that functions 

in N have analytic continuation across 8D\Ke in the sense that there exists a 

neighborhood U of D\Ke, containing 8D\Ke, such that every f EN has an an­
alytic continuation to U, and for these analytic extensions, the linear functional 
w ___.. f ( w) is continuous for all w E U. Our first step is to prove this for K such 
that D\Ke is simply connected. (Just so there is no confusion, we note that by 
Proposition 2.1, A2(D\K) = A2(D\Ke).) 

Theorem 3.1. Let K C D have the property P and such that D\Ke is 
simply connected. Define N = A2(D\K) e A2(D). Then, there exists a neigh­
borhood U of D\Ke, containing, 8D\Ke and a function K./\f(w,z) of w and z 
on U x U with K./\f (w,z) analytic in z for fixed w in U and co-analytic in w for 
fixed z in U and K./\f(w,z) = k./\f(w,z) for all z and win D\Ke· 
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Before proving this theorem, we must make a few remarks about cp, the 
conformal map between D\Ke and D. 

For a non-zero complex number z, define z* = z~ 1 and for any set of complex 
numbers B which does not contain the origin, define B* = {b* : b EB}. We say 
that B is symmetric about an arc in the unit circle if B = B*. 

Let I be any relatively open arc compactly contained in aD\Ke and let 
cp be the conformal map from D\Ke onto D. By a theorem of Caratheodory 
[M, p. 66-71], we get that cp is continuous on (D\Ke) U I and by the symmetry 
principle [M, p. 315], there is a neighborhood V of I such that V is symmetric 
with respect to I and cp has an analytic continuation to V. We identify the 
function cp on D\Ke with its analytic continuation to V. 

Fix ei'l'J E I and ( E aD with (cp(ei'l'J) = ei'l'J. A calculation shows that 
(cp'(ei'l'J) > 0. Hence we can assume that our neighborhood V was chosen so that 
cp'(w) =/; 0 for all w EV. This next lemma gives a formula for cp(z) when z lies 
outside D\Ke. 

Lemma 3.2. cp(z) = cp(z*)* for all z EV. 

Proof. V ::J I and cp(z)cp(z*) is analytic on V and equal to 1 on I, hence 
equal to 1 on V. D 

Lemma 3.3. For all z E V, 

cp'(z)z2 
_;___;--'--=- =1. 
cp(z)2cp'(z*) 

Proof. Since 

h(z) = cp'(z)z2 
cp(z )2cp' (z*) 

is analytic on V, we will be done once we show that h(z) = 1 for all all z E J. 
Fix ei'l'J E I and choose ( E an with (cp( ei'l'J) = ei'l'J. A calculation shows that 
(cp'(ei'l'J) > 0, and so 

cp' ( ei'l'J )e2i'l'J (2 cp' ( ei'l'J )e2i'l'J 
=------

cp( ei'l'J )2cp' ( ei'l'J) (2cp( ei'l'J )2cp' ( ei'l'J) 

( ( cp' ( ei'l'J) )e2i'l'J 
= =1. D 

( cp' ( ei'l'J )( ( cp( ei'l'J))2 

By Lemma 3.2, cp is univalent on W =VU (D\Ke) and if we define g(w,z) = 

1- cp(w)cp(z) for z, win W, we see that for fixed z E W, g(w,z) is co-analytic 
in the variable w on W with a zero of order one at w = z* (if z* E W) and no 
other zeros in W. Similarly, for fixed w in W, g ( w, z) is analytic in the variable 
z on W with a zero of order one at z = w* (if w* E W) and no other zeros in 
w. 
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Proof of Theorem 3.1. Fix I C 8D\Ke, and let W be chosen as above. 
Define KN(w,z) on W x W by 

(12) KN(w,z) = ~ ~cp'(z) - ~ 1 
7r (1- cp(w)cp(z))2 7r (1-wz)2' 

where cp is considered to be an analytic function on W. We first note that 
KN(w,z) = kN(w,z) for all wand z in D\Ke. We must now show that KN(w,z) 
has the desired properties. Fix z E W. If z* ¢ W then KN ( w, z) is co-analytic 
on W and we are done. If, on the other hand, z* E W, then the functions 

(13) Ki(w,z) = ~ ~cp'(z) 
7r (1- cp(w)cp(z))2 

and K2(w,z) = 7r-1(1-wz)-2 both have poles of order 2 at w = z* but no other 
poles in W. The rest of the proof will be dedicated to show that the principal 
parts of these poles are equal, hence the KN(w,z) = K 1(w,z)-K2(w,z) has 
a removable singularity at w = z*. We can write the power series of cp in a 
neighborhood of z* in the following form 

00 

(14) cp(w) = L:Cn(z)(l -wz)n 
n=O 

where 

(15) 
(n)( *) 

en(z) = (-z*)n cp z . 
n! 

