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Discrete Predictive Analysis in

Probabilistic Safety Assessment

PAUL H. KVAM and J. GLENN MILLER

Georgia Institute of Technology, Atlanta, Georgia 30332-0205

This paper presents methods for predicting future numbers of component failures for probabilistic safety
assessments (PSAs). The research is motivated and illustrated by discrete failure data from the nuclear
industry, including failure counts for emergency diesel generators, pumps, and motor operated valves.
Failure counts are modeled with Poisson and binomial distributions. Multiple-failure environments create
extra problems for predictive inference, and are a primary focus of this paper. Common cause failures
(CCFs), in particular, refer to the simultaneous failure of system components due to an external event.
CCF prediction is investigated, and approximate inference methods are derived for various CCF models.

Introduction

TATISTICAL modeling is at the heart of probabilis-
tic safety assessment (PSA) for complex sys-
tems, such as those in the aerospace, nuclear, and
chemical industries. A nuclear power plant, where
several mechanical and electronic component groups
work interdependently, represents an especially im-
portant PSA application and helps to motivate much
of our paper. In short, a PSA identifies potential
hazards to a system along with corresponding acci-
dent sequences, and then categorizes relevant conse-
quences to the system and its surrounding environ-
ment. In a nuclear power plant, PSA is a tool used
to estimate the plant’s core damage frequency, which
is typically less than 107%/year. The analyst records
all potential component failures that act as precur-
sors to more harmful accident sequences leading to
core damage.

Much of the effort needed to complete a system
agsessment goes into the qualitative analysis, which
involves constructing fault trees and event trees to
describe accident sequences and consequences. The
qualitative component to PSA starts with a thor-
ough investigation of past failure events and poten-
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tial future risks. Risks include accidents within the
plant (component failure, maintenance faults, opera-
tor error) and events outside the plant (natural disas-
ters, accidents in transport, unexpected local peaks
in power demand).

The quantitative aspect of PSA includes reliabil-
ity analyses of component groups within the system.
System reliability is estimated from the component
reliability estimates and the system configuration.
The PSA uses failure data and other system infor-
mation (such as component degradation information
or expert opinion) to quantify failure frequencies of
initiating events and the correspondent accidents se-
quences. Models that translate failure data into esti-
mated accident rates tend to be elaborate due to the
network of complex accident sequences that comprise
the PSA. Analytical solutions to predictions, esti-
mates, and uncertainties are rarely attainable, leav-
ing the practitioner to make inferences based on ap-
proximations and Monte Carlo methods. This is es-
pecially apparent in the nuclear industry, where fail-
ure data are sparse, and simulations provide more
convenient solutions compared to traditional statis-
tical methods. The Monte Carlo methods rely on sta-
tistical parameter estimates from reliability analyses
to generate simulated failure events, and relevant ac-
cident scquences are selected based on the accident
frequencies and consequences.

In any PSA simulation, methods of parametric in-
ference are applied to infer knowledge about compo-
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DISCRETE PREDICTIVE ANALYSIS IN PROBABILISTIC SAFETY ASSESSMENT 107

nent lifetimes, degradation models, or external fail-
ure events. With the available failure data, the un-
certainties in estimating the unknown parameters
from the final model are summarized through statis-
tical confidence intervals. However, the ultimate goal
of most safety assessments is to predict future failure
events from the estimated reliability model. That
is, the future number of component failures are more
important to the PSA than the parameters that char-
acterize their failure distributions, which sometimes
have little meaning to the user. Instead of apply-
ing only standard confidence intervals for unknown
parameters, prediction regions for future failure fre-
quencies should be a major consideration of PSA.

By construction, Monte Carlo simulation methods
already include uncertainty due to prediction, and
this allows the user to model prediction uncertainty
without having to understand the statistical issues
of prediction, which are sometimes more compli-
cated than standard estimation problems. However,
simulation methods cannot help us realize general
prediction uncertainty. Traditional methods based
on standard reliability estimation will underestimate
the variability of future system failure frequency if
the problem of prediction is not addressed directly.

In this paper, we focus on prediction intervals for
discrete failure events in a PSA. Most current pre-
dictive inference in the statistical literature is de-
rived for continuous distributions such as the nor-
mal distribution for linear regression. However, a
great amount of PSA data are discrete failure counts.
Lacking the needed individual component testing
programs, analysts rely more on success/failure data
produced in operating environments. Degradation

measurements and times on test are less common
luxuries.

