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INVARIANT SUBSPACES OF BERGMAN SPACES ON SLIT DOMAINS

WILLIAM T. ROSS

Abstract. In this paper, we characterize the z-invariant subspaces that lie between the
Bergman spaces Ap(G) and Ap(G\K), where 1 < p <∞, G is a bounded region in C, and
K is a closed subset of a simple, compact, C1 arc.

1. Introduction

For a bounded region U ⊂ C and 1 < p < ∞, we define the Bergman space Ap(U) to
be the space of analytic functions f on U with

∫
U |f(z)|pdA(z) < ∞ (here dA is Lebesgue

measure on C), and the operator S on Ap(U) by

(Sf)(z) = zf(z).

Characterizing the S-invariant subspaces of Ap(U) (those subspacesM of Ap(U) with SM⊂
M) is a difficult and unsolved problem.

This paper investigates the S-invariant subspacesM of Ap(G\K) (where G is a bounded
region in the plane and K is a closed subset of a simple compact arc of class C1) such that

Ap(G) ⊂M ⊂ Ap(G\K). (1.1)

(Throught this paper, G will be a bounded region, K will be the C1 slit, and M will be
an S-invariant subspace of the form (1.1).) The character and complexity of these invariant
subspaces depends on the index p and splits into two distinct cases: 1 < p < 2 and p ≥ 2.
For 1 < p < 2, M can be described in terms of analytic continuation across portions of the
‘slit’ K.

Theorem 1.1. For 1 < p < 2, there is a closed set F ⊂ K with M = Ap(G\F ).

To prove Theorem 1.1, we use a technique of [2] [3] [6] to relate the annihilator of Ap(U)
with the Sobolev space W q,0

1 (U), q = p(p − 1)−1, via the differential operator ∂. This
converts characterizing the z-invariant subspaces in (1.1) to the problem of characterizing
the z-invariant subspaces that lie between the Sobolev spaces W q,0

1 (G\K) and W q,0
1 (G). For

1 < p < 2, the conjugate index q > 2, making W q,0
1 (G) a Banach algebra of continuous

functions. We then utilize the fact that G\K is a ‘slit’ domain to show that such subspaces
are in fact closed ideals of W q,0

1 (G) which, using Banach algebra techniques of Sarason [12],
can be written as W q,0

1 (G\F ). We then reverse the above process to obtainM = Ap(G\F ).
For p ≥ 2, the situation becomes more complicated as not every M can be written as

Ap(G\F ), but we still can describe these subspaces by means of the q-capacity, Cq, associated
with the Sobolev spaceW q

1 [2]. To state our second theorem, we make the following definition:
We say a set E ⊂ C is quasi-closed if given any ε > 0, there is an open set W with Cq(W ) < ε
and E\W closed.
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Theorem 1.2. For p ≥ 2, there is a quasi-closed set E ⊂ K and an increasing sequence of
closed sets F1 ⊂ F2 ⊂ · · · ⊂ E with Cq(Fn)→ Cq(E) and

M =M(E) =
⋃
n≥1

Ap(G\Fn)
Lp

.

Moreover, M(E) is independent of the choice of {Fn} and if E1, E2 ⊂ K are quasi-closed,
then M(E1) =M(E2) if and only if Cq(E1∆E2) = 0.

The characterization of the z-invariant subspaces between W q,0
1 (G\K) and W q,0

1 (G) is at
the heart of our problem and will use weak topology techniques of [9].

2. Preliminaries

For 1 < q <∞, define the Sobolev space W q
1 = W q

1 (C) as the space of functions u ∈ Lq =
Lq(C, dA) whose first partial derivatives (in the sense of distributions) are also in Lq. We
norm W q

1 by

‖u‖q =
( ∫

(|u|2 + |∇u|2)q/2dA
)1/q

and note that W q
1 is a separable, reflexive Banach space [1], Theorem 3.2 and Theorem 3.5.

For a bounded domain U ⊂ C, define W q,0
1 (U) to be the closure of C∞0 (U) in the W q

1 norm
and note, by the Poincaré inequality [8], p. 69, we can equivalently norm W q,0

1 (U) by

‖u‖q,0 = (
∫
U
|∇u|qdA)1/q.

