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Pseudocontinuations and the Backward Shift

Alexandru Aleman, Stefan Richter &

William T. Ross

Abstract. In this paper, we will examine the backward shift
operator Lf = (f − f(0))/z on certain Banach spaces of an-
alytic functions on the open unit disk D. In particular, for a
(closed) subspace M for which LM ⊂M, we wish to determine
the spectrum, the point spectrum, and the approximate point
spectrum of L|M. In order to do this, we will use the concept
of “pseudocontinuation” of functions across the unit circle T.

We will first discuss the backward shift on a general Banach
space of analytic functions and then for the weighted Hardy and
Bergman spaces, we will show that σ(L|M) = σap(L|M) and
moreover whenever M does not contain all of the polynomials,
then

σ(L|M) ∩ D = σp(L|M) ∩ D = σap(L|M) ∩ D
and is a Blaschke sequence. In fact, for certain measures, we
will show that M is contained in the Nevanlinna class and every
function in M has a pseudocontinuation across T to a function
in the Nevanlinna class of the exterior disk.

For the Dirichlet and Besov spaces however, the spectral
picture of σ(L|M) is quite different. For example σap(L|M) and
σ(L|M) can differ and even when

σ(L|M) ∩ D = σp(L|M) ∩ D = σap(L|M) ∩ D

and is discrete, it need not be a Blaschke sequence. Moreover,M
may contain functions which do not have pseudocontinuations
across any set of positive measure in T.

As an application of our pseudocontinuation techniques and
the so-called “H2-duality”, we will look at the index of the
Mz-invariant subspaces of the Bergman spaces and weighted
Dirichlet spaces. In particular, whenever f and g belong to
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224 Alexandru Aleman, Stefan Richter & William T. Ross

the unweighted Bergman space Lpa(D) and f/g has finite non-
tangential limits almost everywhere on a set of positive Lebesgue
measure in the circle, then the Mz-invariant subspace generated
by f and g has index equal to one. For a large class of weighted
Dirichlet spaces, we will show that every non-zero Mz-invariant
subspace has index equal to one.

1. Introduction and statement of the main results

Let B be a Banach space of analytic functions defined on the open unit disk
D = {|z| < 1} for which the backward shift operator

Lf =
f − f(0)

z
, f ∈ B

is continuous. Backward shift operators and their restrictions L|M to invariant
subspaces M ⊂ B 1 form a large class of examples of bounded linear operators.
The main body of the book [33] contains an extensive study of these operators
in the case when B equals the Hardy space H2. For other spaces B, various
authors have investigated different aspects of the invariant subspace structure of
the backward shift [1] [2] [3] [4] [8] [20] [38].

In this paper, for certain Banach spaces B, we will relate meromorphic
continuations of functions in the L-invariant subspaces M of B to the spectrum
of L|M. In fact, an elementary computation shows that if λ ∈ C is such that
(I − λL)|M is invertible, then for all f ∈M

(I − λL)−1f =
zf − λcλ(f)

z − λ
for some constant cλ(f) ∈ C. If λ ∈ D, then by analyticity cλ(f) = f(λ). It
turns out that for many choices of spaces B and proper L-invariant subspaces
M, the functions f ∈ M have meromorphic ‘continuations’ f̃ in the exterior
disk, and cλ(f) = f̃(λ) if (I − λL)|M is invertible. If σ(L|M) omits an arc I in
the unit circle T, then f̃ is an ordinary analytic continuation of f across I and
this is well known. However, our results will cover many cases where σ(L|M)
may contain the whole unit circle. In some of those cases, we shall see that
the meromorphic continuations are ‘pseudocontinuations’ in the sense of H. S.
Shapiro [42]. Sometimes we will have to employ a continuation concept that is
even weaker then that of a pseudocontinuation. To make this all precise, we
proceed as follows:

Let B be a Banach space of analytic functions on D which satisfies the
following five properties:

B ↪→ Hol(D)(1.1)

1 Throughout this paper, a subspace will always be a closed linear manifold.
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MzB ⊂ B,Mzf = zf(1.2)

1 ∈ B(1.3)

LλB ⊂ B, ∀λ ∈ D, Lλf =
f − f(λ)
z − λ(1.4)

σ(Mz) = D−.(1.5)

Remark 1.1. In (1.1), the inclusion map fromB (with the norm topology)
to Hol(D) (with the topology of uniform convergence on compact sets) is both
injective and continuous.

Examples include the Hardy spaces, the weighted Bergman spaces, the
weighted Dirichlet spaces, and the Besov spaces (see below for the definitions
of these spaces). It follows from (1.1), (1.2), (1.4), and the closed graph theorem
that the operators Mz and Lλ are continuous on B. We will denote the collection
of L-invariant subspaces by Lat(L,B).

In this general setting, one can prove (see Section 2) that

σ(L) = D−,

σ(L|M) ⊂ D− ∀M ∈ Lat(L,B),

σap(L|M) ∩ D = σp(L|M) ∩ D =
{
a ∈ D :

1
1− az ∈M

}
.(1.6)

Moreover, the set in (1.6) is either discrete or all of D. In fact this set is all
of D if and only if M contains all of the polynomials. Under a mild regularity
condition on B, one can even prove that

σap(L|M) ∩ T = σ(L|M) ∩ T

and is the complement (in the unit circle) of the set of points ζ ∈ T such that
every f ∈M extends to be analytic in a neighborhood of 1/ζ. Furthermore since
∂σ(L|M) ⊂ σap(L|M), then one can argue that

either σ(L|M) ∩ D = σap(L|M) ∩ D and is discrete

or σ(L|M) = D−.
For the weighted Hardy and Bergman spaces, it will turn out that σ(L|M) =

σap(L|M) and when σ(L|M)∩ D is discrete, it is a Blaschke sequence. For other
spaces, such as the Besov spaces and weighted Dirichlet spaces, σ(L|M) can
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differ from σap(L|M). Moreover, even when σ(L|M)∩ D = σap(L|M)∩ D and is
discrete, it need not be a Blaschke sequence.

The main tool that will be used to determine σ(L|M) is this next simple
observation for which we will adhere to the following convention: If B∗ denotes
the dual of B, then for φ ∈ B∗ we will write the action of a linear functional on
B by f → 〈f, φ〉.

Proposition 1.2. If |λ| > 1 with 1/λ 6∈ σap(L|M) then ((I − λL)|M)−1

exists if and only if for every f ∈M, the quantity

cλ(f, φ) =
〈

zf

z − λ, φ
〉 / 〈 λ

z − λ, φ
〉

is independent of the choice of φ ∈M⊥ with 〈(z−λ)−1, φ〉 6= 0. In fact, if |λ| > 1
with 1/λ 6∈ σ(L|M), then cλ(f, φ) = cλ(f) and

((I − λL)|M)−1f =
zf − λcλ(f)

z − λ

for all f ∈M and φ ∈M⊥ with 〈(z − λ)−1, φ〉 6= 0.

Note that from (1.6) such φ’s exist. Also note that whenever |λ| > 1,
1/λ 6∈ σap(L|M), and φ ∈M⊥ with 〈(z − λ)−1, φ〉 6= 0, then the function

ξ → cξ(f, φ)

is meromorphic on the exterior disk (with possible poles at the points ξ, where
ξ−1 ∈ σap(L|M) ∩ D. Note that by (1.6) this set is discrete). One way to show
that cλ(f, φ) is independent of φ is to show that the finite non-tangential limits
of the function ξ → cξ(f, φ) (on the exterior disk) are equal to the finite non-
tangential limits of f (on the disk) on some set of positive Lebesgue measure
on the circle. 2 Then using Privalov’s uniqueness theorem for meromorphic
functions [32], p. 84 - 86, cλ(f, φ) would be independent of the choice of φ.
In this case, the two functions would be pseudocontinuations of each other, a
concept we will define below. We illustrate this idea with the following two
examples.

Example 1.3. For 1 < p < +∞, let B = Hp denote the Hardy space of
analytic functions f on D for which

sup
0<r<1

∫
|ζ|=1

|f(rζ)|p |dζ|
2π

< +∞.

2 Of course, one needs to show that for the particular Banach space in question, these
two non-tangential limits indeed exist since there is no a priori reason why they should.
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Conditions (1.1) through (1.5) are well known for Hp [21]. Furthermore, it is
known [21], Theorem 7.3, that the dual of Hp can be identified with Hq (where
q is the conjugate index to p) via the pairing

〈f, g〉 = lim
r→1−

∫
|ζ|=1

f(rζ) g(rζ)
|dζ|
2π

.

Moreover, it can be shown that for M ∈ Lat(L,Hp), M 6= Hp, and |λ| > 1, the
constant cλ(f, g) does not depend on g ∈ Hq with

g ∈M⊥ and
〈

1
z − λ , g

〉
6= 0.(1.7)

To prove this result, one uses [21], p. 39, to show that for any g ∈ Hq satisfying
(1.7), the meromorphic function

ξ →
〈

zf

z − ξ , g
〉 / 〈 ξ

z − ξ , g
〉
, ξ ∈ {|z| > 1} ∪ {∞}(1.8)

is in the Nevanlinna class and hence, by Fatou’s theorem, has finite non-tangential
limits [|dζ|]-a.e. on T. Moreover using [21], p. 39 (the “jump theorem”), and the
fact that f ∈M and g ∈M⊥, one proves that these limits are equal [|dζ|]-a.e. to
the non-tangential limits of f on T. By Privalov’s uniqueness theorem, cλ(f, g)
is independent of g. We remark that a similar result holds for both H1 and the
disk algebra.

Example 1.4. Let B = L2
a denote the Bergman space of analytic functions

f on D for which ∫
D
|f |2 dA

π
< +∞,

where dA is two-dimensional area measure. Again, one can verify properties
(1.1) through (1.5) [16], Chapter 2, Section 8. The dual of L2

a can be identified
with the Dirichlet space of analytic functions g on D with finite Dirichlet integral∫

D
|g′|2 dA

π

via the pairing

〈f, g〉 = lim
r→1−

∫
|ζ|=1

f(rζ) g(rζ)
|dζ|
2π

(see [31]). For M ∈ Lat(L,L2
a), M 6= L2

a, f ∈ M, and g in the Dirichlet space
satisfying (1.7), one shows (see [38] Theorem 2.2 and Section 6) that the mero-
morphic function defined by (1.8) is in the Nevanlinna class of the exterior disk.
However, unlike for the Hardy space, Bergman functions are not in the Nevan-
linna class of D and hence we are not guaranteed the existence of non-tangential
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(or even radial [29]) limits for f . However, S. Richter and C. Sundberg [38] over-
come this difficulty and show that in fact M is contained in the Nevanlinna class
of D and moreover the non-tangential limits of f are equal to the non-tangential
limits of the function (1.8) [|dζ|]-a.e. Again using Privalov’s uniqueness theorem,
cλ(f, g) is independent of g.

Thus we see in these two cases that whenever M ∈ Lat(L,B), M 6= B,
and f ∈ M, then cλ(f) = f(λ) when |λ| < 1 and the function λ → cλ(f) is a
Nevanlinna function on {|z| > 1}∪{∞} whose non-tangential limits equal those
of f [|dζ|]-a.e. on T. Furthermore, in these two cases

σ(L|M) ∩ D = σap(L|M) ∩ D = σp(L|M) ∩ D =
{
a ∈ D :

1
1− az ∈M

}
and moreover, this set must either be discrete or all of D. This type of “exten-
sion” of a meromorphic function across T as above is called a pseudocontinuation
(in the sense of H.S. Shapiro [42]) and will be the main technique used to show
that cλ(f, φ) is independent of φ. For the statement our main results we make
the following definitions.