Basic methods for constructing prediction inter-
vals in conventional settings are described in Cox
and Hinkley (1974), Faulkenberry (1973), Hahn and
Meeker (1991), and Kniisel (1994), and these papers
include prediction problems for general discrete dis-
tributions. In the following two sections, we dis-
cuss the construction of exact one-sided prediction
bounds using Poisson and binomial data, which com-
monly appear in safety assessments. Poisson failure
counts for pumps from a U.S. nuclear power plant
are examined, and prediction intervals are computed
based on fixed future test times. We examine bino-
mial trials of emergency diesel generators (EDGs) us-
ing data collected from seven domestic power plants.
We also discuss a special concern for PSA, the con-
struction of prediction bounds with zero-failure data.

A primary goal in this paper is to develop predic-
tive inference techniques for multiple failure models.
For this case, cxact prediction bounds are not gen-
erally available. We derive approximate prediction
bounds for systems that experience common cause
failures (CCFs), which are external events that cause
the simultaneous failure of two or more components
in the system. Two particular models are used to
illustrate multiple-failure prediction, but other mod-
els can be easily substituted. Bayesian methods have
become increasingly popular in PSA, and Bayesian
extensions to predictive analysis are outlined later
in this paper. We analyze data from a rccent re-
port for the Nuclear Regulatory Commission found
in IEEL (1997) on the CCF of generators at U.S.
power plants.

TABLE 1. 95% Upper Prediction Bound for Future Pump Failures over the
Course of One Reactor-Year. Time is Measured in 1000s of Hours

System Pump Time n 95% UPB 95% UPB
Number Failures on Test 0 (=1 (T =T0)
i 5 94.32 0.0530 1 12
2 1 15.72 0.0636 1 6
3 D 62.88 0.0795 1 12
4 14 125.76 0.1113 1 25
5 3 5.24 0.5725 3 9
6 19 31.44 0.6043 2 31
7 il 1.05 0.9525 6 6
8 1 1.05 0.9524 6 6
9 4 2.10 1.9048 6 11
10 22 10.48 2.0992 5 35
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108 PAUL H. KVAM AND J. GLENN MILLER

TABLE 2. 95% Upper Prediction Bound for Future EDG Failures over the
Course of One Reactor-Year. Time is Measured in 1000s of Hours

EDG EDG 95% UPB 95% UPB no for
Plant demands failures 0 ny = 100 ny = no UPB=/0
A 2017 35 0.0174 4 51 2
B 301 16 0.0532 10 27 0
C 793 18 0.0227 3 30 9
D 206 9 0.0437 10 18 1
E 1176 13 0.0111 3 23 4
G 283 8 0.0283 7 16 1
H 192 11 0.0573 12 20 0

Exact Prediction Bounds
for Poisson Data

Data for many individual plant components are in
the form of failure counts aggregated over fixed time
intervals. For reliable components such as cooling
fans, motor-operated valves, check valves, and aux-
iliary feedwater pumps, failure rates are low and in
most cases are relatively constant between scheduled
maintenance operations (see Sanzo et al. (1994)).
With special exceptions, a homogeneous Poisson pro-
cess is assumed to govern the failure events for these
components. In this section, we illustrate predictive
analysis in PSA using pump failure data from the
U.S. Farley-1 nuclear power plant. The data orig-
inated in a plant report at the Electric Power Re-
search Institute by Worledge et al. (1982) and are
reproduced in Gaver and O’Muircheartaigh (1987).
A summary of the failure data from 10 pump sys-
tems in the Farley-1 plant is listed in Table 1. The
time on test, 77, is listed in thousands of hours.

For the Poisson prediction interval, consider the
following model. From a homogeneous Poisson pro-
cess with unknown recurrence rate 6, > 0, let X
represent the number of occurrences in time interval
(0,71), and denote by Y the future number of occur-
rences of an independent process with unknown re-
currence rate 6, > 0 in the time interval (77, 71 +7%).
It is our goal to predict Y ~ Poisson(027%) using X ~
Poisson (0T} ), assuming the processes have identical
recurrence rates; i.e., 1 = 5. Consider the hypoth-
esis test for Hy : 61 = 03 vs. H, : 6, < 03. The
rejection region for the a-level test of H, has form
{(x,y) : y > U(z)}, where U(x) serves as an upper
prediction bound (UPB) for Y, given X. Lower pre-
diction bounds are constructed similarly by switching
the inequality in the alternative hypothesis.

Journal of Quality Technology

Under Hy, the conditional distribution of X given
N = X +Y is binomial with parameters N = n
and p = T1/(Th + T»); thus, X | N = n forms a
pivotal quantity, and we can use this binomial dis-
tribution to construct exact prediction intervals for
Y. Let bo(n,p) = by be the lower ot quantile of
the binomial distribution; i.e., b, is the largest inte-
ger such that P(X < b, | X +Y =n) < a. The
rejection region for the one-sided test of hypothesis
consists of all pairs (z,y) for which 2 is considered
too small, relative to y. Accordingly, the one-sided
prediction interval for Y, given X = z, has the form
[0,y*], where we choose y* to be the largest integer
such that @ > b, (x+y*, p). This ensures that y* + 1
is the smallest value of Y (in a fixed X +Y) for which
X is considered too small (relative to X +Y) to fail
to reject Hy. Thus, given that X = x, [0,y*] is the
narrowest interval for which P(Y < y*) > 1 — a.