If q > 2, the Sobolev imbedding theorem yields W q,0
1 (U) is a Banach algebra of continuous

functions [1], p. 115.
We identify the dual of Lp(U) with Lq(U), q = p(p− 1)−1, via the bilinear pairing

< f, g >=
∫
U
fgdA, f ∈ Lp(U), g ∈ Lq(U)

and write Bq(U) for the annihilator of Ap(U) in Lq(U). In general, we denote the annihilator
of a set X by X⊥. In [2] [3] they identify Bq(U) with W q,0

1 (U) via the operator

∂ =
1

2
(
∂

∂x
+ i

∂

∂y
)

as follows: By Weyl’s lemma [15], p. 32, Ap(U) = (∂C∞0 (U))⊥. Now apply the Hahn-Banach
theorem, to obtain:

Lemma 2.1. Bq(U) is the Lq-closure of ∂C∞0 (U).

An application of the Calderon-Zygmund theory [14], p. 60, yields the equivalence of
‖∂v‖Lq and ‖∇v‖Lq for all v ∈ C∞0 (U), i.e. there is a positive constant Aq depending only
on q with

Aq‖∂v‖Lq ≤ ‖∇v‖Lq ≤ A−1q ‖∂v‖Lq ∀v ∈ C∞0 (U). (2.1)

Define D densely on W q,0
1 (U) by Dv = ∂v, where v ∈ C∞0 (U) and notice that

z∂v = ∂(zv) ∀v ∈ C∞0 (U). (2.2)

By our bilinear pairing < ·, · >, the operator R on Bq(U) defined by (Rg)(z) = zg(z) is
well defined and continuous. If we define M on W q,0

1 (U) by (Mh)(z) = zh(z) and use the
above lemma, (2.1), and (2.2), we have:
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Proposition 2.2. The operator D extends to a continuous invertible operator from W q,0
1 (U)

onto Bq(U) with DM = RD.

(We remark that by distribution theory [15], p. 29, D−1 can be given in terms of the
Cauchy transform (D−1g)(w) = −π−1

∫
U g(z)(z − w)−1dA(z).) Putting this all together, we

are now able to convert our Bergman space problem to a Sobolev space problem as follows:
Let M be S-invariant with

Ap(G) ⊂M ⊂ Ap(G\K).

Taking annihilators, we obtain

Bq(G\K) ⊂M⊥ ⊂ Bq(G)

and R(M⊥) ⊂M⊥. Applying D−1 and Proposition 2.2 we have

W q,0
1 (G\K) ⊂ D−1(M⊥) ⊂ W q,0

1 (G)

and the subspace D−1(M⊥) is M -invariant. The rest of the paper will be dedicated to the
description of D−1M⊥ for which we will need a detailed understanding of the zero sets of
functions in W q,0

1 (G). Our analysis separates into two distinct cases; 1 < p < 2, which will
be taken up in Section 3, and the harder case p ≥ 2, which will be examined in Section 4.
Once D−1M⊥ is known, we transfer back to M by the above recipe.

3. The Case 1 < p < 2

Since 1 < p < 2, then q > 2 and W q,0
1 (G) is a Banach algebra of continuous functions. We

will now utilize that fact that K lies on a simple compact C1 arc to prove:

Theorem 3.1. D−1M⊥ is an ideal of W q,0
1 (G).

To prove Theorem 3.1, we need the following well known approximation lemma which uses
very strongly the fact that the arc containing K is both simple and C1 and is false if the arc
is only piecewise C1. We let γ be the simple, compact C1 arc which contains K, by which
we mean γ has a continuously differentiable parameterization α : [α, β]→ γ such that α′(t)
is non-vanishing on [α, β].

Lemma 3.2. Let ψ ∈ C∞(C). Given ε > 0, there is a polynomial p(z) and Φ ∈ C1(C) with
Φ = ψ on γ and with |p− Φ| < ε and |∇p−∇Φ| < ε on C.