Definition 1.5.
(1) Let D represent the open unit disk and De = C∞\D− represent the

extended exterior disk.
(2) Let M(D) and M(De) denote the set the meromorphic functions on D

and De respectively, and N(D) and N(De) denote the set of Nevanlinna
functions on D and De respectively (i.e., meromorphic functions which
can be represented as the quotient of two bounded analytic functions).

(3) For a set E ⊂ T with |E| > 0 (|E| represents the Lebesgue measure of E
on the unit circle), we say a functionG ∈M(De) is a pseudocontinuation
of g ∈M(D) across E if the non-tangential limits of G and g exist and
are equal [|dζ|]-a.e. on E.

Remark 1.6. By Privalov’s uniqueness theorem for meromorphic func-
tions [32], p. 84 - 86, whenever a pseudocontinuation (across E, |E| > 0) exists,
it is unique.

Example 1.7.
(1) If f is an inner function, then

f̃(z) =
1

f(1/z̄)
, De\{z : f(1/z̄) = 0}

is a pseudocontinuation of f across T. We also point out that if the zeros
of the inner function f accumulate everywhere on T, then f̃ , although
a pseudocontinuation, will not be an analytic continuation of f .
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(2) The function ez does not have a pseudocontinuation across any set E ⊂
T (even though it has an analytic continuation to C) since it has an
essential singularity at infinity.

We shall now state our results about the spectrum of L|M for the case
where the space B “is” a subspace of Lt(µ) for some 1 ≤ t < +∞ and µ a non-
trivial finite Borel measure supported in D−. These results will cover both of
the examples above as well as some spaces which do not contain the polynomials
as a dense subset 3 . Since we want to allow measures which may place mass on
T as well as measures that are carried by a discrete subset of D, the definition
of these subspaces is somewhat delicate. We proceed as follows:

Let B be a Banach space of analytic functions on D that satisfies properties
(1.1) through (1.5). Furthermore, let 1 ≤ t < +∞ and let µ be a finite Borel
measure whose support is contained in D− and suppose there is a linear isometry

U : B→ Lt(µ)

such that
U1 = 1 and U(Mz|B) = (Mz|Lt(µ))U.

Since B satisfies (1.1), it follows (see Section 4) that µ|T cannot have a singular
part, i.e.,

dµ|T = g|dζ|, g ∈ L1(T, |dζ|), g ≥ 0.
Furthermore, we will show (Proposition 4.2) that if f ∈ B, and

Sg = T\{ζ ∈ T : g(ζ) = 0},

then
f |D = (Uf)|D [µ]–a.e.

fr|Sg → (Uf)|Sg in measure [|dζ|] as r → 1−.4

Thus we may identify B with the range of U and we shall say that B is an
analytic subspace of Lt(µ).

Remark 1.8.
(1) If B is the Bergman space L2

a, then dµ = dA and U is the identity map
while if B is the Hardy space Hp, 1 < p < +∞, then dµ = |dζ| and
U is the isometric map f |D → f |T, where f |T are the non-tangential
boundary values of f ∈ Hp [21], p. 21.

(2) We caution the reader by pointing out that if the measure µ is carried
by a discrete subset of D, then for every f ∈ B there will be many
distinct analytic functions g ∈ Hol(D) such that f = g [µ]-a.e.

3 e.g., By using [30], the polynomials are not dense in L2(D, jφj2dA) \Hol(D), where φ
is an atomic inner function whose singular measure is a point mass at ζ = 1.

4 Here fr(ζ) = f(rζ) for 0 � r < 1 and ζ 2 T.
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Theorem 1.9. Let 1 ≤ t < +∞ and let µ be a non-trivial finite Borel
measure on D− such that the space B is an analytic subspace of Lt(µ). Let
M ∈ Lat(L,B) with M 6= (0). Then

(1) σ(L|M) = σap(L|M). More precisely,
(a) σ(L|M) ∩ D = σap(L|M) ∩ D = σp(L|M) ∩ D =
{a ∈ D : (1− az)−1 ∈M}.

(b) σ(L|M) ∩ T = σap(L|M) ∩ T and is the following set:

T\{1/ζ ∈ T : every f ∈M extends to be analytic in a neighborhood of ζ}.

(2) σ(L|M) = D− if and only if M contains all of the polynomials.
(3) If M does not contain all of the polynomials, then σ(L|M) ∩ D is a

Blaschke sequence. Furthermore, for each f ∈ M there exists a unique
f̃ ∈ N(De) such that

fr|T→ f̃ |T 5 in measure [|dζ|] as r → 1−.

Moreover, the function f̃ is given by

f̃(λ) =
∫

fh

z − λ dµ
/ ∫ h

z − λ dµ,

for all h ∈M⊥ which do not annihilate all of the polynomials.

Remark 1.10. It follows from part 3 of this theorem that if a function f
in such an L-invariant subspace M has non-tangential limits [|dζ|]-a.e. on a set
of E ⊂ T of positive measure, then f̃ is a pseudocontinuation of f across E.

For certain measures µ, we can show that such L-invariant subspaces M are
in fact contained in the Nevanlinna class of D and hence by Theorem 1.9 every
f ∈ M has a pseudo-continuation across all of T. Examples of such measures
are the following: Let ν be a finite measure carried by [0, 1), with the additional
property that ν{[r, 1)} > 0 for all 0 < r < 1. Let w ∈ L1+ε(dν|dζ|) for some
ε > 0 be such that |ψ| ≤ w [dν|dζ|]-a.e. for some non-zero bounded analytic
function ψ on D. Setting

dµ = w dν |dζ|,(1.9)

one can show that
B = Lta(µ) = Lt(µ) ∩Hol(D)

satisfies properties (1.1) through (1.5) 6. Note that such measures are carried
by D and, loosely speaking, are not far away from being radially symmetric.
For example, one checks that if 0 6= φ ∈ N(D) and α > 0 such that |φ|α ∈
L1+ε(dν|dζ|), then dµ = |φ|αdν|dζ| satisfies this hypothesis.

5 Here we mean the non-tangential limit values of the Nevanlinna function f̃ on T.
6 Use a modification of the proof of Lemma 2 in [9].
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Theorem 1.11. Let µ be as above and 1 ≤ t < +∞. If M ∈ Lat(L,Lta(µ))
does not contain all of the polynomials, then M ⊂ N(D) and every f ∈M has a
pseudocontinuation across T to a function in N(De).

Remark 1.12. For a function f ∈ Lta(µ), we let [f ]L denote the smallest
L-invariant subspace which contains f . We say that f is a cyclic vector for L
if [f ]L = Lta(µ). The above theorem says that every non-cyclic vector in Lta(µ)
has a pseudocontinuation to a Nevanlinna function on De. For certain analytic
subspaces of Lt(µ) (for example the Hardy spaces Hp) the existence of a Nevan-
linna pseudocontinuation is both necessary and sufficient for non-cyclicity. For
other spaces such as Lta((1 − |z|)αdA), it is not hard to see using duality (see
Section 5) that certain inner functions (which always have Nevanlinna pseudo-
continuations) are indeed cyclic vectors for L.

It is well known (see Section 5) that there is a natural correspondence be-
tween the L-invariant subspaces of B and the Mz-invariant subspaces of a cer-
tain “dual” space D via the “H2-duality” [33]. For example, if B is the weighted
Bergman space Lqa((1−|z|)αdA), then the dual space D is the Besov space Xα,p

(see Section 5 for a definition), and vice versa. We can apply our results about
the spectrum of L|M to obtain results about the index of Mz-invariant subspaces
N of D. For N ∈ Lat(Mz,D) the index of N is defined by

ind(N) = dim(N/zN).

For example, if f is a non-zero element of D, then [f ], the smallest Mz-invariant
subspace of D which contains f , has index equal to one. If D is the Hardy
space H2 or the classical Dirichlet space 7 and N ∈ Lat(Mz,D), N 6= (0), then
ind(N) = 1 and in fact

N = [N ∩ (zN)⊥].(1.10)

See [12] [36]. It is known that σ(L|M) ∩ D is discrete if and only if the corre-
sponding Mz-invariant subspace N has index equal to one 8. Using our results
about the discreteness of the spectrum of L-invariant subspaces in Section 4,
we will prove in Section 5 that for a large class of weighted Dirichlet spaces and
Besov spaces (which are the “duals” of these spaces) every non-zeroMz-invariant
subspace has index equal to one.

In the next part of the paper, we consider spaces of “smooth” functions,
mainly the Besov classes Xα,p where the spectral and pseudocontinuation situ-
ation is strikingly different (even though these functions are in the Nevanlinna
class). This is indeed to be expected since by the “H2-duality”, these L-invariant
subspaces correspond to Mz-invariant subspaces of the weighted Bergman spaces
which are known to be very complicated.

7 In both of these examples, D is a Hilbert space.
8 Here we must assume that the polynomials are dense in B.
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Remark 1.13. We are grateful to Carl Sundberg, who showed us an ar-
gument which yields the following theorem. Our original version was somewhat
weaker.

Theorem 1.14. Given α > −1 and 1 < p < +∞, there is a function
f ∈ Xα,p such that [f ]L 6= Xα,p and f has no pseudocontinuation across any set
of positive measure in T.

In fact, the same is true for any Banach space of analytic functionsB which
satisfy conditions (1.1) through (1.5) along with the one additional condition
that B ↪→ Xα,p for some α and p (see Section 5 for details). Furthermore (see
Proposition 6.1), antipodal to the analytic subspaces of Lt(µ), there are examples
of M ∈ Lat(L,Xα,p) for which

σ(L|M) = D−, σap(L|T) = T, and σp(L|M) = ∅.

For 1 < p < +∞, the Lp-Dirichlet spaces Dp are defined to consist of all
f ∈ Hol(D) such that f ′ ∈ Lp(dA). Despite the fact that Dp = X0,p and the
above results, we will show in Section 7 that for certain L-invariant subspaces
M of Dp, there is a connection between pseudocontinuations and the existence
of ((I − λL)|M)−1. Recall from Proposition 1.2 that σ(L|M) ∩ D) is discrete if
and only if the meromorphic function

F (λ) = cλ(f, g)

if independent of g. We will show in Section 7 that if F has finite non-tangential
limits on a set E ⊂ T of positive measure, then F is a pseudocontinuation
of f across E. This result will yield several results about the discreteness of
σ(L|M) ∩ D for certain L-invariant subspaces of the Dirichlet spaces.

By the above, the discreteness σ(L|M)∩ D is connected to the index of the
corresponding Mz-invariant subspace N of the “dual” space which in this case
is the unweighted Bergman space Lqa. For the classical Bergman space L2

a, the
index of an Mz-invariant subspace N can be any number in N ∪ {∞}, [11] [22]
[26] [27] nevertheless, we still have (1.10) 9 [7]. For f , g ∈ Lqa, it may be the case
that ind([f, g]) = 2 but if these functions are sufficiently “regular” near portions
of T, then in fact ind([f, g]) = 1 [6] [46] [48]. Using our spectral results about
certain L-invariant subspaces of the Lp Dirichlet spaces and the “H2-duality”,
we can prove the following result about Lat(Mz, L

q
a).

Corollary 1.15. Let 1 < q < +∞ and G, H ∈ Lqa such that G/H has a
finite non-tangential limit on a set E ⊂ T, |E| > 0, then ind[G,H] = 1.

9 Here [S] denotes the smallest Mz-invariant subspace which contains the set S.
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2. General Banach spaces

In this section, we list certain elementary observations which follow from our
axioms (1.1) through (1.5). Thus throughout this section, B will be a Banach
space of analytic functions on D which satisfies properties (1.1) through (1.5)
and M will be a non-zero invariant subspace of L. The conditions (1.3) and (1.5)
imply that (z − λ)−1 ∈ B for all |λ| > 1 and by direct calculation

L

(
1

z − λ

)
=

1
λ

1
z − λ and L1 = 0.(2.1)

Thus D ⊂ σp(L), and in fact one checks that each eigenspace is one-dimensional.
Also notice by (1.1), (1.2), (1.4), and the closed graph theorem, that the operator

Rλf =
zf − λf(λ)
z − λ

is continuous on B for all λ ∈ D and a routine computation shows that
(I − λL)−1 = Rλ. Thus σ(L) = D− and it follows that

σ(L|M) ⊂ D− ∀M ∈ Lat(L,B).