Since K 1(w,z) has a pole of order 2 at w = z*, it has a Laurent series which we 
can write in the following form 

(16) K ( ) 1 [ d_2(z) d-1(z) ~d ( )( _ )nl 
1 w, Z = ; (l _ WZ ) 2 + (l _ WZ) + ~ n Z 1 - WZ • 

The function K 1(w,z) can also be written in the usual form 

(17) Ki(w,z) = ~ ~cp'(z) 
7r (1- cp(w)cp(z))2 

1 cp'(z) E::"=i (-n)z~(l -wz)n-l 

= ; ( E::"=i cp(z)cn(z)(1- wz)n ) 2 

1 ao(z) + ai(z)(l -wz) + a2(z)(l -wz)2 + · · · 
= ; b2(z)(l - wz)2 + b3(z)(l -wz)3 + b4(z)(l -wz)4 + · · · · 
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A computation reveals that 

(18) 

(19) 

(20) 

(21) 

ao(z) = -zcp'(z)c1(z), 

ai(z) = -2zcp'(z)c2(z), 

--2 
b2(z) = cp(z)2c1(z) , 

ba(z) = 2cp(z)2c1(z)c2(z). 

Comparing the coefficients of (1-wz)n, we see that 

(22) 

(23) 

ao(z) = b2(z)d-2(z), 

ai(z) = b2(z)d-1(z) +d-2(z)ba(z). 

By Lemma 3.3 and our calculations above, 

(24) d-2(z) = ao(z) = z2cp'(z) = 1, 
b2(z) cp(z)2cp(z*) 

and 

(25) d ( ) = ai(z) - ba(z)d-2(z) 
-l z b2(z) 

-2zcp'(z)c;{Z)- 2cp(z)2c1(z)c2(z) 
= --2 

cp(z)2c1(z) 

(26) = cp'(z)z 2c2(z) _ 2 c2(z) = 0 2 (-) (-) 
cp(z)2cp'(z*) c1(z) c1(z) · 

Thus 

1[ 1 00 l (27) Ki(w,z)=; (l-wz)2 +~dn(z)(l-wz)n, 

yielding 

(28) 

1371 

Hence the singularity at w = z* is removable, making KN ( w, z) co-analytic 
on W. In a similar fashion, we prove that for fixed w E W, KN ( w, z) is analytic 
as a function of z on W. 

Letting U be the union of all such W chosen above, gives us the desired 
result. D 
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Corollary 3.4. Let U and KN(w,z) be as in Theorem 3.1. 
(a) If w EU, then K{f (z) EN and 

sup{llK~ll2: w E J} < oo 

for all compact J C U. 
(b) If f EN, then (K f) ( w) = (!, K{f) defines an analytic function on U which 

analytically continues f. 
(c) If w E U, then the evaluation functional f --+ (Kf)(w) defines a bounded 

linear functional onN with norm equal to (KN(w,w)) 112 • 

Proof. For w EU, note that 

Hence by using Theorem 3.1, and the fact that rp'(z) E L2 (D\Ke), we see that 

llK{f 112 < oo and 

sup{llK~ll2: w E J} < oo 

for all compact JC U. For g E L2 (D\Ke), define a function (Kg)(w) on U by 

(30) (Kg)(w) = (g,K~) 

and note that (Kg)( w) is analytic on U. Since KN ( w, z) = kN ( w,z) for all w, z 
in D\Ke, then if f EN, one sees that (Kf)(w) is an analytic continuation off 
to U, proving (b). 

To complete the proof of (a), we must show that K[f (z) EN for all w EU. 
Clearly K{f EN for w E D\Ke, thus if n = 0,1,2, ... , (Kzn)(w) = 0 for all 
w E D\Ke. But since (Kzn)(w) is analytic on U, one sees that (Kzn)(w) = 0 
on U. However, {zn : n 2: O} spans A2(D), so K[f (z) EN for all win U. Thus 
we have proved (a). 

For the proof of (c), define the linear functional Cw : N --+ C by Cw(!) = 
(Kf)(w), where w EU. By the Cauchy-Schwartz inequality, 

Hence l!Cwll :::; l!K{ill2 = (K.N"(w,w)) 112. But Cw(K{i) = KN(w,w), hence 

l!Cwll = (K.N"(w,w)) 112, proving (c). D 

We now expand our results to regions which are possibly not simply con­
nected. 
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Theorem 3.5. Let K C D have the property P and define 

N = A 2(D\K) e A 2(D). 