As a simple example from the nuclear industry,
suppose that in one (reactor) year, a group of con-
tainment cooling fans at a power plant experiences
no failures or significant degradation during contin-
uous service. Common risks for cooling fans include
broken blades, fan belt slippage, and loss of motor-
bearing lubrication, which causes degradation and
low flow. We can form a 95% UPB for the number
of future failures experienced by the cooling fans in
the next (reactor) year if we assume the failure rate
remains the same (that is, the Poisson process for
failure events is homogeneous). If we let X = 0 be
the number of observed failures and Y as the (Pois-
son distributed) number of future failures, the pivotal
statistic is distributed binomial with n =0+ Y, and
p =T /(T +T3) = 0.5. The lower quantiles of the bi-
nomial distribution are bg.g5(3,0.5) = bg.05(4,0.5) =
0, and bg o5(5,0.5) = 1. Thus, y* = 4 is the largest
value of y for which = > by g5(z + y,0.5).

Vol. 34, No. 1, January 2002



DISCRETE PREDICTIVE ANALYSIS IN PROBABILISTIC SAFETY ASSESSMENT 109

While one-sided prediction bounds are the main
focus for safety assessments in which component fail-
ures are rare, two sided prediction intervals can be
constructed in the same manner by simultaneously
considering lower bounds and upper bounds, each
based on the quantiles bg and b;_g. For the pump
failure data, the 95% UPBs are calculated in Table
1. In column 4 of the table, the upper bound refers
to the case in which we predict future failures based
on T = 1.0 thousand hours on test. The results in
column 5 refer to the case in which the future time
on test T is fixed to be the same as T;.

Methods for standard prediction limits are de-
scribed in various sources for the reliability practi-
tioner, including Nelson (1982) and Cox and Hinkley
(1974), where quicker, approximate methods are usu-
ally prescribed. A normal approximation, described
in Chapter 6 of Nelson (1982), is straightforward and
somewhat effective for this Poisson prediction prob-
lem. For example, the (1 —«)-UPB for Y in the case
Ty =Ty is + 21_oV 2z, where 24 is the qth quantile
of the standard normal distribution. However, the
bounds fail to be accurate unless the mean values
0;T; are large enough. Obviously, these approximate
bounds will not be effective for problems with few or
no observed failures.

Exact Prediction Bounds
for Binomial Data

In a Brookhaven National Laboratory report for
the NRC by Lofgren and Gregory (1991), emergency
diesel generators (EDGs) were tested individually in
separate maintenance programs for seven different
nuclear power plants. Between 1976 and 1991, EDG
demands and failures were recorded at each of these
plants, which we treat as binomial outcomes sum-
marized in Table 2. Failure events can include the
EDG’s failure to start, its failure to run according
to standards once started, or the occurrence of prob-
lems with an EDG that might lead to an incipient
failure in future start-ups, such as poor maintenance
or worn components.

Along with Poisson data, binomial failure counts
provide the bulk of discrete PSA data. Predictive
inferences with binomial observations are derived in
the same manner as with Poisson data. Suppose
we observe X ~ binomial(n,#), with only n; being
known. Let Y ~ binomial(ns, ) denote future fail-
ure observations, with no being known. Now, X +Y
has a binomial distribution, and the conditional dis-
tribution of X given X + Y = n is hypergeometric

Vol. 34, No. 1, January 2002

with probability mass function
0 Mol
pulz|n) = ~arn=sl,
( n )

x = max{0,n — na},...,n. (1)

To determine a (1 — «)100% UPB, we choose y* to
be large enough to ensure z < hy(x + y*,n1,n2),
where h, represents the lower o quantile of the
hypergeometric distribution in Equation (1). Then,
y* = Uy () is the largest value of Y such that P(X <
z|lz+y=n)>a.

For the EDG trials, the 95% UPBs are calculated
in Table 2. Prediction intervals in column 5 are com-
puted for a future year in which ny = 100 demands
are placed upon each EDG. Prediction intervals in
column 6 are for the case in which n; = ne. Column
7 lists the largest value of ny > 0 for which the 95%
prediction intervals are computed as y*=0. The in-
formation provided in column 7 has value in expen-
sive trials for extremely reliable components where
small no and zero-failure data are not uncommon.
Except for Plant E (which has the highest observed
EDG reliability), no plant obtains 95% certainty of
zero-failures if more than two trials are run.