Proposition 2.1. For M ∈ Lat(L,B),

σap(L|M) ∩ D = σp(L|M) ∩ D =
{
a ∈ D :

1
1− az ∈M

}
.

Proof. From (2.1) we clearly have

σp(L|M) ∩ D =
{
a ∈ D :

1
1− az ∈M

}
.

So we just need to verify that σap(L|M)∩ D = σp(L|M)∩ D. Clearly σp(L|M) is
contained in σap(L|M). For the other direction, suppose that λ ∈ σap(L|M)∩ D.
Then, by definition, there is a sequence {fn} ⊂M with

‖fn‖ = 1 and ‖(L− λI)fn‖ → 0.

Since B ↪→ Hol(D), then {fn(0)} is a bounded sequence of complex numbers and
so there is a convergent subsequence (which we also call {fn(0)}) converging to
some c ∈ C. Since ∥∥∥∥fn − fn(0)

z
− λfn

∥∥∥∥→ 0,

and Mz is continuous on B, then

‖(1− λz)fn − c‖ → 0.
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Since σ(Mz) = D−, we conclude

fn →
c

1− λz

and since ‖fn‖ = 1, then c 6= 0. Thus by (2.1), λ ∈ σp(L|M). �

Proposition 2.2. Let P = spanB{zn : n ∈ N ∪ {0}}. Then the following
is true:

(1) P = spanB{(1− λz)−1 : λ ∈ D}.
(2) If A ⊂ D has an accumulation point in D, then

P = spanB{(1− λz)−1 : λ ∈ A}.

Proof. To prove (1), let

S = spanB

{
1

1− λz : λ ∈ D
}
.

To show S ⊂ P we let λ ∈ D and for N ∈ N we consider the polynomial

pN (z) =
N−1∑
n=0

λnzn.

Then ∥∥∥∥pN − 1
1− λz

∥∥∥∥ =
∥∥∥∥ λNzN1− λz

∥∥∥∥ ≤ |λ|N ‖MN
z ‖

∥∥∥∥ 1
1− λz

∥∥∥∥ .(2.2)

Since the spectral radius of Mz|B is equal to one (property (1.5)), then

lim
N→∞

‖MN
z ‖1/N = 1

and so (2.2) goes to zero as N →∞ which shows that S ⊂ P.
To show that P ⊂ S, we use induction. Note that (1 − λz)−1 ∈ S for all

λ ∈ D and so 1 ∈ S. If zk ∈ S∀0 ≤ k ≤ n for some n ∈ N ∪ {0}, then for all
λ ∈ D, λ 6= 0,

zn+1

1− λz =
n∑
k=0

− 1
λk+1 z

n−k +
1

λn+1

1
1− λz ∈ S.

Furthermore, ∥∥∥∥ zn+1

1− λz − z
n+1
∥∥∥∥ ≤ |λ| ‖zn+2‖ ‖(I − λMz)−1‖.(2.3)
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But since λ→ (I−λMz)−1 is an (operator valued) analytic function on D, then
the right-hand side of (2.3) goes to zero as |λ| → 0. Thus zn+1 ∈ S and so P ⊂ S.

(2) Let φ ∈ B∗ with 〈
1

1− λz , φ
〉

= 0 ∀λ ∈ A.

Then the function

λ→
〈

1
1− λz , φ

〉
is analytic on D and (by hypothesis) has zeros which accumulate at some point
in D. Hence it must vanish identically on D. Thus φ annihilates S = P. An
application of the Hahn-Banach theorem completes the proof. �

An immediate consequence of Proposition 2.1 and Proposition 2.2 is the
following corollary.

Corollary 2.3. For M ∈ Lat(L,B),
(1) σap(L|M) ∩ D = σp(L|M) ∩ D is either discrete or all of D.
(2) σap(L|M) = D− if and only if M contains all of the polynomials.

Also notice that since ∂σ(L|M) ⊂ σap(L|M), an elementary argument yields
the following dichotomy:

Corollary 2.4. For M ∈ Lat(L,B), either

σ(L|M) ∩ D = σap(L|M) ∩ D = σp(L|M) ∩ D

and is discrete or σ(L|M) = D−.

In Section 6 we will show that for the Besov and Dirichlet spaces, it can be
the case that σ(L|M) = D− but σap(L|M) = T, and σp(L|M)∩ D = ∅. We now
focus our attention on the part of the spectrum that is contained in T. Before
doing so, we make the following remarks.

Remark 2.5.
(1) To compute ((I − λL)|M)−1, λ ∈ C (at least formally) we have

((I − λL)|M)−1f =
zf − λcλ(f)

z − λ ,(2.4)

where cλ(f) is a constant which depends on f ∈M.
(2) When ((I − λL)|M)−1 exists, we note from (1.1)

f → cλ(f) = (((I − λL)|M)−1f)(0)

is a continuous linear functional onM. Moreover the function λ→ cλ(f)
is analytic for 1/λ in the resolvent of L|M.
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(3) Since σ(L|M) ⊂ D−, then for λ ∈ D, ((I−λL)|M)−1 exists and cλ(f) =
f(λ) for all f ∈M. Moreover, a computation shows that

((I − λL)|M)−1Lf =
f − f(λ)
z − λ .(2.5)

This observation will be used many times throughout this paper.

Proposition 2.6. Let B satisfy (1.1) through (1.5) along with the following
additional condition: If f ∈ B is analytic in an open neighborhood of a point
ζ ∈ T, then

zf − wf(w)
z − w → zf − ζf(ζ)

z − ζ in the norm of B as w → ζ (w ∈ D).(2.6)

Then σap(L|M) ∩ T = σ(L|M) ∩ T and this equals

T\{1/ζ ∈ T : every f ∈M extends to be analytic in a neighborhood of ζ}.

Proof. Let

S = T\{1/ζ ∈ T : every f ∈M extends to be analytic in a neighborhood of ζ}.

Let ζ−1 ∈ T with ζ−1 6∈ σap(L|M). Since ∂σ(L|M) ⊂ σap(L|M), then
ζ−1 6∈ σ(L|M). Thus by the remark remark, for each f ∈M,

w → (((I − wL)|M)−1f)(0)

is an analytic function in a neighborhood of ζ. Also by the above remark,

(((I − wL)|M)−1f)(0) = f(w), |w| < 1

and so f has an analytic continuation to a neighborhood of ζ. Hence

σap(L|M) ∩ T ⊃ S.

Now suppose that ζ−1 ∈ T such that every f ∈ M extends to be analytic
near ζ. By the additional condition (2.6) on B the function

g =
zf − ζf(ζ)
z − ζ

is the norm limit of

gn =
zf − wnf(wn)

z −wn
∈M,

for some wn ∈ D and wn → ζ and so g ∈M. At least formally

((I − ζL)|M)−1f =
zf − ζf(ζ)
z − ζ .(2.7)



Pseudocontinuations and the Backward Shift 237

Suppose that {fn} is a sequence in M with

fn → 0 and
zfn − ζfn(ζ)

z − ζ → h in norm.(2.8)

Then by (1.1), equation (2.8) would also hold pointwise in D and so fn(ζ)→ c.
Thus

h(z) =
−cζ
z − ζ

which can only hold when c = 0 or else h would not be analytic near ζ which
would contradict our choice of ζ. Thus by the closed graph theorem, the right-
hand-side of (2.7) is a continuous operator on M and so ζ−1 6∈ σ(L|M). �

Remark 2.7. The condition (2.6) seems somewhat mysterious. However,
for the main spaces we will be considering, mainly the analytic subspaces of
Lt(µ) and Xα,p, one can easily check, using the dominated convergence theorem
and Cauchy’s formula, that it indeed holds.

This next result is the primary tool of the paper and will ultimately lead us
to the link between pseudocontinuations and the spectrum of L|M.

Proposition 2.8. If |λ| > 1 with 1/λ 6∈ σap(L|M) then ((I − λL)|M)−1

exists if and only if for every f ∈M, the quantity

cλ(f, φ) =
〈

zf

z − λ , φ
〉 / 〈 λ

z − λ , φ

〉
is independent of the choice of φ ∈M⊥ with 〈(z−λ)−1, φ〉 6= 0. In fact, if |λ| > 1
with 1/λ 6∈ σ(L|M), then cλ(f, φ) = cλ(f) and

((I − λL)|M)−1f =
zf − λcλ(f)

z − λ

for all f ∈M and φ ∈M⊥ with 〈(z − λ)−1, φ〉 6= 0.

Proof. If |λ| > 1 and ((I − λL)|M)−1 exists. Then by (2.4) for each f ∈M
there exists a constant cλ(f) ∈ C such that

((I − λL)|M)−1f =
zf − λcλ(f)

z − λ .

Also note that by (1.2), (1.3), and (1.5), the functions

zf

z − λ and
λcλ(f)
z − λ ∈ B.(2.9)
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Now let φ ∈M⊥ with 〈(z−λ)−1, φ〉 6= 0. Notice that (z−λ)−1 6∈M and so such
φ’s exist. We have

0 = 〈((I − λL)|M)−1f, φ〉 =
〈

zf

z − λ , φ
〉
− cλ(f)

〈
λ

z − λ , φ

〉
and so

cλ(f) =
〈

zf

z − λ , φ
〉
/

〈
λ

z − λ , φ
〉

= cλ(f, φ)

is independent of φ.
For the other direction, let |λ| > 1 with 1/λ 6∈ σap(L|M). Thus, as above,

we may choose φ ∈M⊥ such that 〈(z − λ)−1, φ〉 6= 0. For f ∈ B, define

Rλf =
zf − λcλ(f, φ)

z − λ

and note from (2.9) that RλB ⊂ B. Furthermore, an application of the closed
graph theorem shows that Rλ is continuous. Since 1/λ 6∈ σap(L|M), at least
formally, Rλ is an inverse of (I − λL)|M. What needs to be shown is that
RλM ⊂ M. To this end, let ψ ∈ M⊥ and notice that since 〈(z − λ)−1, φ〉 6= 0,
then there is a sequence of complex numbers an → 0 such that

(ψ − anφ)|M = 0 and
〈

1
z − λ , ψ−anφ

〉
6= 0.

Then

〈Rλf , ψ−anφ〉 =
〈

zf

z − λ , ψ−anφ
〉
− cλ(f, φ)

〈
λ

z − λ , ψ−anφ
〉

=
〈

zf

z − λ , ψ−anφ
〉
− cλ(f , ψ−anφ)

〈
λ

z − λ , ψ−anφ
〉

= 0

since cλ(f, φ) is independent of φ. We now let an → 0 and find that 〈Rλf, ψ〉 = 0
and so RλM ⊂M. �

3. Cauchy transforms

Cauchy transforms will play a crucial role in our results. In this section
we state some basic properties of Cauchy transforms of measures and prove a
generalization of the well-known “jump theorem”. In the next section, we will
apply our Cauchy transform results to discuss the boundary values of functions
in analytic subspaces of Lt(µ). We refer the reader to [16], Chapter 2, Section 3
and [25], Chapter 3 for further information about the Cauchy transform. In this
section, we will adhere to the following notation:
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Notation.
(1) Mc is the set of finite, complex, compactly supported Borel measures

on C.
(2) M(K) = {µ ∈Mc : supp(µ) ⊂ K}
(3) M+(K) = {µ ∈M(K) : µ ≥ 0}

For λ ∈ C and µ ∈Mc, define the Newtonian potential

Uµ(λ) =
∫
d|µ|(z)
|z − λ| .