Proof. Since γ is a simple C1 arc, there is an interval [a, b] in R, two-dimensional neigh-
borhoods U and V of γ and [a, b], respectively, and a diffeomorphism F of V onto U with
F ([α, β]) = γ. We assume without loss of generality that the component functions of F and
F−1 have bounded derivatives on V and U respectively. Define Y (t) = F (t, 0), a ≤ t ≤ b,
and Γ = F ([a, b]). Let g : [a, b] → C be a C1 extension of ψ(Y (t)), α ≤ t ≤ β, which has
compact support in (a, b).

Let ε > 0 be given. By Lavrentiev’s theorem [11], there is a polynomial q(z) with∣∣∣∣ q(z)− g′(Y −1(z))

Y ′(Y −1(z))

∣∣∣∣< ε

for all z ∈ Γ. Let p(z) be a polynomial with p′ = q and p(Y (a)) = 0. Then d
dt
p(Y (t)) =

q(Y (t))Y ′(t) so∣∣∣∣ ddtp(Y (t))− g′(t)
∣∣∣∣= |q(Y (t))Y ′(t)− g′(t)| =

∣∣∣∣ Y ′(t) ∣∣∣∣∣∣∣∣ q(Y (t))− g′(t)

Y ′(t)

∣∣∣∣≤Mε
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for all a ≤ t ≤ b, where M = sup{|Y ′(t)| : a ≤ t ≤ b}. Thus, for a ≤ t ≤ b,

|p(Y (t))− g(t)| =
∣∣∣∣ ∫ t

a

d

dt
p(Y (s))− g′(s)

∣∣∣∣≤ (t− a)Mε ≤ (b− a)Mε.

Let F−1 = (h1, h2) and define ϕ on U by

ϕ(x, y) = p(x+ iy)− p(Y (h1(x, y))) + g(h1(x, y)).

Then, ϕ = ψ on γ, |p(x+ iy)− ϕ(x, y)| ≤ (b− a)Mε for all (x, y) ∈ U , and∣∣∣∣ ∂ϕ∂x − ∂p

∂x

∣∣∣∣= ∣∣∣∣ g′(h1(x, y))
∂h1
∂x
− p′(Y (h1(x, y)))Y ′(h1(x, y))

∂h1
∂x

∣∣∣∣=
∣∣∣∣ ∂h1∂x

∣∣∣∣∣∣∣∣ g′(h1(x, y))− p′(Y (h1(x, y)))Y ′(h1(x, y))
∣∣∣∣≤ AMε

on U , where A = sup{|∂h1
∂x
| : z ∈ U}. Similarly∣∣∣∣ ∂ϕ∂y − ∂p

∂y

∣∣∣∣≤ BMε

on U , where B = sup{|∂h1
∂y
| : z ∈ U}.

Let η ∈ C∞0 (U) with η = 1 in a neighborhood of γ. Define Φ on C by

Φ = ϕη + (1− ϕ)p.

Then Φ = ψ on γ; and on C, |Φ− p| = |η||p− ϕ| ≤ ‖η‖∞(b− a)Mε,∣∣∣∣ ∂Φ

∂x
− ∂p

∂x

∣∣∣∣=∣∣∣∣ ∂η∂x
∣∣∣∣ |p− ϕ|+ |η| ∣∣∣∣ ∂ϕ∂x − ∂p

∂x

∣∣∣∣≤∥∥∥∥ ∂η∂x
∥∥∥∥
∞

(b− a)Mε+ ‖η‖∞AMε,

and ∣∣∣∣ ∂Φ

∂y
− ∂p

∂y

∣∣∣∣≤ ∥∥∥∥ ∂η∂y
∥∥∥∥
∞

(b− a)Mε+ ‖η‖∞AMε. �

Remark: In these next two proofs, we will use the fact that for q > 2, a function f ∈ W q
1

belongs to W q,0
1 (U) if any only if f = 0 on the complement of U [6], p. 313 - 314.

Proof of Theorem 3.1

To show D−1M⊥ is an ideal of W q,0
1 (G), it suffices to show ψD−1M⊥ ⊂ D−1M⊥ for all

ψ ∈ C∞0 (G). To this end, let ψ ∈ C∞0 (G), ε > 0 be given, and p and Φ be as in Lemma 3.2.
If f ∈ D−1M⊥, then Φf ∈ W q,0

1 (G) with ψf − Φf = 0 on K. So by the above remark,
ψf − Φf ∈ W q,0

1 (G\K) ⊂ D−1M⊥, thus dist(ψf,D−1M⊥) = dist(Φf,D−1M⊥). Since
pf ∈ D−1M⊥, then

dist(Φf,D−1M⊥) ≤ ‖pf − Φf‖q ≤ Cε‖f‖q,
hence ψf ∈ D−1M⊥ Λ.