Table 3 exhibits 95% binomial prediction UPBs
for the case in which ny = ny and X = 0,1,2. In
column 1, the UPB for Y is listed. Alongside the
UPB are the smallest values of ny = no, given X,
required to achieve that UPB. For example, if X = 0,
we need n; = ny > 16 in order for y* = 4 to serve
as a 95% UPB. Furthermore, there is no n, = ny for
which y* = 5 serves as an UPB.

Prediction Intervals Based
on Zero Failures

In demonstration testing at power plants, elec-
tronics manufacturing plants, and military test cen-

TABLE 3. Smallest Values of n; = ng at Which We
Obtain the Following 95% Upper Prediction
Bounds for X =0,1,2

UPB Xo=i0 Xi— Ni— 2
1 1 1 °
2 2 2 A
3 4 3 3
4 16 4 4
5 7 )
6 26 i
7 14
8 95

www.asq.org



110 PAUL H. KVAM AND J. GLENN MILLER

TABLE 4. Upper (1 — a)100% Prediction Bounds
for Zero-Failure Poisson Data, Where the Ratio
a = Ty /T Represents the Minimum Value
Needed to Obtain the Listed UPB

a=0.10 a = 0.05 a=0.01 UPB
0.0001 0.0001 0.0001 0
01112 0.0527 0.0102 1
0.4625 0.2881 0:: 112 2
0.8663 0.5833 0.2747 3
1.2849 0.8971 0.4625 4
1.7098 1.2187 0.6615 5
21377 1.5443 0.8663 6
2.5675 1.8723 1.0745 i
2.9984 2.2016 1.2849 8
3.4300 2.5320 1.4968 9
3.8622 2.8631 1.7098 10
4.2947 3.1946 1.9235 141
4.7276 3.5265 21377 12
5.1606 3.8587 2.3524 13
5.5939 4.1912 2.5675 14
6.0273 4.5238 2.7828 15
6.4608 4.8566 2.9984 16
6.8943 5.1895 3.2141 ligd
7.3280 5.5225 3.4300 18
7.7617 5.8555 3.6460 19
8.1955 6.1887 3.8622 20
10.3651 7.8552 4.9441 25
125353 9.5226 6.0273 30
6.8766 12.8586 8.1955 40
21.2186 16.1955 10.3651 50

ters, highly reliable test items in non-accelerated
(working) environments often lead to zero failures
of the items being tested. For this reason, the spe-
cial case of zero-failure data warrants extra attention.
Statistical inference, especially nonparametric tech-
niques, can lead to ambiguous or misleading answers
(e.g., estimated failure rates of zero). Maximum like-
lihood theory, as one example, fails to produce ade-
quate measures of uncertainty to correspond to zero
estimates for rates of failure for Poisson or binomial
data. However, prediction problems are not so neg-
atively affected.

Table 4 contains information for obtaining fre-
quentist UPBs in zero-failure problems using Poisson
data. If we observe X = 0 failures in time 77, then we
obtain a (1—a)100% prediction interval for the future
number of failures in time 75 by first computing the
ratio a = T»/T;. The table lists the minimum value
of the ratio needed to obtain the UPB listed in the

Journal of Quality Technology

fourth column. That is, for values of a between two
table values, the UPB is the smaller a value. For ex-
ample, suppose we observe no failures with 7 = 2.0,
and we wish to construct a 95% UPB for the fu-
ture number of failures based on 7o, = 3.0. With
a = Ty/T) = 1.5, which falls between a = 1.2187
(y* = 5) and a = 1.5443 (y* = 6) on the table, we
generate the UPB as y* = 5.

Due to the inadequacy of maximum likelihood es-
timates in the zero-failure problem, most reliabil-
ity testing theory for zero-failure problems apply
Bayesian analyses (see Martz and Waller (1979), Mao
et al. (1993), and Tang and Mao (1993), for exam-
ples). Ome can argue that Bayesian methods have
gained popular support in the engineering sciences
due in part to this convenience. In the context of
PSA, predictive inference within the Bayes frame-
work is discussed later.

Prediction for Multiple-Failure Models

If components in a group can fail at once due to
a common cause, we might be interested in predict-
ing, for a given time interval, the number of occurring
catastrophic failures; i.e., the number of times all the
components in the group fail simultaneously. This
is a critical event in nuclear power stations, where
system reliability is increased by adding redundant
components to back up safety systems in case of com-
ponent failure. Many current PSAs employ paramet-
ric models based on fundamental assumptions about
component dependencies and common cause failure.
If a stochastic relationship between components ex-
ists and is known, a simple prediction interval for a
future number of catastrophic failures based only on
the number of catastrophic failures observed in a test
period will fail to exploit the information garnered
from this relationship. If no useful relationship ex-
ists, it is often the case that no catastrophic failures
have been observed, and PSAs should rely on pre-
diction intervals based on zero failures, as discussed
earlier. In this section, we use parametric CCF mod-
els to demonstrate prediction analysis for multiple
failures.