1373 

Then there exists a open neighborhood U of D\Ke, containing 8D\Ke such that 
the conclusions of Theorem 3.1 and Corollary 3.4 hold. 

Proof. The conclusions of Corollary 3.4 will follow in the same way as before 
once we have shown that the kernel functions kN(w,z) have 'extended' kernel 
functions KN ( w, z) in the sense of Theorem 3.1. 

By property P, there is a K with Ke C K, Area(K) = 0, and D\K is 
simply connected. Note that 

(31) D\K cD\Ke cD 

and so 

(32) 

(Note that A2(D\K) = A2(D\Ke) by Proposition 2.1.) If we let 

{33) jj = A2 (D\K) e A2 (D), 

and 

(34) 

then NC Ji and one can show that k.;f = PNk-f!. Here kN(w,z) is the repro­
ducing kernel for the space Ji. 

By Theorem 3.1, there exists a neighborhood U' of D\K, containing 8D\K, 

such that the kernels kN(w,z) have 'extensions' KN(w,z) to U' in the sense of 

Theorem 3.1. Thus, as before, KN(w,z) E jj for all w EU' and if g E L2(D), 

(Kg)(w) = (g,K-fj} is analytic on U'. 
Since N C Ji, one sees that if z and w are in D\K, then kN'(w,z) = 

(k.;f,Kf} which allows us to extend the kernels kN(w,z) to U' in the sense of 
Theorem 3.1 by 

(35) N N Ji! K (w,z) =(kw ,Kz }. 

If Ke were a compact subset of D, then K will be forced to intersect 8D 
at some point z0 , which might introduce a possible singularity of KN(w,z) at 
(z0 ,z0 ). This singularity can be avoided in the KN(w,z) function by moving the 

point zo to another point zb (i.e. readjusting K). 
Letting U = U'U(D\Ke), we see that KN'(w,z) has an obvious extension 

(in the sense of Theorem 3.1) to U x U and KN (w,z) = kN (w,z) for all wand 
z in D\Ke. D 

We expand our analytic continuation results to Jordan domains with the 
aid of conformal mappings. 
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Theorem 3.6. Let G be a Jordan domain and K C G have the property 
P. Let N = A 2 ( G\K) e A 2 ( G) and 'Y be the union of all relatively open analytic 

arcs contained in 8G\Ke . Then, there exists a neighborhood U of G\Ke, which 
contains 'Y such that the conclusions of Theorem 3.1 and Corollary 3.4 hold. 

Before we prove Theorem 3.6, we make the following observation which will 
be used several times in this paper. 

Let G1 and G2 be regions in C and K C G1 be relatively closed with 
Area(K) = 0. If cp is a conformal map between G1 and G2 then cp will induce 
a unitary operator U: A2 (G2\cp(K))-+ A2(G 1\K) by Uf = (focp)cp'. One can 
conclude from this that cp(Ke) = cp(K)e· 

Proof of Theorem 3.6. Let cp be the conformal map from G to D and notice 
by our remarks above, cp(K) will have the property P. Let 

and notice that by Theorem 3.5, there exists a neighborhood V of 

D\cp(Ke), which contains 8D\cp(Ke), so that the kernels kM(>,,{) for M have 
'extensions' KM(>.,{), in the sense of Theorem 3.1, to V x V. By [M, p. 66-71 
and p. 315], there exists a neighborhood U of G\Ke that contains 'Y such that 
cp analytically continues to U. We can assume, possibly by shrinking U, that 
cp(U) c V. 

Extend kN ( w, z) to U x U in the sense of Theorem 3.1 by 

(36) D 

For a compact K C D, K having the property P, we have two decom­
positions of a function f E A2(D\K). We have the Laurent decomposition 
f = Ji+ h mentioned in the introduction (see equation 1) and the orthogonal 
decomposition f = fv +IN· One asks the question whether or not these two 
decompositions are always equal. More precisely, for what K do we have Ji = f v 
and h = f N for all f E A2 (D\K)? 

Theorem 3. 7. The following are equivalent 

(i) Ii =Iv and h = f N for all f E A2 (D\K). 
(ii) K has logarithmic capacity zero. 