Proof of Theorem 1.1:

By our discussion above, D−1M⊥ is an ideal of W q,0
1 (G) that contains W q,0

1 (G\K). Let

ZM = {z : f(z) = 0 ∀f ∈ D−1M⊥}
and note that ZM is closed, and since W q,0

1 (G\K) ⊂ D−1M⊥, then ZM ⊂ K. By the
above remark, D−1M⊥ ⊂ W q,0

1 (G\ZM). For the other inclusion we let ϕ ∈ C∞0 (G\ZM).
Using Banach algebra techniques of Sarason [12], p. 41, Lemma 2, one finds a g ∈ D−1M⊥
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with g = 1 on supp(ϕ) and thus ϕ = gϕ ∈ D−1M⊥. Hence D−1M⊥ = W q,0
1 (G\ZM) and

M = Ap(G\ZM) Λ.

4. The Case p ≥ 2

For p ≥ 2, W q,0
1 (G) is not an algebra of continuous functions and thus the situation

becomes more complicated. We will still describe D−1M⊥ in terms of its zero set on K
except that this set will not always be closed. To understand the zero sets of Sobolev
functions, we use capacity.

4.1. Capacity. Following [2], we define the q-capacity Cq of a compact set F by

Cq(F ) = inf ‖u‖q,

where the infimum is taken over the all real-valued functions u ∈ C∞0 with u ≡ 1 on F . We
extend this definition to arbitrary sets E by

Cq(E) = sup{Cq(F ) : F ⊂ E, F compact}

and define the exterior capacity C∗q (E) of an arbitrary set E by

C∗q (E) = inf{Cq(G) : G ⊃ E, G open}.

A set E is said to capacitable if Cq(E) = C∗q (E). One notes [2] that C∗q is a monotone,
subadditive set function and that the Borel sets are capacitable. Recalling the definition of
quasi-closed, one argues (using the fact that Borel sets are capacitable) that a quasi-closed
set is capacitable, as is the difference of any two quasi-closed sets. We also say a property
holds quasi-everywhere if the set for which it fails has exterior capacity zero.

Since functions in W q
1 , for q ≤ 2, are not always continuous, we introduce a suitable

substitution. A complex-valued function f is quasi-continuous if for every ε > 0 there is an
open set W with Cq(W ) < ε and f |C\W continuous. One can show [2], Lemma 1, that every
f ∈ W q

1 has a quasi-continuous representative and this next result of Bagby [2], Theorem 4,
describes W q,0

1 (U) in terms of zero sets.

Proposition 4.1. Let u ∈ W q
1 be quasi-continuous. Then u ∈ W q,0

1 (U) if and only if u
vanishes quasi-everywhere off of U .

4.2. Invariant Subspaces. We are now in a position to discuss invariant subspaces for
p ≥ 2. For a quasi-closed set E ⊂ C, we find an increasing sequence of compact sets

F1 ⊂ F2 ⊂ · · · ⊂ E

with Cq(Fn) → Cq(E). Since Ap(G\Fn) increases with n, we can define the S-invariant
subspace

M(E) =
⋃
n≥1

Ap(G\Fn)
Lp

. (4.1)

Proposition 4.2.
(i) M(E) is independent of the choice of {Fn}.
(ii) If E1, E2 are quasi-closed, then M(E1) ⊂ M(E2) ⇔ Cq(G ∩ (E1\E2)) = 0. Thus
M(E1) =M(E2)⇔ Cq(G ∩ (E1∆E2)) = 0.
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Proof. (i) For a quasi-closed set E ⊂ G, let

Wq(E) ≡ D−1(M(E)⊥) =
⋂
n≥1

W q,0
1 (G\Fn)

and notice, by Proposition 4.1, that a quasi-continuous f ∈ W q,0
1 (G) belongs to Wq(E) if

and only if f = 0 quasi-everywhere on E. Thus Wq(E), and henceM(E), is independent of
the choice of {Fn}.