By Fubini’s theorem, Uµ ∈ L1
loc(dA) and so

Uµ(λ) < +∞ [dA]–a.e.(3.1)

Actually, the set where Uµ is infinite is much smaller than a set of area measure
zero. It has Newtonian capacity zero, see [25], Chapter 3. Using Fubini’s theorem
once again, we get that the set

Eµ = {r ∈ (0,∞) : Uµ(rζ) ∈ L1(T, |dζ|)}(3.2)

has full measure in R+. Moreover, since∫
|w|=r

|dw|
|w − rζ| = +∞ ∀ζ ∈ T,

we see that

r ∈ Eµ ⇒ |µ|(rT) = 0.(3.3)

Equation (3.1) allows us (at least [dA]-a.e.) to define the Cauchy transform
of µ by

Cµ(λ) =
∫
dµ(z)
z − λ .

The Cauchy transform of a measure is clearly analytic off the support of µ. In
fact, if the support of µ is contained in D−, then Cµ ∈ Hp(De) for any 0 < p < 1
(see Lemma 3.2 below) and we shall use C+

µ (ζ) to denote the non-tangential limit
values of this function which will exist for [|dζ|]-a.e. ζ ∈ T. We begin with a
known result, which is a version of Fatou’s classical theorem and is also known
as the “jump theorem” (see [21], p. 39).

Proposition 3.1. Let h ∈ L1(T, |dζ|) and let σ ∈ M(T) with dσ ⊥ |dζ|.
Set dν = h|dζ| + dσ. Then for each 0 < p < 1, Cν ∈ Hp(D) (respectively
Hp(De)) and

lim
r→1−

Cν(rζ) = C+
ν (ζ) + 2πζh(ζ) [|dζ|]-a.e.
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Recall that the “jump theorem” was used in the Introduction to discuss
the spectral properties of the backward shift on the Hardy spaces Hp(D), 1 <
p < +∞. To discuss the backward shift on the analytic subspaces of Lt(µ) for
measures that are not always supported in the circle, we will need a more general
version of the jump theorem. To this end, we proceed with the following two
lemmas.

Lemma 3.2. Let µ ∈ M(D−). Then for each 0 < p < 1, there is a
constant cp > 0 with(∫

|λ|=r
|Cµ(λ)|p |dλ|

2πr

)1/p

≤ cp
r
‖µ‖ ∀r ∈ Eµ.

Proof. First note that by (3.3) r ∈ Eµ implies that |µ|(rT) = 0. Secondly,
since µ can be written as a linear combination of positive measures, we may
assume that µ ≥ 0.

Let r ∈ Eµ and define

kr(λ) =
∫
|z|>r

dµ

z − λ.

Note that kr is defined for all |λ| < r and by (3.2) kr(λ) is defined for [|dζ|]-a.e.
|λ| = r.

If µ{|z| > r} = 0, then k ≡ 0 and there is nothing to prove. On the other
hand if µ{|z| > r} > 0, we let

Gr(λ) = 2λkr(λ) + µ{|z| > r}, |λ| < r.

A computation reveals that

<Gr(λ) =
∫
|z|>r

|z|2 − |λ|2
|z − λ|2 dµ.

But since |z| > |λ|, then the above integrand is positive and so <Gr(λ) > 0 for
all |λ| < r. Moreover, Gr(0) = µ{|z| > r}. Thus, if

hr(z) =
r + z

r − zµ{|z| > r}, |z| < r,

then <hr(z) > 0 and hr(0) = µ{|z| > r} which shows thatGr(λ) = hr(h−1
r (Gr(λ))

is subordinate to hr. By Littlewood’s subordination theorem [21], p. 10,

‖Gr‖Hp(rD) ≤ ‖hr‖Hp(rD).(3.4)
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Note here that the norm on Hp(rD) is given by(∫
|z|=r

|f(z)|p |dz|
2πr

)1/p

.

Also notice that ∥∥∥∥r + z

r − z

∥∥∥∥
Hp(rD)

=
∥∥∥∥1 + z

1− z

∥∥∥∥
Hp(D)

and so

‖Gr‖Hp(rD) ≤ µ{|z| > r}
∥∥∥∥1 + z

1− z

∥∥∥∥
Hp(D)

≤ cp‖µ‖.(3.5)

If s < 1,

kr(srζ) =
∫
|z|>r

(
z − rζ
z − srζ

)
1

z − rζ dµ(z).

A simple geometric exercise shows that

|z − rζ|
|z − srζ| ≤ 2, |z| > r, r, s ∈ [0, 1), ζ ∈ T

and so using the fact that (z − rζ)−1 dµ is a finite measure for [|dζ|]-a.e. ζ ∈ T
(since r ∈ Eµ) along with the dominated convergence theorem shows that

kr(srζ)→ kr(rζ)[|dζ|]–a.e. as s→ 1−.(3.6)

By Fatou’s Theorem∫
T

∣∣∣∣∣
∫
|z|>r

1
z − rζ dµ

∣∣∣∣∣
p
|dζ|
2π
≤ lim inf

s→1

∫
T
|kr(srζ)|p

|dζ|
2π

= ‖kr‖p
Hp(rD)

.

By (3.5),

‖λkr(λ)‖Hp(rD) ≤
1
2
‖Gr − µ{|z| > r}‖Hp(rD) ≤ cp‖µ‖.

Thus
‖kr‖Hp(rD) ≤

1
r
cp‖µ‖.

In a very similar way ∥∥∥∥∥
∫
|z|<r

dµ

z − λ

∥∥∥∥∥
Hp(|λ|>r)

≤ 1
r
cp‖µ‖,

and thus the proof is complete. �
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Lemma 3.3. Let µ ∈M(D−) with |µ|(T) = 0. Then for all 0 < p < 1,∫
|ζ|=1

∣∣∣∣Cµ(rζ)− Cµ
(

1
r
ζ

)∣∣∣∣p |dζ| → 0, as r → 1−, r ∈ Eµ.

Proof. Let ε > 0 be given and choose δ > 0 with |µ|{1− δ ≤ |z| < 1} < ε.
Then we can write µ as

µ = µ
∣∣
{1−δ≤|z|<1} + µ

∣∣
{|z|<1−δ} = µ1 + µ2.

For 0 < p < 1 and r ∈ Eµ ∩ (0, 1), we have∫
|ζ|=1

∣∣∣∣Cµ(rζ)−Cµ
(

1
r
ζ

)∣∣∣∣p |dζ| ≤ ∫
|ζ|=1

∣∣∣∣Cµ1(rζ)− Cµ1

(
1
r
ζ

)∣∣∣∣p |dζ|
+
∫
|ζ|=1

∣∣∣∣Cµ2(rζ)−Cµ2

(
1
r
ζ

)∣∣∣∣p |dζ|.
Since Cµ2 is continuous near T, then the second integral above converges to zero
as r → 1−. By Lemma 3.2, the first integral is bounded by cpεp. �

For µ ∈M(D−), write µ = µ|D+µ|T and use the basic fact that convergence
in Lp(T, |dζ|) implies convergence in measure along with Proposition 3.1 and
Lemma 3.3, to get the following generalization of the “jump theorem”.

Corollary 3.4. Let µ ∈M(D−). Then

Cµ(rζ)→ C+
µ (ζ) + 2πζ

dµ|T
|dζ| (ζ) in measure [|dζ|] as r → 1−, r ∈ Eµ.

We would like to mention at this point that instead of Lemma 3.2 and
Lemma 3.3 we also could have deduced Corollary 3.4 from the weak-type estimate

∣∣ {ζ ∈ T : |Cµ(rζ)| > λ}
∣∣≤ C

r

‖µ‖
λ
, r ∈ Eµ.

To prove this estimate, one can proceed as follows: For fixed r ∈ Eµ, one writes
µ = µ1 + µ2, where µ1({|z| > r}) = 0 and µ2({|z| < r}) = 0 (note that
|µ|(rT) = 0 by (3.3) ). Then one can apply the standard weak-type estimates
for Cauchy transforms of measures [40], Theorem 6.2.2, to the sweeps of µ1 and
µ2 to rT. We omit the details.

4. Analytic subspaces of Lt(µ)

In this section, we will first define the analytic subspaces of Lt(µ) and then
prove our main theorem about the spectral properties of Lat(L,B).
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4.1. Definition and basic properties. Let B be a Banach space of ana-
lytic functions on D which satisfies properties (1.1) through (1.5), 1 ≤ t < +∞,
and µ ∈Mc, µ 6= 0. Furthermore, suppose there is a linear isometry

U : B→ Lt(µ)

such that

U1 = 1 and U(Mz|B) = (Mz|Lt(µ))U.(4.1)

For now, we will denote the range of U by E. As mentioned in Section 1, we
shall later identify B and E. It is clear that E is Mz-invariant and since 1 ∈ E, it
follows that P t(µ) ⊂ E, where P t(µ) is the closure of the analytic polynomials
in Lt(µ). Furthermore, since σ(Mz|B) = D−, one argues that the support of µ
is contained in D−.

Proposition 4.1. With µ as above, dµ|T� |dζ|.

Proof. Suppose to the contrary. Then dµ|T = g|dζ| + dσ for some non-
zero σ ⊥ |dζ|. By [24], p. 126, problem 2, there is a sequence of analytic
polynomials {pn} which converge in Lt(µ) to a non-zero function h ∈ P t(µ) ⊂ E
with h|D = 0 and h|T = 0 |dζ|-a.e. Letting [h] denote the smallest Mz-invariant
subspace of E which contains h we see that since |h|tdµ = |h|tdσ ⊥ |dζ| then
P t(|h|t dµ) = Lt(|h|t dµ) and so

0 6∈ σ(Mz|[h]).

Since U(Mz|B) = (Mz|E)U , then

(0) 6= M = U−1[h] ∈ Lat(Mz,B).

By (1.1), zM 6= M and so 0 ∈ σ(Mz |M) which is a contradiction. �

Proposition 4.2. Let B, E, and µ be as above. Set

g =
dµ|T
|dζ| and Sg = T\{ζ ∈ T : g(ζ) = 0}.

For each f ∈ B and 0 < r < 1, write fr(z) = f(rz), z ∈ D−. Then for every
f ∈ B we have

(1) (Uf)(z) = f(z) for [µ]-a.e. z ∈ D.
(2) fr|Sg → (Uf)|Sg in measure [|dζ|] as r → 1−.

Before we proceed to the proof, we record the following elementary fact
which we will use several times throughout this section.
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Lemma 4.3. Let fn, gn, and hn (n ∈ N) be [|dζ|]-measurable functions on
T with hn = fngn a.e. , hn → h and gn → g in measure, g 6= 0 on some set A
of positive measure. Then fn|A→ h/g|A in measure.

Proof of Proposition 4.2. Define an operator LE on E by

LE = ULU−1

and note that for f ∈ B

(Mz|E)ULf = U(Mz|B)Lf = Uf − f(0)U1 = Uf − f(0)(4.2)

and hence

(LEUf)(z) =
(Uf)(z)− f(0)

z
, [µ]–a.e. z 6= 0.

Furthermore, one proves by induction that for n ∈ N

LnE(Uf))(z) =
1
zn

(
(Uf)(z)−

n−1∑
k=0

f (k)(0)
k!

zk

)
[µ]–a.e., z 6= 0.