(iii) N = o. 
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Proof. (ii) {::} (iii) by [A-C-M, Lemma 15] and (ii) =? ( i) is trivial. So 
suppose that K has positive logarithmic capacity. Then by Proposition 2.2, 
there is a non-zero measure µ on K whose Cauchy transform 

(37) 

belongs to A2 (D\K). Let P, =Ji+ h be the Laurent decomposition and notice 
that 

(38) P,(z) = 1 dµ(e) = - f ( 1 Cdµ(e)) z-<n+1) 
K e-z n=O K 

So fi(z) = 0. 
If the decomposition P, =Ji+ h were orthogonal, then h .l A 2 (D). So for 

all m 2'.: 0, 

(39) 

Now, 

(40) f, zm 1 1 -dA(z)= + 
D e - Z lzl<lel lel<lzl<l 

and 

(41) 

Converting to polar coordinates, one sees that 

(42) _z_ dA(z) = _'Tr_ ~m+l. 1 -m ( ) 

lzl<lel e - z m + 1 

Also, 

(43) 1 zm 1 (00 C) -- dA(z) = - zm L n+l 
lel<lzl<l e - Z lel<lzl<l n=O Z 

Converting to polar coordinates again yields 

(44) 1 zm 
- dA(z) =0. 

lel<lzl<l e - z 

dA(z). 
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(45) 
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0 = (fl,,zm) = (-7r-) f ~m+l dµ(e) 
m+l }K 

for all m:::: 0. 
Let dv(e) = edµ(e) and note that 

(46) 

for all polynomials p(e). Since D\K is connected and Area(K) = 0, an ap­
plication of Lavrentiev's theorem [Co2, p. 343] gives us that polynomials are 
uniformly dense in the continuous functions on K. Thus dv = 0, which means 
that dµ must be a point mass at the origin. But then fl,(z) = cz-1 which does 
not belong to L2 (D), a contradiction. D 

4. Some Matrix Calculations. Let f E C(G) and form the Toeplitz operator 

Tf\K. With respect to the decomposition A2 (G\K) = A2(G)E9N we write 

Tf\K in matrix form as 

(47) 

From [A-C-M, Proposition 8] we get that if W = G\K or W = G, and if 

f,g E C(G), then Tfy -TJ"TJV and TJ"TJV -TJVTJ" are compact operators. 
We now prove a similar result for the operators CJ and C9 • 

Proposition 4.1. For f, g E C(G), 
(a) BJ and XJ are compact operators, 
(b) CJg - CJCg and CJCg - C9CJ are compact operators. 

Proof. 

(48) 

and 

(49) 
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Applying [A-C-M, Proposition 8] we get that T,Z\K -Tf\KT;\K is a compact 

operator and by (48) and (49), is equal to 

(50) 

Since Tfy-T'jT; is compact as is every entry in the above matrix, then B1X9 

is compact for all f, g E C(G). Note that since BJ = X.j and X1 = Bj-, then 

B1X9 = B1Bi is compact for all f, g E C(G). Letting g = f we see that B1Bj 
is compact, and applying the polar decomposition and the spectral theorem, we 
get BJ is compact. A similar argument shows X1 is compact, proving (a). 

Again looking at the matrix representation for T,Z\K -Tf\KT;\K (50), we 

see (C19 -C1C9 )-X1B9 is compact, and now using (a) we obtain C19 -C1C9 

is compact. Finally, C1C9 -C9 C1 = (C1C9 -C19 )+(C91-C9 C1) is compact, 
proving (b). 0 

Since 

(51) 

we can use Proposition 4.1 to conclude that the second matrix in the above 
sum is a compact operator. Since the essential spectrum of an operator remains 
unchanged under compact perturbations we get 

(52) ( G\K) ( (T'j O'e Tf = O'e O 

By Proposition 2.4, O'e(Tf\K) = f(8e(G\K)) and O'e(T'j) = f(8eG) = f(8G) 

(Proposition 2.1). Since Ke= Kn8e(G\K), we get ue(C1):) /(Ke)· By using 

techniques of [A-C-M], we will ultimately show that ue(C1) =/(Ke) but first 
we will need some information on the index of the operator Cz. 

Proposition 4.2. Let A E G. 

(a) For A~ O'e(Cz), ind( Oz -A)= 0. 

(b) For A E Ke, Cz - A does not have closed range. 
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Proof. 
(a) Since ae(T;;\K) = Oe(G\K) and ae(T;;) = OeG = oG (Proposition 2.1), 

then if A¢ Oe(G\K), one sees that A¢ ae(T;;\K) Uae(Tz°). Thus ind(T;_'{) 

and ind(T:::_>.) are well defined and a calculation [A-C-M, Theorem 5] shows 

that ind(T;_'{) = ind(T:::_>.) = -1. Since 

(53) TG\K = (T:::._>. 
z->. 0 

and Bz is compact, then 

-1 = ind(TG\K) z->. 