(ii) If Cq(G ∩ (E1\E2)) = 0, then, by the above comments, Wq(E2) ⊂ Wq(E1), hence
M(E1) ⊂ M(E2). If Cq(G ∩ (E1\E2)) > 0, one argues, using Proposition 4.1, the above
remarks, and a result of Bagby [2], Theorem 3, that Wq(E2)\Wq(E1) 6= ∅, and hence
M(E1)\M(E2) 6= ∅. �

As mentioned in the introduction, the union in (4.1) does not always collapse down to a
single Ap(G\F ).

Proposition 4.3. For p ≥ 2, not every M is of the form Ap(G\F ).

Proof. Fix 1 < q ≤ 2 and let G be a disk of radius 2 centered about the origin and K =
[0, 1]. Let B ⊂ [0, 1] be constructed in the same manner as the Cantor set except that the
intervals removed (an, bn) are such that

∑
n≥1Cq(an, bn) < Cq[0, 1]. (This is justified since

Cq(a, b)
q ' (b − a)2−q if q < 2 and C2(a, b)

2 ' (log(2/(b − a))−1 [13], and [7], p. 115,
Proposition 6.) Set E = [0, 1]\B = ∪n≥1(an, bn) and notice that E is open and dense in
[0, 1] with Cq(E) < Cq[0, 1]. A straightforward argument shows that E is quasi-closed and
Cq(E∆F ) > 0 for any closed set F . Setting M =M(E) and using Proposition 4.2, we are
done. �

Using the proof of Theorem 3.1, one can prove ψD−1M⊥ ⊂ D−1M⊥ for every ψ ∈ C∞.
We will use this to ultimately show D−1M⊥ = Wq(E) and henceM =M(E) for some quasi-

closed E ⊂ K. To accomplish this, we let f ∈ W q,0
1 (G) (assumed to be quasi-continuous),

and define
[f ] = span{ϕf : ϕ ∈ C∞}.

If we define Zf = f−1(0), we see (using the fact that f−1(F ) is quasi-closed for closed
F and quasi-continuous f) that Zf is quasi-closed and, by the proof of Proposition 4.2,
[f ] ⊂ Wq(Zf ). To keep our exposition clear, we defer the proofs of the following two results
to the very end.

Lemma 4.4. If g, h ∈ W q,0
1 (G) with |g(z)| ≤ |h(z)| a.e., then g ∈ [h].

Lemma 4.5. If f ∈ W q,0
1 (G) is quasi-continuous, then [f ] = Wq(Zf ).

Assuming these two facts, one can now show that D−1M⊥ = Wq(E), for some quasi-closed
E ⊂ K.

Corollary 4.6. There exists a quasi-continuous f ∈ W q,0
1 (G) with

D−1M⊥ = [f ] = Wq(Zf ).

Proof. Since D−1M⊥ is separable, there is a sequence of quasi-continuous functions {fn :
n ≥ 1} in W q,0

1 (G) with
D−1M⊥ = span{[fn] : n ≥ 1}.

By [4], p. 316, |fn| ∈ W q,0
1 (G), and by Lemma 4.4, [|fn|] = [fn]. Thus we may assume

fn ≥ 0. For each n ≥ 1, let εn = ‖fn‖−1q 2−n and define f =
∑
n εnfn ∈ W q,0

1 (G). Assuming
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f is quasi-continuous, we see that Zf = Z∩Zfn
quasi-everywhere. (This will follow from the

fact that if pn is the n-th partial sum, then Cq(f − pn ≥ ε) ≤ ε−q‖f − pn‖q [2], Theorem 2(i)
and hence a subsequence of pn will converge to f quasi-everywhere.) Thus

f ∈ span{[fn] : n ≥ 1} = D−1M⊥ ⊂ Wq(Zf ),

and hence, by Lemma 4.5, [f ] = D−1M⊥ = Wq(Zf ). �

Proof of Theorem 1.2.