There exists no strong consensus for parametric
models dealing with multiple failure events. We will
apply the binomial failure rate (BFR) model, intro-
duced by Vesley (1977). in order to illustrate the con-
struction of a prediction interval for a general para-
metric failure model. The BFR model represents one
of many CCF models developed for PSA. In this case,
it is assumed that the system has m identical compo-
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nents and that system shocks occur to the component
group according to a homogeneous Poisson process.
Once a shock hits the system, each component has
an independent and equally likely chance (0 < p < 1)
of failure. Thus, the number of components failing
due to a system shock has a binomial distribution.
This model and several alternative models in CCF
analysis are described fully in Mosleh et al. (1988).

Depending on the specific application, other mod-
els described in Mosleh et al. (1988) might be pre-
ferred to the BFR, which is chosen here for its some-
what frequent application and ease of illustration.
Methodological problems with the model are dis-
cussed in Kvam (1993), and problems with model fit
are discussed in Section 3.3 of Mosleh et al. (1988).
Improvements made to the BFR model by Atwood
(1986) increase the domain of problems that can be
well approximated in PSA, and Kvam (1998a) ex-
tends the BFR technique to a mixture model that
increases this domain further. In the following sub-
sections, prediction for multiple-failure models is il-
lustrated using the BFR model and the BFR mixture
model. Generalizations to other CCF models will be
apparent to the reader.

By applying a parametric failure model, we cannot
effectively construct exact prediction bounds based
on a single pivotal statistic. There is no unique
method for forming the approximate UPB. We will
outline an intuitive method based on calibrating the
naive UPB, which is based on ignoring the uncer-
tainty associated with estimation of the failure rate
parameters.

Calibration Technique for Computing UPB

To illustrate the calibration technique with a mul-
tiple failure model, suppose a system of five compo-
nents is observed, and simultaneous failures occur
according to the BFR model. Also suppose that,
in one year of testing, we observe 37 CCF events
of one component (out of five), 34 failures involv-
ing two components, 13 involving three components,
and 4 failures involving four out of the five compo-
nents. No catastrophic events that cause the failure
of all five components are observed. We can summa-
rize the failure events in an aggregate impact vector
x = (37,34,13,4,0). Estimation of the BFR param-
eters (p = probability of component failure given a
system shock, = Poisson rate for shock process) is
not straightforward because we cannot observe zg,
the number of shocks that cause no failures. With
some small samples, the method of maximum likeli-

Vol. 34, No. 1, January 2002

hood produces boundary solutions, and another es-
timation method, such as the method of moments
technique used in Kvam (1996), would be preferred.
An outline for constructing BFR parameter estima-
tors is given in the Appendix.

According to the BFR model, the rate of catas-
trophic failure is pp®. For a catastrophic failure to
occur, all of the five system components must fail
(with the same probability p) after a given common-
cause shock. A naive (1 — «) UPB for the number
of catastrophic failures is the (1 — «) quantile of its
multiple failure distribution, which is estimated to be
Poisson with rate z1p°. That is, UPB is the smallest
integer x for which F(x; A = ip°) > 1 — a, where F
is the Poisson cumulative distribution function. This
upper bound is naive in the sense that it ignores un-
certainty associated with estimating the Poisson rate
parameter.

Cox (1975), Atwood (1984), and Beran (1990)
derived prediction bounds by finding a calibration
level (1 — a.) that produces the desired (true) con-
fidence level (1 — a) for the prediction uncertainty
once the uncertainty of the parameter estimates is
included. Beran (1990) derived asymptotic proper-
ties needed for prediction calibration, and showed
that the naive UPB, based on substituting estimates
ap® for up®, approaches the true UPB asymptoti-
cally, thus the need for calibration decreases with
increasing sample size. For a given sample, the cali-
bration level is approximated using Taylor series ex-
pansions of the maximum likelihood estimates when
solving F(x; A = ip°) = 1 — a. Unfortunately, this
calibration method is very difficult to implement, and
applications toward multiple failure models are un-
realistic.

Alternatively, Escobar and Meeker (1999) use sim-
ulation methods to calibrate naive prediction inter-
vals. The application of the simulation method to
complex prediction models is straightforward and
can be implemented using the following steps:

1. Choose a confidence level 1 — ..

2. Compute estimates of the unknown parameters
(e.g., via maximum likelihood) ¢ = (p, ). Note
that the UPB based on choosing the 1 — a.
quantile from F(z;ip°®) will have (actual) cov-
erage probability of less than 1 — «., because
the uncertainty of the estimates (p,fi) is not
reflected in the UPB.