(54) 

(
TG 

. d z->. =in 
0 

= ind(T:::_>. EB Cz->.) 

= ind(T;;_>.) + ind(Cz->.) 

= -1 + ind(Cz->.)· 

Hence ind(Cz->.) = 0 for all A¢ Oe(G\K). By the remarks before Proposi­
tion 4.2, O'e(Cz) C Oe(G\K), so if A¢ O'e(Cz) but contained in Oe(G\K) we 
can choose a sequence {An} contained in G\oe(G\K) so that An-+ A. Since 
A ¢ O'e(Cz) then Cz->. is Fredholm, thus ind(Cz->.) is well defined. But, 
since the index is continuous, ind(Cz->.J = 0 for all n, and Cz->.n -+ Cz->., 
then ind(Cz->.) = 0, proving (a). 

(b) Let A E Ke, then, by the remarks before Proposition 4.2, A E ae(Cz). Note 
that ker(Cz->.) = {O} for all A E C. (If f E N with Cz->.f = 0, then 
(z -A)f E A2 (G) which implies that f E A2 (G). But f EN, hence f = 0.) 
Thus, if Cz->. has closed range, then Cz->. would be left invertible and hence 
left Fredholm. This would imply that ind(Cz->.) would be well defined. But 
since the index is a continuous map and ind(Cz-µ)=0 for all µ ¢ ae(Cz) 
then ind(Cz->.) = 0 which implies that Cz->. is Fredholm, contradicting the 
fact that A E O'e(Cz). D 

5. Compactness of the Compression. In this section we prove a compactness 
criterion for C1 similar to Proposition 2.4 in almost the same way as [A-C-M, 
Theorem 7] did for the Toeplitz operator r[\K except that our analytic contin­
uation results of Section 3 will provide a suitable substitution for the analytic 
continuation used to prove the original result. We first prove our theorem under 
the simplifying assumption that G = D and then move to the general case by 
means of a conformal mapping trick. Let K C D have the property 'P and letting 

- D\K f E C(D), define N, T1 , and CJ in the usual way. 
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Theorem 5.1. Let f E C(D). Then C1 is a compact operator if and only 

if f vanishes on Ke. 

Proof. Suppose that Cf is compact and that .A E Ke we wish to show that 

f(.A) = 0. Since .A E Ke, Proposition 4.2 says that Cz->.. does not have closed 
range. Hence there is a sequence {hn} in N with llhnll2 = 1, for all n and 
llCz->..hnll2-+ 0. By Banach-Alaoglu and passing to a subsequence if necessary, 
we can assume that hn-+ h weakly inN. Using the facts that Cz->..hn-+ Cz->..h 
weakly in N, llCz->..hnll 2 -+ 0, and that ker(Cz->..) = 0, we can conclude that 
hn -+ 0 weakly in N. 

Let e > 0 be given and let Ube a neighborhood of .A so that 

(55) II(!- f(.A))lvnulloo < €. 
Then 

llU- f(.A)hn)ll~ = 1 If- f(.A)l 2 lhnl2 dA 
(D\K)nU 

+ 1 If- f(.A)l 2lhnl 2 dA < 
(D\K)\U 

~ €2+1 If- f(.A) 12 lz - .Al2 lhnl2 dA 
(D\K)\U z - A 

2 

(56) < 2 + f - f (.A) I llTD\K h 112 - € A z->.. n 2· z-
(D\K)\U 00 

But 

(57) TD\Kh = z->.. (TD 
z->.. n 0 

Bz ) ( 0 ) ( Bzhn ) 
Cz->.. hn - Cz->..hn 

so 

(58) llT;~\K hnll~ = llBzhnll~ + llCz->..hnll~· 
But since hn -+ 0 weakly and Bz is compact (Proposition 4.1), then 

llBzhnll2-+ 0. Thus llT~'[ hnll2-+ 0, and hence II(!- f(.X))hnll2-+ 0. Thus 

(59) lf(.A)I = llf(.A)hnll2 

(60) ~ llCJhn - f(.A)hnll2 + llC1hnll2 

(61) = llP_,v(fhn - J(.A))hn)ll2 + llCJhnll2 

(62) 
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By our earlier calculation, II(!- /(.X))hnll2 --+ 0. Since C1 is compact and 
hn--+ 0 weakly, then llC1hnll2--+ 0, hence, by above, l/(.X)I = 0. 

Conversely, suppose that f E C(D) and vanishes on Ke. Let e > 0 be 
given and choose a g E C(D) so that g = 0 on a neighborhood U of Ke and 
II/- glloo < e. Let {hn} be a sequence in N such that hn --+ 0 weakly. Using 
Theorem 3.5, we get that each hn has an analytic continuation across 8D\Ke. 