By Corollary 4.6 there is quasi-closed set E with D−1(M⊥) = Wq(E). Since M(E) ⊂
Ap(G\K), we can apply Proposition 4.2 to assume E ⊂ K. Λ

4.3. Weak Convergence and Cut-off Functions. In this last part, we prove Lemma 4.4
and Lemma 4.5. To do this, we will use cut-off functions and and weak topology techniques
of [9].

By [1], Theorem 3.10, p. 50, the dual space of W q,0
1 (G), denoted by W p

−1(G), is the set of
linear functionals of the form

`(u) =
∫
G

(
v0u+ v1

∂u

∂x
+ v2

∂u

∂y

)
dA, v0, v1, v2 ∈ Lp(G), (4.2)

and the norm of ` satisfies

‖`‖ ≤ C
( 2∑
k=0

‖vk‖pLp(G)

)1/p
. (4.3)

Proposition 4.7. Let {fn : n ≥ 1} be a sequence of functions in W q,0
1 (G). If fn → 0 a.e.

and ‖fn‖q is uniformly bounded in n, then fn → 0 weakly in W q,0
1 (G).

Proof. Since {fn : n ≥ 1} is uniformly bounded in Lq(G)-norm, we can apply Egorov’s
theorem to obtain

∫
fnϕdA→ 0 for all ϕ ∈ C∞0 (G). Since {fn : n ≥ 1} is uniformly bounded

in Sobolev norm, we can apply the Banach-Alaoglu theorem (since W q,0
1 (G) is reflexive) to

get that every subsequence has a weakly convergent subsequence that converges to h (h will
depend on the subsequence). Thus if `ϕ ∈ W p

−1(G) is defined by `ϕ(u) =
∫
uϕdA, where

ϕ ∈ C∞0 (G), then
`ϕ(h) = lim

j→∞
`ϕ(fnkj

) = 0.

Thus
∫
hϕdA = 0 for all ϕ ∈ C∞0 (G), hence h = 0. Thus fn → 0 weakly. �

The proof of Lemma 4.4 will depend on this next lemma for which we mention a few
technicalities which can be found in [15], p. 55. (We thank A. Aleman for showing us this
proof.) Given a function u ∈ Lp, 1 ≤ p ≤ ∞, and r > 0 we define

ur(w) =
1

2πir2

∫
|z|=r

u(z + w)dz

and notice from Fubini’s theorem that the line integral exists for almost all w and that
ur ∈ Lp when u ∈ Lp, 1 ≤ p ≤ ∞. One also shows [15], p. 54 - 55, (using Green’s theorem)
that the Cauchy transform

(Cur)(w) = − 1

π

∫
(z − w)−1ur(z)dA(z)

of ur is given by

(Cur)(w) =
1

πr2

∫
|y−w|<r

u(y)dA(y).
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In particular, by the Hardy-Littlewood inequality [14], p. 5, ‖Cur‖Lp ≤ ‖u‖Lp and

lim
r→0

(Cur)(w) = u(w) a.e. (4.4)

Finally, we mention that if u ∈ W q
1 (with compact support), then

ur(w) =
1

πr2

∫
|y−w|<r

∂u(y)dA(y). (4.5)

We will also need the following approximation lemma: For u ∈ L∞, we let uε, ε > 0, be
a mollification of u [1], p. 52. Note that ‖uε‖∞ ≤ ‖u‖∞ for all ε > 0 and that uε → u
pointwise a.e. as ε → 0. Also notice that if ∂u ∈ L∞, then an easy calculation shows that
‖∂uε‖∞ ≤ ‖∂u‖∞.

Lemma 4.8. If u ∈ L∞ and f ∈ W q,0
1 (G) with uf ∈ W q,0

1 (G). Then uf ∈ [f ].

Proof. First notice that Cur ∈ L∞ and that ∂Cur = ur ∈ L∞. Thus, for fixed r > 0, if hε
is a mollification of Cur, [1], p. 29, then hεf ∈ [f ] and hεf → Curf a.e. One also notices
(from the discussion above) that hεf is uniformly bounded in Sobolev norm and thus by
Proposition 4.7 Curf ∈ [f ].