3. Simulate an impact vector from the multiple
failure model for which the parameter values

www.asq.org



112 PAUL H. KVAM AND J. GLENN MILLER

are ¢ = 5 so that the expected failure count is

the same as the actual failure count observed

in the data.
4. Compute estimates of the parameters based on
the simulated data (call this ¢ = (p, 1)).
Compute the UPB for the number of catas-
trophic failures from the Poisson distribution;
i.e., find the smallest value of x for which
F(z;5p°) > 1 — ae.

6. Generate a random value z* from F(z|up®).

ot

7. In repeated iterations of steps [3]-[6], count the
proportion of times in which the UPB in step [5]
is smaller than x*. This proportion is the esti-
mated coverage probability 1—a corresponding
to the nominal coverage 1 — a..

8. Repeat steps [1]-[7] for different values of 1—av.

If we choose enough repetitions in step 7, the es-
timated coverage probability will approach the true
coverage probability. The calibration needed to con-
struct an accurate UPB is implied by the graph of
1—a. vs. 1 —a. For the BFR example, this cali-
bration curve is plotted in Figure 1. The dashed line
indicates the nominal confidence level, and it serves
to show how much confidence is lost due to parame-
ter uncertainty. The curve is based on 10,000 simu-
lations (in steps [3]-[6]) at 2 different values of 1 — v,
between 0.90 and 1.00. For example, if we specify a
0.90 confidence level when constructing a naive UPB,
the actual level is approximately 0.74. To achieve a
true 0.90 upper bound, we need to specify a level of
1 —a. = 0.9733. From the data, the maximum like-
lihood estimators for (p, 1) are (0.3031,105.31), and
the estimated rate of catastrophic failure is p° =
0.2694. The 0.9733 quantile of the Poisson distribu-
tion (with rate parameter A = 0.2694) is 2, thus our
90% upper prediction bound for the number of catas-
trophic failures for the system of five components
152

Mixture Model Example

We can directly apply the calibration method for
prediction to more complicated multiple-failure mod-
els without going into the detail of the model estima-
tion. Hokstad (1988) suggested using a mixing distri-
bution G(p) for the parameter p to make BFR model
applications more realistic. By doing this, we ac-
knowledge the chance that system shocks can be gen-
erated from different sources which produce shocks
of varying strength. Details on deriving the mix-
ture distribution are given in the Appendix. We can
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choose a parametric form for G, such as beta(a, 3)
used by Kvam (1998b), or a nonparametric struc-
ture, as in Kvam (1998a), where the mixing distri-
bution G is estimated as a discrete measure on [0, 1]
with between one and three points that have positive
probability mass.

The mixture model was fit to CCF data involv-
ing one or more EDGs at various domestic nuclear
power plants. The failure data for CCF events be-
tween 1980 and 1995, listed in a report for the U.S.
Nuclear Regulatory Commission, IEEL (1997), are
summarized in Table 6. Failures include natural
disasters, shared design flaws, and machine mainte-
nance errors, to name a few. The database also lists
incipient failures, which include observations where
a single diesel failed, but it was determined that its
cause of failure could potentially cause the failure
of other EDGs in the near future. In such cases,
these potential failures are conservatively listed as
actual CCFs. Component group sizes range from 2
to 5. Each group size refers to one or more nuclear
power plants, and they are not considered identical.
For each group size, we assign a separate (unknown)
BFR rate parameter to obtain (j, ..., 5)-

The time on test for each group is not available
for public disclosure. As a consequence, we focus on
computing the probability of a catastrophic failure
given that a CCF event has occurred. For illustra-
tive purposes, we will consider a future power plant
that will employ four EDGs to back up the main
power, and we will seek a 90% UPB based on the
same amount of test time experienced by the power
plants that used group sizes of four in Table 6.

The best fitting mixture model from Kvam
(1998a) is a 2-point distribution for p with mass
at p1 = 0.3103 and p, = 0.6788. The estimated
mixing probabilities are Pg(p;) = m = 0.6788 and
Po(p2) = m = 0.3212, respectively. For a fu-
ture system of m components, the conditional prob-
ability of catastrophic failure given a CCF event is
mp1™ 4+ (1 — mq)p2". Given a CCF event, the prob-
ability of catastrophic failure for a future group of
four EDGs is estimated to be 0.1656. There are
np = 34 CCF events listed for plants with group
size four. For the mixture model, the probability
of no failure (given a CCF event) is 0.1538, and
we estimate the CCF shock rate for the group as
ny/P(CCF) = 34/(1 — 0.1538) = 40.18; thus, the
Poisson rate of catastrophic failure for the group of
size four is 40.18 x 0.1656 = 6.6538.
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FIGURE 1. Calibration Curve for UPB on Catastrophic Common Cause Failures to a Five-Component System.