Thus if we let L = {z ED: g(z) 'IO} and use Theorem 3.5, we get hn --+ 0 
uniformly on L. Hence 

(63) 

so C9 is compact. Since llC1 - C9 ll ~ II/ - glloo, then C1 is the norm limit of 
compact operators hence compact. D 

To get Theorem 5.1 for the case where G is a Jordan domain, we make use 
of the unitary operator induced by the conformal map between D and G. 

Let G be a Jordan domain and K C G have the property P. Since G is 
simply connected, there is a conformal map r.p form D onto G and by a theorem 
of Caratheodory [M, p. 70], r.p is continuous on the closure of D. Define the 
unitary operator U: L2(G)--+ L2(D) by 

(Uh)= (hor.p)r.p'. 

Note that UA2 (G\K) = A2(D\K'), where K' = r.p-1(K), and UA2(G) = 
A2 (D). Thus letting V = UIN then V becomes a unitary map from N = 

A2(G\K) eA2 (G) onto N' = A2(D\K') eA2(D). For h E C(G) and k E C(D) 

define the operators C~ = PNMhlN and Cf'= PN1MklN'· 

- .N N' Lemma 5.2. If f E C(G), then VC1 = C10",V. 

Proof. Let f E C(G). Let M1 and MJor.p be the multiplication operators 
on L2(G), respectively L2 (D) and notice that UM1 = MJor.pU. Also notice 
that UPa\K = Pv\K'U and UPa = PvU, hence UP.N = P,N1U. Thus, letting 

V = Ul.N we get that VCf = Cfo~V. D 

Corollary 5.3. Let f E C(G). C1 is compact if and only if f vanishes on 

Proof. Let r.p be the conformal map between D and G and let V, N', and 
Cfo~ be as before. Since C 1 = V* Cfo~ V, then C 1 is compact if and only if Cfo~ 
is compact. Making use of the fact that f o r.p E C(D) and applying Theorem 

5.1, we see that Cfc,~ is compact if and only if f o r.p vanishes on K~. But since 

r.p-1 (K) = K', then K~ = r.p-1(Ke)· Hence CJ is compact if and only if f 
vanishes on Ke. D 
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6. The Essential Spectrwn of the Compression. Using the same techniques 
as in [A-C-M] and our previous results, we will now compute the essential spec­
trum and essential norm of Cf. The proofs in this section are almost exactly 
the same as the proofs used in [A-C-M] to compute the essential spectrum and 

essential norm of the Toeplitz operator rf\K except that in our case the func­
tions in N have analytic continuation across the analytic parts of 8G that do 
not intersect Ke. Hence, as in Corollary 5.3, our attention is restricted to the 
behavior of the symbol f on Ke· 

Let G be a Jordan region and KC G have the property P. Let N be as usual 
and define B(N) to be the set of bounded operators on N, K(N) to be the set of 
compact operators on N, T(N) be the algebra generated by {CJ : f E C(G)}, 
and .J (N) be the commutator ideal of T (N). That is .J (N) is the smallest norm 
closed two sided ideal of T(N) which contains {AB- BA: A,B E T(N)}. Our 
aim now is similar to that of Theorem 9 of [A-C-M], which is to give a complete 
description of the C*-algebra T(N). The proofs of these next two propositions 
use similar techniques used in the proof of Theorem 9 of [A-C-M]. 

Proposition 6.1. The commutator ideal .J(N) of T(N) is K(N). 

Proof. We first show that T(N) is irreducible. Suppose that T(N) was 
reducible. Then, there are non-zero subspaces Mi and M 2 of N with N = 
Mi EBM2 and C1Mi c Mi and C1M2 c M2 for all f E C(G). Letting 
g E Mi and h E M2, we see that 

(64) 0 = (Cfg,h) = (PN(fg),h) = (fg,h) 

for all f E C(G). This implies that gh = 0, hence Mi = M2 = 0, a contra­
diction. Next, we show that T(N) contains a non-zero compact operator. We 
know from Proposition 4.1 that CzCz - Ciz12 is a compact operator belonging to 
T(N). Suppose that CzCz - Ciz12 = 0. Then for all f EN, 
(65) 0 = ((CzCz -Ciz12)f,f) 

= (z(PN(if) -if),!) 