Since Curf → uf pointwise a.e. (4.4), we see by Proposition 4.7, that it suffices to show
‖Curf‖q ∼ ‖∂(Curf)‖Lq (see (2.1)) remains uniformly bounded in r. Notice that

∂(Curf) = Cur∂f + urf (4.6)

and using the Hardy-Littlewood inequality again,

‖Cur∂f‖Lq ≤ ‖Cur‖∞‖f‖Lq ≤ ‖u‖∞‖f‖Lq .

To bound (in Lq norm) the second term of (4.6), we write

urf(w) = (uf)r(w) +
1

2πir2

∫
|z|=r

u(z + w)(f(w)− f(z + w))dz.

Since uf ∈ W q
1 we have from (4.5) that

(uf)r(w) =
1

πr2

∫
|w−z|<r

∂(uf)(y)dA(y)

which, again by the Hardy-Littlewood inequality, has Lq norm bounded by a constant mul-
tiple of ‖uf‖q. Finally, we estimate∣∣∣ 1

2πir2

∫
|z|=r

u(z + w)(f(w)− f(z + w))dz
∣∣∣≤ ‖u‖∞ 1

2π

∫ 2π

0

|f(reit + w)− f(w)|
r

dt.

Using [14], Theorem 3, p. 135 and Proposition 3, p. 139, we see that that the Lq modulus
of continuity of a function in W q

1 is O(|r|). From this we deduce that∥∥∥ |f(reit + w)− f(w)|
r

∥∥∥
Lq

is uniformly bounded in r. An application of Fubini’s theorem completes the proof. �

Proof of Lemma 4.4

Let f = h and u = gh−1 if h 6= 0 and zero otherwise. Note that u ∈ L∞ with uf ∈ W q,0
1 (U).

Now apply Lemma 4.8 to get uf = g ∈ [h]. Λ
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Remark: The following fact will be important for what follows [4], p. 316: If f ∈ W q
1 is

real-valued, then f+ = max(f, 0) ∈ W q
1 with∫

|∇f+|qdA =
∫
f>0
|∇f |qdA ≤

∫
|∇f |qdA.

Lemma 4.9. Wq(Zf ) ∩ L∞ is dense in Wq(Zf ).

Proof. Let g ∈ Wq(Zf ). It follows from Lemma 4.4 that [|g|] = [g] ⊂ Wq(Zf ), thus we may
assume g ≥ 0. For an integer M > 0, let gM = min{g,M} and apply [4], p. 316, and the
above remark to get gM ∈ Wq(Zf )∩L∞ with ‖gM‖q ≤ ‖g‖q. Since gM → g a.e. as M →∞,
we can apply Proposition 4.7 to show gM → g weakly. �

Proof of Lemma 4.5:

This proof is a modification of in idea found in [7], p. 89 - 90 and very similar to [9],
Lemma 4.2. Clearly [f ] ⊂ Wq(Zf ). If f1 denotes the cut-off function f1 = min{|f |, 1} then
Zf = Zf1 and since f1 ≤ f it follows from Lemma 4.4 that

[f1] ⊂ [f ] ⊂ Wq(Zf ) = Wq(Zf1).

Thus we may assume 0 ≤ f ≤ 1. Moreover it follows from Lemma 4.9 that it suffices to show
Wq(Zf ) ∩ L∞ ⊂ [f ].

To this end, let g ∈ Wq(Zf ) ∩ L∞ be quasi-continuous. By Lemma 4.4 we may assume
g ≥ 0. For each positive integer n let

gn = max{g − 1

n
, 0}

and notice that gn → g a.e., gn is uniformly bounded in Sobolev norm (see the above remark),
and gn ∈ W q,0

1 (G) (Proposition 4.1). So applying Proposition 4.7, it suffices to show gn ∈ [f ].
For what follows, we fix a positive integer n. For t ≥ 0 we define

Nt = {z : gn(z) 6= 0, f(z) ≤ t}.
The functions f and g are quasi-continuous, hence the sets

Mt = {z : g(z) ≥ 1

n
, f(z) ≤ t}

are quasi-closed and for each t ≥ 0 they satisfy Nt ⊂ Mt. Now M0 ⊂ Zf\Zg, hence by
assumptions on g and the fact that the Mt are decreasing (as t → 0) and quasi-closed, we
can apply a result of Fuglede, [5], Lemma 2 (really just a generalization of the fact that for
compact sets Ki ↓ K implies Cq(Ki)→ Cq(K), to quasi-closed sets), to obtain