To prove (1) we fix f ∈ B. For 0 < R < 1 choose ε > 0 so that R(1 + ε) < 1
and let N ∈ N such that ‖Ln

E
‖ ≤ (1 + ε)n for all n ≥ N . This can indeed be

done since the spectral radius of LE is one. Then

∫
RD\{0}

∣∣∣∣∣(Uf)(z)−
n−1∑
k=0

f (k)(0)
k!

zk

∣∣∣∣∣
t

dµ

≤ Rnt
∫
RD\{0}

∣∣∣∣∣ 1
zn

(
(Uf)(z)−

n−1∑
k=0

f (k)(0)
k!

zk

)∣∣∣∣∣
t

dµ

≤ Rnt‖LnEUf‖t

≤ Rnt(1 + ε)nt‖Uf‖t

which goes to zero as n → ∞. Hence (Uf)(z) = f(z) for [µ]-a.e. |z| < R
(z 6= 0), hence for [µ]-a.e. |z| < 1 (z 6= 0). Furthermore, if µ{0} > 0, then by
(4.2) (Uf)(0) = f(0) and hence we have shown (1).

To prove (2), let s be the conjugate index to t, so E⊥ ⊂ Ls(µ). Fix h ∈ E⊥
and write (using the notation (3.2))

E = E(Uf)hdµ ∩Ehdµ ∩Edµ
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and notice this set has full measure in [0, 1]. We note that for every λ ∈ D,
|λ| ∈ E, we have

((I − λLE)−1LEUf)(z) =
(Uf)(z)− f(λ)

z − λ , [µ]–a.e. z ∈ D−.

Indeed for f ∈ B

(Mz−λ|E)(I − λLE)−1LEUf = U(Mz−λ|B)(I − λL)−1Lf

= U(f − f(λ)) by (2.5)
= Uf − f(λ) since U1 = 1.

Hence since |λ| ∈ E, then µ(|λ|T) = 0 and so

((I − λLE)−1LEUf)(z) =
(Uf)(z)− f(λ)

z − λ , [µ]–a.e. z ∈ D−.

From this, we conclude that∫
(Uf)(z)− f(rζ)

z − rζ h(z) dµ(z) = 0, for all r ∈ E, ζ ∈ T, and h ∈ E⊥.

This implies

Cµ((Uf)h)(rζ) = f(rζ)Cµ(h)(rζ), for all r ∈ E and [|dζ|]-a.e. ζ ∈ T.(4.3)

Here we have used Cµ(F )(w) to denote the Cauchy transform

Cµ(F )(w) =
∫

F (z)
z − w dµ(z), F ∈ L1(µ).

Next we note that by (1.5) for f ∈ B and |λ| > 1, f/(z − λ) ∈ B and so
k = U(f/(z−λ)) ∈ E. By (4.1) (z−λ)k = Uf and so k = (Uf)/(z−λ) belongs
to E. Thus (applying the above first with a general f and then with f = 1 ∈ B
by (1.3))

Cµ((Uf)h)(λ) = Cµ(h)(λ) = 0 ∀|λ| > 1.

Hence it follows from Corollary 3.4 that

Cµ(h)(rζ)→ 2πζh(ζ)g(ζ),
and
Cµ((Uf)h)(rζ)→ 2πζh(ζ)g(ζ)(Uf)(ζ) in measure [|dζ|] as r → 1−, r ∈ E.

Thus by (4.3) and Lemma 4.3, we see that on the set

Shg = Sg\{ζ ∈ T : h(ζ) = 0}
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fr(ζ) converges in measure [|dζ|] to (Uf)(ζ) as r → 1−, r ∈ E. But f is
continuous on D and so it is an easy exercise to show that

fr|Shg → (Uf)|Shg in measure [|dζ|] as r→ 1−.

We shall conclude the proof by showing that there is an h ∈ E⊥ such that
Sg\Shg has Lebesgue measure zero. Let

C = {h ∈ E⊥ : ‖h‖Ls(µ) ≤ 1}

and notice that C is a closed, convex, and bounded subset of Ls(µ). By a result
of Chaumat [16], p. 246, there is an h0 ∈ C such that

|h| dµ� |h0| dµ ∀h ∈ C.(4.4)

We claim that Sg\Sh0g has Lebesgue measure zero. Indeed, suppose that
Sg\Sh0g had positive Lebesgue measure. Then since dµ|T = g|dζ|, then
µ(Sg\Sh0g) > 0 and there would be a compact subset F ⊂ Sg\Sh0g such that
0 6= χF 6= 1 in Lt(µ|T). But then from (4.4) we get h|F = 0 [µ]-a.e. for each
h ∈ C and so h|F = 0 [µ]-a.e. for each h ∈ E⊥. This implies χF ∈ E. Now argue
as in Proposition 4.1 to derive a contradiction. �

Remark 4.4.
(1) As in the proof above, one notes that for λ ∈ D

((I − λLE)−1LEUf)(z) =
(Uf)(z)− f(λ)

z − λ , [µ]-a.e. z ∈ D−, z 6= λ.

If µ{λ} > 0, then one verifies that

((I − λLE)−1LEUf)(λ) = f ′(λ).

We will not have to use this last observation in our analysis below be-
cause, as was done in the above proof, we will always choose λ ∈ D so
that |λ| ∈ Edµ.

(2) As we mentioned in Section 1, we shall now suppress the isometry U in
our notation and identify the spaces B and E and the operators L and
LE and call B an analytic subspace of Lt(µ).

(3) We note that if φ ∈ H∞(D) and f ∈ B, then it follows easily from the
dominated convergence theorem, Fatou’s theorem, and the fact that
dµ|T� |dζ|, that

φrf → φf in B.
Hence any Mz-invariant subspace of B is invariant under multiplication
by allH∞(D) functions and in particularH∞(D) ⊂ P t(µ)∩L∞(µ) ⊂ B.
These observations also follow from a part of a special case of Thomson’s
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theorem [45], which implies that under our hypothesis, for any non-
zero f ∈ B, H∞(D) is isometrically and isomorphically and weak-*
homeomorphic to P t(|f |tdµ) ∩ L∞(|f |tdµ).

(4) We also mention that part 2 of Proposition 4.2 implies (in certain set-
tings) a result of Olin and Yang [34] [49] 10.

4.2. L-invariant subspaces in analytic subspaces. In this section, we
shall combine the results of the previous two sections and prove our main theo-
rems about L-invariant subspaces of analytic subspaces of Lt(µ).

Let B be an analytic subspace of Lt(µ) of the type considered in the previous
section. For f ∈ B, we let [f ] denote the smallest Mz-invariant subspace of B
that contains f , i.e., [f ] is the Lt(µ)-closure of H∞(D)f . Notice also that if
h ∈ Ls(µ), then Cµ(fh) ≡ 0 on De if and only if h ∈ [f ]⊥.

Lemma 4.5. Let M ∈ Lat(L,B). If f0 ∈ B with Lf0 ∈M, and [f0] 6⊂M,
then for each f ∈ M, there exists a unique meromorphic function gf ∈ N(De)
such that

(f/f0)r → gf in measure [|dζ|] on T as r → 1−.
Furthermore, the identity∫

fh

z − λ dµ = gf (λ)
∫

f0h

z − λ dµ(4.5)

holds for all λ ∈ De and h ∈M⊥.

Proof. Let h0 ∈ M⊥\[f0]⊥ ⊂ Ls(µ), where s is a conjugate index to t.
Then Cµ(f0h0) is not identically zero in De and so by Lemma 3.2, for f ∈ M,
the function

gf (λ) =
Cµ(fh0)(λ)
Cµ(f0h0)(λ)

defines a meromorphic function in N(De) (since it is the quotient of two Hp(De)
functions).

For f ∈ B

f − (f/f0)(λ)f0

z − λ = (I − λL)−1Lf − f

f0
(λ)(I − λL)−1Lf0

which, by our hypothesis, belongs to M whenever f ∈ M and |λ| < 1 with
f0(λ) 6= 0, see (2.5). As in the proof of Proposition 4.2 the above also holds
pointwise for [µ]-a.e. z ∈ D− whenever |λ| ∈ Edµ. Let

P = {r ∈ [0, 1) : f/f0 has a pole on rT}

10 Actually, their result is in a more general setting and works for domains other than
the disk. The hypothesis of their result also depends on the local behavior of the function f .
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and note that P is a countable set. For |λ| ∈ Edµ\P , it follows that∫
f − (f/f0)(λ)f0

z − λ hdµ = 0(4.6)

for each f ∈M, h ∈M⊥. Set

E = Efh0 dµ
∩Ef0h0 dµ

∩Edµ,

where Eµ was defined as in (3.2) and note that for r ∈ E\P equation (4.6) says

Cµ(fh0)(rζ) =
f

f0
(rζ)Cµ(f0h0)(rζ) [|dζ|]-a.e.(4.7)

Now fix f ∈ M, write dµ = dµ1 + g|dζ| (where µ1(T) = 0, g ∈ L1(T, |dζ|), and
g ≥ 0. Recall that dµ|T� |dζ|.), and let

Sg = T\{ζ ∈ T : g(ζ) = 0}.

In order to show that (f/f0)r → gf in measure [|dζ|] as r → 1− we need to
consider two cases: Sg and T\Sg.

On the set Sg, it follows from Proposition 4.2 that

(f0)r → f0 and fr → f in measure.

We now multiply (4.7) by f0(rζ), r ∈ E\P , and apply Corollary 3.4 and Propo-
sition 4.2 to obtain

f0(ζ)
(
C+
µ (fh0)(ζ) + 2πζf(ζ)h0(ζ)g(ζ)

)
−f(ζ)

(
C+
µ (f0h0)(ζ) + 2πζf0(ζ)h0(ζ)g(ζ)

)
which is equal to zero for [|dζ|]-a.e. ζ ∈ Sg. In particular, it follows that

f0(ζ)C+
µ (fh0)(ζ)− f(ζ)C+

µ (f0h0)(ζ) = 0

for [|dζ|]-a.e. ζ ∈ Sg. Now recall the definition of gf and the fact that h0 was
chosen so that

C+
µ (f0h0)(ζ) 6= 0 [|dζ|]-a.e.(4.8)

and hence

f0(ζ)gf (ζ)− f(ζ) = 0 [|dζ|]-a.e., ζ ∈ Sg.(4.9)
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This implies, by Lemma 4.3, that (f/f0)r → gf in measure as r → 1− on the set
{ζ ∈ Sg : f0(ζ) 6= 0}. If f0(ζ) = 0 on a set S ⊂ Sg of positive Lebesgue measure,
then by (4.9) f(ζ) = 0 [|dζ|]-a.e. on S and by Corollary 3.4

Cµ(fh0)(rζ)→ C+
µ (fh0)(ζ)(4.10)

Cµ(f0h0)(rζ)→ C+
µ (f0h0)(ζ)(4.11)

in measure on S as r → 1−, r ∈ E\P . Using (4.7), Lemma 4.3, and (4.8), we
get that

(
f

f0

)
r

∣∣∣∣∣S → C+
µ (fh0)

C+
µ (f0h0)

∣∣∣∣∣S = gf |S in measure as r → 1−, r ∈ E\P .

This shows (
f

f0

)
r

|Sg → gf |Sg in measure as r → 1−, r ∈ E\P .

On the set T\Sg, we apply Corollary 3.4 again to get that equations (4.10)
and (4.11) hold (this time in measure on T\Sg as r → 1−, r ∈ E) and thus using
(4.7), (4.8), and Lemma 4.3, we get that(

f

f0

)
r

|T\Sg → gf |T\Sg in measure as r → 1−, r ∈ E\P .

Finally, since f/f0 is meromorphic in D, it is an easy exercise, which we leave
to the reader, to show that (f/f0)r → gf in measure as r → 1−.

Of course, the limit in measure of f/f0 is unique and N(De) functions are
uniquely determined by their boundary values, hence gf is unique.

To prove the identity (4.5) we let h ∈ M⊥ be arbitrary and define a mero-
morphic function on De by

F (λ) = Cµ(fh)(λ)− gf (λ)Cµ(f0h)(λ).