= ((PN - I)if,if) 

= -ll(I -PN)(if)ll 2 · 

Thus (I - PN)(if) = 0 for all f E N, contradicting the fact that if cannot 
be analytic for all f E N. So T(N) is an irreducible C* -algebra which con­
tains a nonzero element. Thus by [Arv p. 18, Corollary 1], T(N) ::J K(N). 
By Proposition 4.1, .J(N) C K(N). Since .J(N) is a two-sided ideal of T(N) 
and K(N) C T(N), it is clear that .J(N) is a two-sided ideal of K(N). Also 
note that .J(N) is non-zero since K(N) C T(N) and so T(N) is not a com­
mutative algebra. By using [Arv, p. 18, Corollary 1], we can conclude that 
.J(N) = K(N). D 
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Proposition 6.2. T(N)/K(N) and C(Ke) are isometrically *-isomorphic 

C* algebras with an isomorphism that maps CJ +K(N) to !IK. for all f E C(G). 

Proof. Define a map a: C(G)--+ T(N)/K(N) by 

(66) a(!)= C1 + K(N). 

By Proposition 4.1, a is a homomorphism, hence a(C(G)) is a dense subalgebra 
of T(N)/K(N). Define 

(67) Z(G) = {1EC(G):1IK. = 0 }· 

By Corollary 5.3, Z ( G) is exactly the kernel of a. Thus there is a homomorphism 

(68) a: C(G)/Z(G)--+ T(N)/K(N) 

which is injective and 

(69) a(!+ Z(G)) = C1 + K(N). 

Since a is an injective C* homomorphism it is an isometry, thus a has dense 
range. But a and a have the same range, hence a is a C* isomorphism. Define 
F: C(G)/Z(G)--+ C(Ke) by 

(70) F(f + Z(G)) =fl-. 
Ke 

Fis an isometric isomorphism and F o &-1 is our desired isometric isomorphism 
with 

(71) D 

Theorem 6.3. If f E C(G), then ae(C1) = f(Ke)· 

Proof. The spectrum of f\Ke in C(Ke) is /(Ke)· Thus by Proposition 
6.2, the spectrum of the coset C1 + K,(N) in the C* algebra T(N)/K(N) is 

f (Ke)· Using the fact that the spectrum of an element of a C* algebra remains 
unchanged when the algebra is enlarged, we see that the spectrum of the coset 

C1+K(N) in the algebra B(N)/K(N) is /(Ke)· Thus ae(C1) = f(Ke)· 0 

Corollary 6.4. If f E C(G), then \IC1\\e = ll!IK. 11 00 • 
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Proof. By Proposition 4.1 and the fact that Cj = c7 we see that the coset 

C1 +K,(N) is a normal element of B(N)/JC(N). Hence the norm of CJ +IC(N) 
(ie. llC1Jle) is equal to its spectral radius. Thus 

(72) 

(73) 

llC1Jle = sup{IAI: A E ae(C1)} 

= sup{lf(z)I : z E Ke}· D 

We can apply Theorem 6.3 to the special case where f(z) = z to compute 
the spectrum of the compression C z. 

Corollary 6.5. a(Cz) =Ke. 

Proof. Since ae(Cz) = Ke, then Ke C a(Cz). For the reverse inclusion, 

let A fl. Ke. Then A ¢ ae(Cz) so by Proposition 4.2, ind(Cz->.) = O. Since 
ker(Cz->.) = {O}, then Cz->. is invertible, hence A fl. a(Cz). D 

7. Similarity. 
In this last part we use Corollary 6.5 in conjunction with results in [A-F-V], 

[A-C-M], and [Ro] to prove a similarity theorem for the compression Cz. It is 
remarkable that similarity class of Cz depends only on Ke and not the domain 
G. 

Let Gi and G2 be two Jordan regions and Ki C Gi and K2 C G2 each 
compact and having the property P. For i = 1,2, let Ci be Cz acting on .N;,. 
That is Ci= PNjT~;\K;IN;' where M = A2(Gi\Ki)6A2(Gi)· 

Theorem 7.1. The following are equivalent: 

(i) Ci and C2 are similar. 
(ii) (Ki)e = (K2)e. 

(iii) Ki \K2 and K2\Ki have zero logarithmic capacity. 

Before we proceed to the proof of Theorem 7 .1, we must first set up some 
preliminaries. For more information and details, see [A-F-V] and [Ro]. 

For a bounded region U in C, let C8°(U) be the set of infinitely differentiable 

functions with compact support on U. Define the Sobolev space w;•0 (U) to be 
the completion of C8°(U) in the following norm 

( )
i/2 

Jlvllw:·o(U) = fu 1Vvl 2 dA 

Let B 2(U) = L 2(U) e A2(U) and note that by a result of [A-F-V] (also see (Ro]) 

that B 2 (U) and w;•0 (U) are isomorphic via the unitary differential operator 
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Du = 2 tz , where tz = ~ ( tx - i ty). Let Su denote the multiplication operator 

on A2 (U) defined by 
(Su !)(z) = zf(z). 