C∗q (Nt) ≤ C∗q (Mt)→ C∗q (M0) = 0

as t → 0. By [2], Theorem 2(i), we can find a family 0 ≤ wt ≤ 1 of functions in W q
1 with

wt = 1 quasi-everywhere on Nt and ‖wt‖q → 0 as t→ 0. For δ > 0, notice that

‖∇(f + δ)−1‖Lq(G) ≤ ‖(f + δ)−2‖∞‖∇f‖Lq ≤ δ−2‖∇f‖Lq .

For t, δ > 0, define ut,δ by

ut,δ =
(1− wt)gn
f + δ

. (4.7)

Since W q
1 ∩ L∞ is an algebra [7], p. 48, we have ut,δ ∈ W q

1 ∩ L∞. Applying Lemma 4.8, we
have fut,δ ∈ [f ].
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We now show that we can choose a sequence tj → 0 with futj ,δ(tj) uniformly bounded in
Sobolev norm and converging to gn a.e. Once this has been established, we apply Proposi-
tion 4.7 to show gn ∈ [f ] and the proof will be finished.

To control the Sobolev norm of gn − fut,δ in t and δ we let ϕt(x) be a smooth increasing
function on [0,∞) with ϕt(0) = t/4 and ϕt(x) = x for all x > t/2. Since wt = 1 quasi-
everywhere on Nt, then

gn − fut,δ = wtgn +
δ(1− wt)gn

f + δ
= wtgn +

δ(1− wt)gn
ϕt(f) + δ

. (4.8)

Let ψt,δ(x) = (ϕt(x) + δ)−1 and note that since ϕt + δ ≥ t/4, then ‖ψt,δ‖∞ ≤ 4t−1 and
‖ψ′t,δ‖∞ ≤ 16‖ϕ′t‖∞t−2. First note that

‖∇(ϕt ◦ f + δ)−1‖Lq(G) = ‖∇(ψt,δ ◦ f)‖Lq(G) (4.9)

≤ ‖ψ′t,δ‖∞‖∇f‖Lq ≤ 16‖ϕ′t‖∞‖∇f‖Lqt−2 ≤ Ctt
−2, (4.10)

where Ct is a constant independent of δ.
Looking back at (4.8), we see that

‖gn − fut,δ‖q ≤ ‖wtgn‖q + ‖δgn(1− wt)ψt,δ(f)‖q. (4.11)

The first term on the right hand side of (4.11) is uniformly bounded in t since

‖wtgn‖q ≤ ‖wt‖∞‖gn‖q + ‖gn‖∞‖wt‖q, (4.12)

0 ≤ wt ≤ 1 for all t > 0, and ‖wt‖q → 0. The second term on the right hand side of (4.11)
is bounded by

δ‖(1− wt)gn‖∞‖∇ψt,δ(f)‖Lq + δ‖(1− wt)gn‖q‖ψt,δ(f)‖∞. (4.13)

By (4.12), the quantities ‖(1 − wt)gn‖q and ‖(1 − wt)gn‖∞ are uniformly bounded in t and
applying (4.9) and the fact that ‖ψt,δ‖∞ ≤ 4t−1 to (4.13), we see that

‖δgn(1− wt)ψt,δ(f)‖q ≤ δDtt
−2, (4.14)

where Dt is a constant independent of δ. Letting δ(t) = t2(Dt + 1)−1 we see that δ(t) → 0
as t → 0 and that (4.14) and hence gn − fut,δ(t) is uniformly bounded in Sobolev norm for
t→ 0.

To conclude, we show that utj ,δ(tj)f → gn a.e. for some sequence tj → 0. Since ‖wt‖q → 0
as t→ 0, there is a sequence tj → 0 with wtj → 0 a.e. as j →∞. Thus

utj ,δ(tj)f = (1− wtj)gn
f

f + δ(tj)
→ gn

a.e. on the complement of Zf . But this all we need since utj ,δ(tj)f = gn = 0 a.e. on Zgn and
Zf\Zgn has measure zero. Λ
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