The calibration curve for the EDG upper predic-
tion bound is plotted in Figure 2. Again, the dashed
line represents the nominal confidence level. Along
with the UPB for a future common cause group of
size m = 4, Figure 2 provides calibration curves for
group sizes of m = 2, 3, 4, and 5. Note that for
the case m = 5. the figure implies that using a naive
interval for the UPB leads to gross underestimation
of the predictive uncertainty. As before, the curves
are each based on 10,000 simulations (in steps [3]-
[6]) at 21 different values of 1 — a.. between 0.90 and
1.00. To achieve a 90% UPB for the future num-
ber of catastrophic failures from a group of m = 4,
we need to use 1 — a, = 0.9881. The 0.9881 quan-
tile of the Poisson distribution (with rate parameter
A = 6.6538) is 13, thus our 90% upper prediction
bound for the number of catastrophic failures for the
system of four EDGs is 13.

Bayesian Prediction

The goal of this paper is to present statistical
methods for constructing prediction intervals in PSA.
Up to this point we have presented the frequentist ap-
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proach for prediction inference, but Bayesian meth-
ods for predictive inference are also applicable in cer-
tain PSAs. Furthermore, Bayes methods have be-
come increasingly popular in risk assessment. For the
Bayesian approach, a distribution 7(#) is assigned to
# in order to reflect user uncertainty in the parame-
ter. This allows subjective prior information to affect
the outcome of data analysis through 7(#). If the
density of the observable data x is denoted f(x | 0),
and the parameter # has prior distribution 7(#), in-
formation is updated (using Bayes rule) through the
conditional posterior distribution

(8| z) = @10
[ 7(0)f(x|6)af
Unlike the frequentist approach, predictive infer-
ence is straightforward using a Bayesian framework;
we construct the predictive density of a new observa-
tion Y from f(x | #) as

Pyix(y|z) = / fy|0)m(0 | x)db. (2)
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TABLE 6. Common Cause Failure Data
for Emergency Diesel Generators

Group Size Impact Vector
2 (17,14)
3 (9,5,6)
4 (11,10,7,6)
5 (2,2,1,2,1)

The posterior 7(6 | z) serves as a mixing distribution
which combines the updated parameter uncertainty
with the original prediction uncertainty.

For Poisson data, if we specify a gamma prior (in-
teger shape parameter = r, scale parameter = \)
for the failure rate parameter 6, it is straightfor-
ward using Equation (2) to show that the predictive
probability density function (pdf) of Y (given x fail-
ures) is negative-binomial with parameters r 4+ and
p=A+T)/(N+ Ty +T3), where T} and T, are
test times, respectively, for the observed and pre-
dicted number of failures. If we choose a more gen-
eral gamma prior in which r can be non-integer, the
predictive distribution is Poisson-gamma (see Section
8.3 of Johnson, Kotz, and Kemp (1993)) with param-
eters r +x. A+ 71, and T,. Of course, other reason-
able prior distributions can be chosen for . We chose
the gamma distribution for illustration because it is
a conjugate family for the Poisson distribution; that
is, by using a Poisson likelihood with a gamma prior,
the posterior distribution is also gamma.

With binomial data, we can choose the conju-
gate prior 8 ~ beta(ag, ). From Equation (2),
the predictive density for Y ~ binomial(nz, #) given
X ~ binomial(n;,0) can be calculated as beta-
binomial(a + x, 8 + n1 — x, ne) with

At
EY |z)= PN
Var(Y ( .I‘) . 712(@ +1‘)(ﬂ3+ﬂ1 — ;1))(”1 +ns+a+ B)

(a+B8+nm)(a+5+n +1)

Unlike prediction intervals outlined in the previ-
ous section, one-sided Bayesian prediction bounds
are made simply by using appropriate percentiles
from the predictive pdf. Two-sided prediction inter-
vals are constructed in the same manner as regular
Bayesian credible sets.

If one can appropriately apply prior information
with a conjugate prior distribution, the resulting
Bayesian inferential analysis is straightforward and
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analytically convenient. However, nonconjugate pri-
ors are sometimes more appropriate, such as in PSAs
of domestic nuclear power plants where log-normal
distributions are sometimes used for Poisson rate pa-
rameters. Without conjugacy, we lose the simple and
elegant solutions for predictive densities which we ex-
pect from Equation (2). Given available computing
algorithms (i.e., Markov chain Monte Carlo and nu-
merical integration methods), the selection of a prior
from the more general class of proper distributions
no longer precludes the feasibility of inferential anal-
ysis.