By the definition of B 2 (U), we can define Ru on B 2 (U) by 

(Rug)(z) = zg(z). 

(Note that B 2 (U) is Ru-invariant since A2 (U) is Su-invariant.) We can also 

define Mu on w;•0 (U) by 

(Muh)(z) = zh(z). 

By (A-F-V] (also se (Ro]), Ru and Mu are continuous and are unitarily equivalent 
via Du with Du Mu= RuMu. 

Letting G1 and G2 be as in Theorem 7.1, one sees that for i = 1, 2, Ra; will 

induce a continuous operator R'"a; on the quotient space B 2 (Gi)/B2 (Gi\Ki) by 

Ra;[g] = [Ra;g], where (g] denotes the coset of g. Also note that Ma; (i = 1,2) 
will induce a continuous operator Ma; on the quotient space 

by Ma;[h] = [Ma;h]. The differential operator Da1 will induce the obvious 

isomorphism D'"a; from w;•0 (Gi)/W;•0 (Gi\Ki) onto B2(Gi)/B2 (Gi\Ki) with 

(74) 

One sees that M = B2 (Gi) eB2 (Gi\Ki), and hence M is isomorphic to the 
quotient space B 2 (Gi)/B2 (Gi\Ki) via the natural map qi(!) = (/]. Finally, 

notice that qic; = Ra;qi. Hence c; is equivalent to Rail which, by above, 

makes c; unitarily equivalent to Ma; (i = 1,2). 
For a set E C R 2 , let Cap(E) denote the logarithmic capacity of E, (see 

(Ca]). We say a property holds quasi-everywhere if it holds except on a set of 
logarithmic capacity zero. A function f : R 2 --+ C is said to be quasi-continuous 
if for every e > 0, there is an open set W with Cap(W) < e and the restriction 
off to R2\W is continuous. For further explanations, see (Ba]. For a bounded 

region U, every function in w;•0 (U) has a quasi-continuous representative (M­
H], and a result of Bagby (Ba] will imply that if K C U is compact, then a 

quasi-continuous f E w;•0 (U) belongs to w;•0 (U\K) if and only if f vanishes 
quasi-everywhere on K. 
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Proof of Theorem 7.1. 
(i) => (ii): Use Corollary 6.5. 

(ii) => (i): On the other hand, suppose that (K1)e = (K2)e = K. By 
Proposition 2.1, A2(Gi\Ki) = A2(Gi\K), hence by our above discussion, Ci is 

unitarily equivalent to Ma; on the quotient space w;•0 (Gi)/w;•0 (Gi\K) (i = 

1, 2). We will complete the proof by showing that Ma1 and Ma2 are similar. 
Let G = G1 n G2. Then, the injection 

(75) 

is an isometry, and using the above mentioned result of Bagby [Ba], Ji will induce 

the injective operator Ji : w;·0 (G)/W;•0 (G\K) -+ w;•0 (Gi)/w;•0 (Gi\K) by 

Ji[h] = [h]. Ji is also surjective since if [h] E w;•0 (Gi)/w;•0 (Gi\K), then letting 

cp E Cf)°(G) with cp = 1 on K, will give us that [cph] E w;•0 (G)/w;•0 (G\K) 

with Ji[cph] = [h]. Thus Ji is invertible for i = 1, 2 and one easily checks that 

JiMa = Ma)i (i = 1,2). Thus Ma1 and Ma2 are similar, which gives us the 
similarity of C1 and C2. 

(ii) => (iii): By Proposition 2.2, Cap(Ki\(Ki)e) = 0 (i = 1,2). Thus if 
(K1)e = (K2)e, then Ki \K2 and K2\K1 have zero logarithmic capacity. 

(iii)=> (ii): Conversely, suppose that K 1\K2 and K2\K1 have zero loga­
rithmic capacity. Then Cap((K1)e \(K2)e) = 0 and Cap((K2)e \(K1)e) = 0. If, 
for example, (K1)e \(K2)e =f. 0, then, letting>. E (K1)e \(K2)e and using the fact 
that (K1)e \(K2)e is relatively open, one sees that there is a positive 8 so that 

Since Cap(B(>.;8)n(K1)e) = 0, then by above, Cap(B(>.;8)nK1) = 0. By 
Proposition 2.3, >. is removable, a contradiction. D 
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