By our previous work, F ∈ N(De) and it suffices to prove (by Privalov’s unique-
ness theorem) that the non-tangential limit function

F (ζ) = C+
µ (fh)(ζ)− gf (ζ)C+

µ (f0h)(ζ)
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is zero [|dζ|]-a.e. on T. We take the limit in measure as r → 1−, r ∈ E\P , of
(4.7) (this time with h0 = h and E suitably changed) and apply Corollary 3.4
and (1) to obtain

0 = C+
µ (fh)(ζ) + 2πζf(ζ)h(ζ)g(ζ)− gf (ζ)

(
C+
µ (f0h)(ζ) + 2πζf0(ζ)h(ζ)g(ζ)

)
= F (ζ) + 2πζh(ζ)g(ζ)

(
f(ζ)− gf (ζ)f0(ζ)

)
[|dζ|]-a.e.

But by (4.9) we have

g(ζ)
(
f(ζ)− gf (ζ)f0(ζ)

)
= 0 [|dζ|]-a.e.

which shows that F ≡ 0 as desired. �

We are now ready to prove the main theorem of this section.

Theorem 4.6. Let 1 ≤ t < +∞ and let µ be a non-trivial finite Borel
measure on D− such that the space B is an analytic subspace of Lt(µ). Let
M ∈ Lat(L,B) with M 6= (0). Then:

(1) σ(L|M) = σap(L|M). More precisely,
(a) σ(L|M)∩D = σap(L|M)∩D = σp(L|M)∩D = {a ∈ D : (1−az)−1 ∈

M}.
(b) σ(L|M) ∩ T = σap(L|M) ∩ T and is the following set

T\{1/ζ ∈ T : every f ∈M extends to be analytic in a neighborhood of ζ}.

(2) σ(L|M) = D− if and only if M contains all of the polynomials.
(3) If M does not contain all of the polynomials, then σ(L|M) ∩ D is a

Blaschke sequence. Furthermore, for each f ∈ M there exists a unique
f̃ ∈ N(De) such that

fr|T→ f̃ |T11 in measure [|dζ|] as r → 1−.

Moreover, the function f̃ is given by

f̃(λ) =
∫

fh

z − λ dµ
/ ∫ h

z − λ dµ,

for all h ∈M⊥ which do not annihilate all of the polynomials.

11 Here we mean the non-tangential limit values of the Nevanlinna function f̃ on T.
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Proof.

(1) If M contains all of the polynomials, then by Proposition 2.1 and Propo-
sition 2.2, σap(L|M) = D− and so

D− = σap(L|M) = σ(L|M).

If M does not contain all polynomials, then apply Lemma 4.5 with
f0 = 1 along with Proposition 2.8 and Proposition 2.1. This proves (a).

An application of the dominated convergence theorem and the
Cauchy formula shows that B satisfies the hypothesis of Proposition 2.6,
and thus (b) follows now from Proposition 2.6.

(2) Use (1) and Corollary 2.3.
(3) If M does not contain all polynomials, then there is an h ∈ M⊥ such

that Cµ(h) 6≡ 0 in De. By (1) we have

σ(L|M) ∩ D =
{
a ∈ D :

1
1− az ∈M

}
⊂
{
a ∈ D :

∫
h

1− az dµ = 0
}

and since Cµ(h) ∈ Hp(De), the points of this set form a Blaschke se-
quence. Finally the rest of the proof of (3) follows from Lemma 4.5 with
f0 = 1.

�

We saw in the previous theorem that σ(L|M) = D− if and only ifM contains
all of the polynomials. We will now show that for certain measures, this condition
is also equivalent to M being Mz-invariant.

Corollary 4.7. Let 1 ≤ t < +∞ and let µ be a non-trivial finite Borel
measure on D− such that the space B is an analytic subspace of Lt(µ). Suppose
that µ(T) > 0. Then M ∈ Lat(L,B), M 6= (0), contains all of the polynomials if
and only if MzM ⊂M.

Proof. We will first show the sufficiency. Thus, assume that M 6= (0) is
both L-invariant and Mz-invariant. A power series argument shows there is a
f ∈M with f(0) 6= 0. Then for all n ∈ N ∪ {0}

−f(0)zn = zn+1Lf − znf ∈M.

Thus M contains all of the polynomials.
We will prove the converse by contradiction. Suppose that M is not Mz-

invariant but that M contains all of the polynomials. Then there is an f0 ∈ M
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such that [f0] 6⊂M and hence there is a h ∈ M⊥ such that Cµ(f0h) 6≡ 0 on De.
Since h ∈M⊥ and M contains all of the polynomials,∫

h

z − λ dµ = 0, ∀λ ∈ De,

and thus if we apply Lemma 4.5 with f = 1 we obtain that(
1
f0

)
r

→ 0 in measure [|dζ|] on T as r → 1−.(4.12)

However, since f0 ∈ Lt(µ) we have that |f0||T < +∞ [µ]-a.e. and thus (4.12)
contradicts the hypothesis together with part 2 of Proposition 4.2 �

As mentioned in Section 1, for special measures, we can improve Theo-
rem 4.6.

Theorem 4.8. Let µ be of the form (1.9) and 1 ≤ t < +∞. If M ∈
Lat(L,Lta(µ)) does not contain all of the polynomials, then M ⊂ N(D) and
every f ∈M has a pseudocontinuation across T to a function in N(De).

Proof. By Theorem 4.6 and Fatou’s theorem, it suffices to show that M ⊂
N(D).

Let f ∈ M. For g ∈ M⊥, we follow exactly as in the proof of Theorem 4.6
to conclude that for each

r ∈ E = Eg dµ ∩Efg dµ

f(rζ)
∫

ḡ

z − rζ dµ =
∫

fḡ

z − rζ dµ [ |dζ|]-a.e. |ζ| = 1.(4.13)

For r ∈ E, and |λ| < 1 define

Gr(λ) =
∫
|z|<r

g(z)
z̄ − r/λ dµ(z)

and note that from Lemma 3.2, Gr ∈ Hp(D) for all 0 < p < 1 and

‖Gr‖Hp ≤ cp
∫
|g| dµ ∀r ∈ (0, 1) ∩E.(4.14)

Moreover (since µ(T) = 0)

Gr(λ)→ G(λ) ≡
∫
|z|<1

g

z̄ − 1
λ

dµ
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uniformly on compact sets as r → 1−, r ∈ E. By Fatou’s lemma and (4.14),

‖G‖Hp ≤ sup
r∈(0,1)∩E

‖Gr‖Hp < +∞

and so G ∈ Hp(D).
A power series computation yields

G(λ) = −λ
∞∑
n=0

λn
∫
|z|<1

z̄ng dµ.

But recall that since M does not contain the polynomials, g can be chosen so
that it does not annihilate all the polynomials and so G 6≡ 0.

Since r ∈ E we can apply a similar argument as was used to prove (3.6) to
get that Gr(ζ), the non-tangential boundary values of the Hp function Gr, are
given [|dζ|]-a.e. by

Gr(ζ) =
∫
|z|<r

g(z)
z̄ − rζ

dµ(z).

Let ψ be the bounded analytic function in the definition of µ as in (1.9). Our
first step is to show that for some 0 < δ < γ∫

|ζ|=1
|ψ(rζ)f(rζ)|δ |Gr(ζ)|γ |dζ|(4.15)

remains uniformly bounded for r ∈ E.
To this end, we let ε > 0 be as in (1.9) and choose 0 < δ < 1/4 so that

δ/ε < 1/4. Letting γ = δ(1 + ε)/ε we have

γ − δ < 1
4

(4.16)

γ <
1
2
.(4.17)

Now note that

|Gr(ζ)| = |Gr(ζ)| =
∣∣∣∣∣
∫
|z|<r

ḡ

z − rζ dµ
∣∣∣∣∣

and so

|ψ(rζ)f(rζ)|δ |Gr(ζ)|γ(4.18)

≤ |ψ(rζ)f(rζ)|δ
∣∣∣∣∣
∫
|z|>r

ḡ

z − rζ dµ
∣∣∣∣∣
γ

+ |ψ(rζ)|δ
∣∣∣∣∣f(rζ)

∫
|z|<1

ḡ

z − rζ dµ
∣∣∣∣∣
δ ∣∣∣∣∣
∫
|z|<1

ḡ

z − rζ dµ
∣∣∣∣∣
γ−δ

.
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By (4.13), the second term above is equal to

|ψ(rζ)|δ
∣∣∣∣∣
∫
|z|<1

fḡ

z − rζ dµ
∣∣∣∣∣
δ ∣∣∣∣∣
∫
|z|<1

ḡ

z − rζ dµ
∣∣∣∣∣
γ−δ

.

Since δ < 1/4 and γ − δ < 1/4 (see (4.16) and (4.17)), we can use the Cauchy-
Schwarz inequality along with Lemma 3.2 to get that the integral |dζ| of the
second term in the estimate of (4.18) is O(1).

We now estimate the first term in the estimate of (4.18). At this point,
we should mention that in some cases, i.e., when µ is a radial measure and g is
analytic, then this term is zero. In the general case, we have by the Cauchy-
Schwarz inequality, the |dζ| integral of this term is bounded by

C

(∫
|ζ|=1

|ψ(rζ)f(rζ)|2δ |dζ|
)1/2

∫
|ζ|=1

∣∣∣∣∣
∫
|z|>r

ḡ

z − rζ dµ
∣∣∣∣∣
2γ

|dζ|

1/2

.

By Lemma 3.2 (note 2γ < 1 by (4.17)) this is bounded by

C

(∫
|ζ|=1

|ψ(rζ)f(rζ)|2δ |dζ|
)1/2(∫

|z|>r
|g| dµ

)γ
.(4.19)

Now note that |ψf |2δ is subharmonic on D and so the integrals

∫
|ζ|=1

|ψ(rζ)f(rζ)|2δ |dζ|

increase as r → 1− and so (4.19) is bounded by

(
1

ν([r, 1))

∫
|z|>r

|ψf |2δ |dζ| dν
)1/2(∫

|z|>r
|g| dµ

)γ
.(4.20)
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Using Hölder’s inequality with p = t/2δ > 1 (since δ < 1/4) we get(∫
|z|>r

|ψf |2δ |dζ| dν
)1/2

=

(∫
|z|>r

|f |2δ|ψ|2δ/t|ψ|2δ−2δ/t |dζ| dν
)1/2

≤
(∫
|z|>r

|f |t|ψ| |dζ| dν
)δ/t(∫

|z|>r
|ψ|(2δ−2δ/t)(t/(t−2δ)) |dζ| dν

)1/2−δ/t

≤ C
(∫
|z|>r

|f |t dµ
)δ/t

(ν([r, 1))1/2−δ/t.

Notice in the last inequality, we use the fact that |ψ| ≤ w.
Also by Hölder’s inequality,(∫

|z|>r
|g| dµ

)γ
≤
(∫
|z|>r

|g|s dµ
)γ/s

(µ({|z| > r})γ/t.

Recall that s is the conjugate index to t 12. From this we see that (4.20) is

O
(
µ({|z| > r})γ/tν([r, 1))−δ/t

)
(4.21)

and since w ∈ L1+ε(dν|dζ|) we have

µ({|z| > r}) ≤
(∫
|z|>r

w1+εdν |dζ|
)1/(1+ε)(∫

|z|>r
dν |dζ|

)ε/(1+ε)

.