If prior information about 6 is not available, a non-
informative prior distribution can be substituted into
the prediction density. For the Poisson case, 6 is a
scale parameter, which has a Jeffries noninformative
prior distribution of 7(6) = 1/6, 6§ > 0 (see Berger
(1985) for further explanation of noninformative pri-
ors, including Jeffries priors). Note that w(#) is not
a proper distribution. If we observe at least one fail-
ure (i.e., X > 1), the resulting predictive probability
density of Y is negative binomial with parameters x
and p = T1 /(11 + T»). However, if we observe no
failures in the observed data, the improper prior will
produce an improper predictive distribution for Y.
This can limit Bayesian methods in environments for
which zero-failure experiments are not uncommon, as
discussed in the last section.

As an alternative, the analyst may choose mawi-
mum entropy priors, as defined in Kapur (1989), for
which the prior 7(#) maximizes an entropy measure
subject to constraint, such as a fixed prior mean.
For Poisson data, we specify the Poisson parameter
6 in terms of the prior distribution with E[f] = 1/A,
where A is known. If we define entropy as

oo

H, =- / 7(0){n(7(0))de,

— 00

then the maximum entropy prior for 8 € (0, 00) is the
exponential distribution with mean A~! (see Kapur
(1989)). Furthermore, it can be shown that with-
out this constraint, the maximum entropy prior does
not exist. Using an exponential distribution (with
failure rate parameter \), the posterior distribution
(6 | X = 0) is gamma with parameters (1, A + 1),
and the predictive density of Equation (3) is negative
binomial with parameters 1 and p = (A+1)/(A+2).
In the binomial data case, ¢ has support on (0, 1), the
Jeffries noninformative prior is beta(1/2,1/2), and
the maximum entropy prior is the uniform distribu-
tion, or beta(1,1).
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FIGURE 2. Calibration Curves for UPB on Catastrophic Common Cause Failures to EDG in Group Sizes of m = 2,3, 4, 5.

Discussion

Engineering practitioners have been apprehensive
about applying predictive inference to problems that
involve the estimation of future failures. Statistical
research for predictive inference in the physical sci-
ences, however, has surged in recent years. See, for
instance, De Veaux et al. (1998), Davis and McNi-
chols (1999), and Escobar and Meeker (1999). Engi-
neering examples for which predictive inference was
not considered in the initial design of the experiment
are referenced in those papers, suggesting that pre-
dictive inference might serve as an afterthought in
some engineering sciences. Inference for only the un-
observable parameters can be unnecessary, if not mis-
guided, in many such applications. This is especially
true if the parameters in the statistical model have
no direct operational meaning to the analyst. For the
simple discrete prediction problems described earlier,
the pivotal statistic used in each case leads to the
derivation of predictive models that are free of un-
known parameters. In a PSA, this allows one to focus
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on future failures without the necessity of estimating
failure rates.

In multiple failure models, prediction bounds
based on simple pivotal statistics are not generally
obtainable. Approximate prediction bounds derived
in this paper lack the simplicity or the aesthetic ap-
peal of exact bounds, but they can be especially use-
ful in nuclear power plant studies, where CCFs are a
crucial part of the PSA. Although the simulation-
based calibration method suggested in this paper
is computationally intensive, its implementation is
straightforward, and it can guarantee an accurate
estimate of the bound if enough simulations are exe-
cuted. For general confidence intervals based on sim-
ulation methods, 2000 runs are often suggested (see
Escobar and Meeker (1999), for example) but we ran
10,000 for the results in Figures 1 and 2.

Here we considered the problem of predicting
catastrophic failures for common cause failure envi-
ronments. Future problems in probabilistic safety
assessment may include simultaneous prediction
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bounds for multivariate failures; e.g., the number of
failures of one, two, or all components for a future
system of three components. In this case, the exten-
sion of the methods presented here is unclear, and
worthy of further research.

Appendix

If X; represents the number of CCFs of ¢ compo-
nents in a group of k, then X; ~ Poisson(#;), where
0; = ,u(];.’)pi(l — p)k=%, u is the system shock pro-
cess rate, and p is the conditional failure probability,
given a CCF shock occurs. If we write the proba-
bility mass function for the Poisson distribution as
Py(z), then the likelihood function, based on observ-

g (Eg, s - 5B, 18 T o) = HL Py, (z;).

L(p, p) must be optimized numerically, in general.
Kvam (1993) employed the EM Algorithm (Demp-
ster et al. (1977)) to solve for fi, p by treating x( as
a missing value. Alternatively, method of moments
can be used to solve for 1, p:

k k
il — 1)z Y imy
~_ =l ~ =l
p= T i=5=
k
(k—1) Y iz; 4

which are explicitly derived in Kvam (1993).

For the BFR mixture model, a mixing distribution
G(p) is assigned to the parameter p, so the distribu-
tion for X; is now

1
P(X)) = / Py, (X | p)dG(p),
0

where G(p) can be specified as a beta distribution
(Kvam (1998b)) or unspecified as a nonparametric
mixing distribution (Kvam (1998a)). Both references
offer iterative methods that can be used to estim-
ate G.
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