Thus
µ({|z| > r})γ/t = O

(
ν([r, 1))εγ/t(1+ε) )

and so by combining this with (4.21) we see that (4.19) is

O
(
ν([r, 1))εγ/t(1+ε)−δ/t )

which is O(1) since γ = (1 + ε)δ/ε.
Thus we have shown that (4.15) is uniformly bounded for r ∈ E. Now we

will show that f is a Nevanlinna function on the disk. Let OGr be the outer
factor of Gr and notice from (4.14)∫

|ζ|=1
|Oγ/δGr

|δ |dζ| ≤
∫
|ζ|=1

|Gr|γ |dζ| ≤ cγ
(∫
|g| dµ

)γ
12 Here one needs to make the obvious modification if t = 1 and s = 1.
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and hence Oγ/δGr
is uniformly bounded on compact subsets of D, [21], p. 36. By

a normal families argument

O
γ/δ
Grn

(λ)→ H(λ)

uniformly on compact sets for some sequence rn → 1 with rn ∈ E. By Fatou’s
lemma H ∈ Hδ(D). Also note that since G 6≡ 0, then H 6≡ 0. In a similar way,
since ∫

|ζ|=1
|ψ(rζ)f(rζ)Oγ/δGr

(ζ)|δ|dζ|

is uniformly bounded for r ∈ E, then by normal families

ψ(rnλ)f(rnλ)Oγ/δGrn
(λ)→ K(λ)

uniformly on compact subsets of D for some rn → 1− . By Fatou’s lemma,
K ∈ Hδ(D) and so ψfH = K with H 6≡ 0 and so f = K/ψH is a Nevanlinna
function. �

5. Duality

As mentioned in Section 1, for many Banach spaces of analytic functions
B satisfying (1.1) through (1.5), there is a natural correspondence between
Lat(L,B) and Lat(Mz,D), where D is a certain dual space via the “H2-duality”.
This correspondence will be important to us for two reasons. First, we will let
B = P t(µ) and use this duality along with the spectral results in Section 4 to
show that for a large class of weighted Dirichlet spaces and Besov spaces (de-
fined below) every non-zero Mz-invariant subspace of D has index equal to one.
Secondly, we will use this duality in the next section to begin to examine the
L-invariant subspaces of the Besov classes where the spectral situation is quite
different from that of the analytic subspaces of Lt(µ). The duality mentioned
above is well known but we review it here for the sake of completeness.

LetB be a Banach space of analytic functions on D which satisfy conditions
(1.1) through (1.5) with the two additional conditions

the polynomials are dense in B,(5.1)

B is reflexive.(5.2)

Conditions (1.3) and (1.5) for B say that

1
1− λ̄z

∈ B ∀λ ∈ D
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and so for each φ ∈ B∗ we can define the function

(Uφ)(λ) = f(λ) =
〈
φ,

1
1− λ̄z

〉
(B∗,B)

.

Notice that Uφ ≡ 0 if and only if φ annihilates 1/(1− λ̄z) for each λ ∈ D, which
by Proposition 2.2 and hypothesis (5.1) implies that φ = 0. Thus U is injective
and so we may define the space

D = UB∗

with norm given by
‖f‖D = ‖φ‖B∗ .

Remark 5.1. For technical purposes we will assume that all our dual pair-
ings 〈 · , · 〉 are linear in the first slot and conjugate linear in the second slot. Thus
the function (Uφ)(λ) defined above is analytic on D.

Proposition 5.2.
(1) D is a Banach space of analytic functions on D which satisfies properties

(1.1) through (1.5).
(2) The polynomials are dense in D.
(3) The map U∗ : D∗ → B is onto and given by the formula

(U∗F )(z) =
〈
F,

1
1− λz̄

〉
(D∗,D)

see footnote 13 .

(4) (L|B)U∗ = U∗(Mz|D)∗

(5) (L|D)U = U(Mz|B)∗

Proof. Property (1.1) for D follows from the definition and from what was
said above.

Since σ((Mz |B)) = D− (property (1.5) for B), then for all w ∈ D the
operator (Mz|B)∗(I −w(Mz|B)∗)−1 is continuous on B∗. Let

Lw,Df =
f − f(w)
z − w

and note that a short computation shows that for φ ∈ B∗

(Lw,DUφ)(λ) = (U(Mz|B)∗(I − w(Mz|B)∗)−1φ)(λ).

Thus Lw,D is continuous on D which proves condition (1.4) for D as well as (5).
In a very similar way, one proves (4) which proves condition (1.2) for D.

13 Here we are using the fact that B is reflexive.
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In Section 2 we showed that σ(L|B) = D− and so by using (4), one can
show property (1.4) for D.

By property (1.1) for B, the linear functional g → g(z) is continuous on B
for all z ∈ D and thus for each z ∈ D, there is a φz ∈ B∗ with

(Uφz)(λ) =
〈
φz,

1
1− λ̄w

〉
(B∗,B)

=
1

1− λz̄ .(5.3)

Thus {(1− λz̄)−1 : z ∈ D} ⊂ D and so property (1.3) holds for D.
For F ∈ D∗ 〈

F,
1

1− λz̄

〉
(D∗,D)

= 〈F,Uφz〉(D∗,D)

= 〈U∗F, φz〉(B,B∗)
= (U∗F )(z)

This shows formula (3). To show that U∗ is onto B we note that if φ ∈ B∗ with
〈φ,U∗F >(B∗,B)= 0∀F ∈ D∗, then 〈Uφ,F >(D,D∗)= 0∀F ∈ D∗ which means
that Uφ and hence φ are zero. By the Hahn-Banach theorem U∗ is onto.

Finally, to prove that polynomials are dense in D we note that by property
(1.1) for B, the span of {φz : z ∈ D} equals B∗ and so {(Uφz)(λ) = (1−λz̄)−1 :
z ∈ D} spans D. By Proposition 2.2 this means that polynomials are dense in
D. �

Remark 5.3.

(1) Note that for polynomials p ∈ B and q ∈ D the dual pairing between
B and D is given by

〈p, q〉(B,D) =
∫
p(ζ)q(ζ)

|dζ|
2π

which is why it is called the “H2-duality”.
(2) We point out that if in the above construction B∗ is replaced with an

isomorphic space X, then the corresponding function space D remains
unchanged (with an equivalent norm).

Definition 5.4. We introduce the following classes of functions which will
be used below as well as in the later sections. Let α > −1 and 1 < p < +∞.

(1) The weighted Bergman spaces

Apα = {f ∈ Hol(D) : f ∈ Lp((1− |z|)αdA)}.
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(2) The Besov spaces

Xα,p = {h ∈ Hol(D) : h(n+1)(1− |z|2)n−α ∈ Lp((1− |z|2)αdA)} see footnote 14

(3) The unweighted Bergman spaces Lpa = Ap0.
(4) The Lp-Dirichlet spaces Dp = X0,p = {f ∈ Hol(D) : f ′ ∈ Lpa}.

Let 1 < p < +∞, α > −1, and 1/p+ 1/q = 1.

Example 5.5. It is well known [31] that (Apα)∗ ' Xα,q via the pairing

〈f, g〉 = lim
r→1−

∫
|ζ|=1

f(rζ)g(rζ)
|dζ|
2π

.

Thus in this case, if B = Apα, then B∗ = Xα,q and Uφ = φ and so D = Xα,q. In
a similar way, if B = Xα,p, then D = Aqα.

Example 5.6. One has [10] (Lpa)∗ ' Lqa via the pairing

〈f, g〉 =
∫
D
f(z)g(z)

dA

π

Thus if B = Lpa(dA), then B∗ = Lqa(dA) and for φ ∈ Lqa(dA), one computes

(Uφ)(λ) =
1
λ

∫ λ

0
φ(z)dz

and so D = ULqa(dA) = Dq.

Example 5.7. Similarly, (Dp)∗ ' Dq 15 via the pairing

〈f, g〉 =
∫
|ζ|=1

f(ζ)g(ζ)
|dζ|
2π

+
∫
D
f ′(z)g′(z)

dA

π
=
∫
D

(zf)′(z)(zg)′(z)
dA

π
.

Thus if B = Dp. Then for φ ∈ B∗ = Dq

(Uφ)(λ) = (zφ)′(λ)

and hence D = UDq = Lqa(dA).

14 (n is a integer with n � α). It is known [31] that that for 1 < p < +1 the definition
of Xα,p is independent of the choice of n � α. There is also a description of these functions in
terms of their boundary values on T.

15 This is just a special case of our first example but we point it out here since we will
be using this particular pairing later on in the paper.
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Example 5.8. Let 1 < t < +∞ and let µ be a measure on D− such that
P t(µ) ↪→ Hol(D). We define

D(t, µ) = U(P t(µ))∗ =
{
F : F (λ) =

∫
D−

φ(z)
1

1− λz̄ dµ(z) : φ ∈ Ls(µ)
}

with norm

‖F‖D(t,µ) = ‖φ‖Ls/(P t)⊥ .

By our results on Cauchy transforms in Section 3, we observe that D(t, µ) ⊂ Hp

for all 0 < p < 1. If µ is a radial measure dµ = dν|dζ|, and t = 2, then this
construction can be made very concrete. Indeed in this case, one checks that

D(2, µ) =

{∑
n

anz
n :
∑
n

(∫ 1

0
r2ndν(r)

)−1

|an|2 < +∞.
}
.

As to be expected, in this case we even have D(2, µ) ⊂ H2 and Mz|D(2, µ) is a
weighted forward shift operator.

If N is a subspace of D and M = U∗N⊥, then from Proposition 5.2 we see
that

N ∈ Lat(Mz,D)⇔M ∈ Lat(L,B).

Recall that N ∈ Lat(Mz,D) has index one if dim(N/zN) = 1. The index one
property has also been called the “division property” or “codimension one prop-
erty” and has been studied in [6] [35]. The analog of the next result, stated for
M∗z |D∗ instead of L|B, is from [35], Theorem 4.5. However, one can provide an
alternative proof which uses Proposition 2.8. We leave this as an exercise to the
reader.

Proposition 5.9. Suppose N ∈ Lat(Mz,D), N 6= (0), and M = U∗N⊥. If
Z(N) denotes the set of common zeros of the functions in N in D, we conclude
the following:

(1) If ind(N) = 1, then σ(L|M) ∩ D = {λ̄ : λ ∈ Z(N)}.
(2) If ind(N) > 1, then σ(L|M) = D−.

If B = P t(µ), then D = D(t, µ). Also, if B = Aqα, then D = Xα,p and thus
applying Theorem 4.6 we have the following corollary:

Corollary 5.10. Let 1 < p, t < +∞ and α > −1. If D = D(t, µ) or
D = Xα,p and N ∈ Lat(Mz,D), N 6= (0), then ind(N) = 1.

We mention that this was shown for D(2, dA) in [37] and for
D(2, (1 − |z|)αdA) in [5]. In the case where D(t, µ) is a Banach algebra this
was observed in [13].
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Remark 5.11.
(1) From Corollary 5.10 we see that given a sequence {an} ⊂ D, there is a

M ∈ Lat(L,B) with σ(L|M) ∩ D = {an} if and only if there is a f ∈ D
such that f−1({0}) = {an}.

(2) The collection {σ(L|M)∩ D : M ∈ Lat(L,B)} can be quite different for
various spacesB. For example ifB = Lta(dA), thenD = Ds (1/s+1/t =
1) and so for anyM ∈ Lat(L,Lta(dA)), M 6= Lta(dA), the spectrum in the
disk must be a Blaschke sequence. However for s > 2, Ds is contained
in some Lipschitz class and thus the zeros of a (non-zero) function must
satisfy the condition∫

|ζ|=1
log dist(ζ, {an}) |dζ| > −∞

and in particular cannot accumulate on any set of positive measure
[44]. On the other hand, if t = 2, then the zeros of a D2 function can
accumulate on all of T [15]. As another example, if B = Dt, then
D = Lsa(dA) and it is well known that the zeros of Bergman space
functions can be quite complicated and need not be Blaschke [26] [27]
[28]. Thus in contrast to the Bergman space, even though σap(L|M)∩D
is discrete, it need not be Blaschke.

6. The backward shift on the Besov classes

Motivated by the discussion in the previous section, we proceed to investi-
gate the properties of the restriction of L to its invariant subspaces of the Besov
classes Xα,p. As is to expect, the spectral and pseudocontinuation situation is
strikingly different to the one in the weighted Hardy and Bergman spaces. Recall
that for these spaces, we saw that σ(L|M) = σap(L|M). Let us first record the
following “negative” result concerning the spectrum of an L-invariant subspace.

Proposition 6.1. Given α > −1 and 1 < p < +∞, there is an M ∈
Lat(L,Xα,p) such that σ(L|M) = D−, σap(L|M) = T, and σp(L|M) = ∅.

Proof. Recall from Section 5 the duality between Aqα and Xα,p and so for
any N ∈ Lat(Mz, A

q
α) with ind(N) > 1 we have from Proposition 5.9

D− = σ(L|N⊥) ⊃ σap(L|N⊥) ⊃ ∂σ(L|N⊥) = T.

The existence of such invariant subspaces has been proved in [11] [22] [27]. More-
over, by Proposition 2.1 and the identity〈

f,
1

1− āz

〉
= f(a), ∀f ∈ Aqα, a ∈ D,
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the equality σap(L|N⊥) = T is equivalent to the fact that N has no common
zeros. An explicit construction of such invariant subspaces can be found in [26]
and [27].

Finally, from Proposition 2.1 σp(L|M) ∩ D = ∅ and so if ζ ∈ σp(L|M) ∩ T,
then the function (1− ζz)−1 would be the corresponding eigenvector. However,
this function does not belong to H1 which is a contradiction to the fact that
Xα,p ⊂ H1. �

It is a little more delicate problem to illustrate the lack of pseudocontinua-
tions for functions in non-trivial L-invariant subspaces of Xα,p. Recall from
Section 4 that for a large class of weighted Bergman spaces, non-cyclic functions
for L have pseudocontinuations to N(De). This next result shows that this fact
no longer hold in the context of Besov spaces.

Theorem 6.2. Given α > −1 and 1 < p < +∞ there is a function f ∈
Xα,p such that [f ]L 6= Xα,p and f does not have a pseudocontinuation across
any set of positive measure in T.

The function f in the statement of the above theorem will be an element
of the annihilator of a Mz-invariant subspace of Aqα determined by a zero set.
Using either the Ph.D. thesis of S. Walsh [47] or more recent density theorems
of K. Seip [41], one can show that given α > −1 and 1 < p < +∞, there is a
sequence A ⊂ D with

I(A) ≡ {f ∈ Aqα : f |A = 0} 6= (0)

and such that given any point ζ ∈ T, there exists a subsequence of A which
converges to ζ non-tangentially 16.

Using the identity〈
f ,

1
1− āz

〉
= f(a), ∀f ∈ Aqα, a ∈ D,

one shows

M(A) = I(A)⊥ = spanXα,p

{
1

1− āz : a ∈ A
}
.

Thus if the sequence A is chosen so that I(A) 6= 0, then by the results in Section
5, M(A) ∈ Lat(L,Xα,p) and M(A) 6= Xα,p. We will show that we can choose
non-zero constants cn so that the function

f(z) =
∞∑
n=1

cn
1− anz

16 Sequences which accumulate non-tangentially at [jdζj]-a.e. point in T are often called
dominating sequences for H∞ [14].
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belongs to Xα,p (hence also to M(A)) and has no pseudocontinuation across any
subset of T of positive measure. This will be done by showing that if f has a
pseudocontinuation across E to a function G ∈ M(De), then in fact G = f (as
defined by the series above) on De. But since the poles of f (i.e., 1/an) and
hence G accumulate non-tangentially to every boundary point, then G cannot
possibly have non-tangential limits [|dζ|]-a.e. on E. We should also point out
that by Proposition 5.9

σ(L|M(A)) ∩ D = {ā : a ∈ A}

is discrete, but this subspace contains functions that have no pseudocontinuation
across any part of T.

We now begin our construction. For any Dirichlet region Ω ⊂ C and z ∈ Ω,
let ω(z, ·,Ω) denote the harmonic measure on ∂Ω evaluated at z. For a point
b ∈ De and 0 < r < 1 let

H(b, r) =
{
z ∈ De :

∣∣∣∣ z − b1− b̄z

∣∣∣∣ < r

}
denote the pseudo-hyperbolic ball about the point b. One can argue (using the
fact that ω(z,E,Ω) is the unique harmonic function which is 1 on E and 0 on
∂Ω\E) that

ω(z, ∂H(b, r), De\H(b, r)−) =
log
∣∣∣1− b̄z
z − b

∣∣∣
log 1/r

.(6.1)

Now let bn = 1/an (tacitly assuming that an 6= 0) and choose ρn > 0 so
that

H(bn, ρn) ∩ H(bm, ρm) = ∅, ∀n 6= m.(6.2)

H(bn, ρn) ⊂
{
|z − bn| <

1
3

(|bn| − 1)
}
.(6.3)

Now choose rn < ρn so that

∑
n

log 1/ρn
log 1/rn

<∞.(6.4)

For a closed set E ⊂ T of positive measure, we write T\E as the disjoint
union of open arcs Jn = (eiαn , eiβn). Letting eiθn denote the midpoint of Jn, we
form the “triangular” shaped region Tn with vertices eiαn , (1 + 1

2 |Jn|)eiθn , eiβn .
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Notice that for any two Tn and Tn′ which share a common vertex (on T),
the angle formed at that vertex is π/2. Moreover, one argues that the set

Ω(E) = {1 < |z| < 3}\
⋃
n

T−n

is an open connected subset of De whose boundary is a rectifiable curve whose
length is comparable to

6π +
∑
n

2
√

2|Jn| = 6π +
√

2|T\E| < +∞.

Moreover we also assume (by possibly adding a finite number of points on the
circle to E) that

Ω(E)− ∩ T = E(6.5)

(this only changes E by a set of zero measure). Finally note that no component
of C∞\Ω(E) reduces to a point and so Ω(E) is a Dirichlet region.

One argues using (6.3) the domain Ω(E) does not become disconnected
when we remove any of the H(bn, rn) and hence we can define the region

R(E) = Ω(E)\
⋃
n

H(bn, rn)−.

Since no component of C∞\R(E) reduces to a point, then R(E) is a Dirichlet
region.

Lemma 6.3. ω(z,E,R(E)) > 0 for all z ∈ R(E).

Proof. First we note that Ω(E) is a doubly connected region with rectifiable
boundary and hence (for example see [17], p. 302)

ω(z,E,Ω(E)) > 0, z ∈ Ω(E).(6.6)
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Next we notice that z → ω(z,E,Ω(E)) is a bounded harmonic function on
Ω(E) with uniquely determined boundary values (a.e. with respect to harmonic
measure) 17 which are 1 on E and zero on (∂Ω(E))\E and so

ω(z,E,Ω(E)) =
∫
ω(·, E,Ω(E)) dω(z,R(E)), z ∈ R(E)(6.7)

which is bounded above by∫
E

dω(z,R(E)) +
∫
∪∂H(bn,rn)

dω(z,R(E))(6.8)

≤ ω(z,E,R(E)) +
∑
n

ω(z, ∂Hn(bn, rn) ∩ ∂R(E), R(E)).

For fixed n

ω(z, ∂H(bn, rn) ∩ ∂R(E), R(E)) ≤ ω(z, ∂H(bn, rn), De\H(bn, rn)−)

which by (6.1) goes to zero as |z| → 1+. Furthermore for

z 6∈
⋃
n

H(bn, ρn)

we use (6.1) again to get

ω(z, ∂H(bn, rn) ∩ ∂R(E), R(E)) ≤ log 1/ρn
log 1/rn

which by (6.4) is summable in n. Thus by the dominated convergence theorem,
the second term in (6.8) goes to zero as |z| → 1+ (z 6∈ H(bn, ρn) for any n).
Combining this with (6.6) and (6.8) we see that ω(z,E,R(E)) > 0 for z near T
and not in H(bn, ρn) for any n, and hence everywhere in R(E). �

Let u : D→ R(E) be an analytic covering map and notice that since R(E)
is a bounded region, then u ∈ H∞(D) and so we can consider the set

u−1(E) = {ζ ∈ T : |u(ζ)| = 1}

17 By boundary values, we mean the non-tangential limit values which are well defined
a.e. due to the rectifiability of the boundary of Ω(E)
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(where u(ζ) denotes the non-tangential limit of u at ζ). Also notice from
Lemma 6.3 that

|u−1(E)| = lim
n→∞

∫
1

|u(ζ)|n |dζ| = lim
n→∞

∥∥∥∥ 1
zn

∥∥∥∥
H1(R(E))

=
∫
E

dω(z0, R(E))

= ω(z0, E,R(E)) > 0,

where H1(R(E)) denotes the Hardy space on R(E) with norming point z0 =
u(0) ∈ R(E) [23], Chapter 2.

Proof of Theorem 6.2. With the set up above, choose non-zero constants
{cn} so that

f(z) =
∞∑
n=1

cn
1− anz

∈ Xα,p(6.9)

f is continuous on C\
⋃
n

H(bn, rn).

Suppose that f |D has a pseudocontinuation G ∈M(De) across some closed set
E ⊂ T with |E| > 0. By choosing a closed subset of positive measure, we
can assume that the non-tangential limit of G equals f(ζ) for each ζ ∈ E. By
construction, f is continuous on E. Thus, by a standard argument (see [32], p.
83 - 84), there will be a closed subset of E of positive measure (also denoted
by E) such that G is continuous on R(E)− except possibly for a finite number
of poles. Thus, we can choose a polynomial q such that qG is continuous on
R(E)−.

Using the continuity of f and qG on R(E)− we see that the function (qf)◦u
and (qG) ◦ u are bounded analytic functions on D whose non-tangential limits
agree [|dζ|]-a.e. on u−1(E) which has positive measure. Thus (since u is onto)
f = G on R(E) and hence De. This means that G has poles {1/an} which by
construction accumulate non-tangentially to every point on T and so G cannot
have a non-tangential limit [|dζ|]-a.e. on E, a contradiction. This completes the
proof of the theorem. �

Remark 6.4.
(1) We comment that Theorem 6.2 is true for a general Banach space of

analytic functions B which satisfy conditions (1.1) through (1.5) along
with the additional condition that

B ↪→ Xα,p for some α and p.
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One sees this by choosing (for the appropriate α and p) the sequence
A ⊂ D as before and letting

K = spanB

{
1

1− āz : a ∈ A
}
.

From Proposition 2.2, K is contained in the closure of the polynomials
in B and so using this along with the continuous imbedding B ↪→ Xα,p

and the density of polynomials in Xα,p, we see that K 6= B. From
our earlier construction, K has the right properties. Examples of such
spaces include

An = {f ∈ Hol(D) : f (k) ∈ C(D) : 0 ≤ k ≤ n}, n ∈ N,
Hp
n = {f : f (k) ∈ Hp : 0 ≤ k ≤ n}, n ∈ N, 1 ≤ p < +∞.

(2) One can choose the constants cn in the construction of the function f
above so that the L-invariant subspace generated by f is in fact equal
to M(A).

7. The backward shift on the Dirichlet spaces

We have seen that not all L-invariant subspaces M of the Dirichlet spaces
Dp, 1 < p < +∞ satisfy that σ(L|M)∩D is discrete, because not allMz- invariant
subspaces N of the Bergman spaces Lqa have index one. Since it is an important
and unsolved question to determine which Mz invariant subspaces of Lqa have
index one, it becomes interesting to try to determine conditions on an L-invariant
subspace M of Dp which will imply that σ(L|M) ∩ D is discrete. Despite the
results of the previous section we will see that for certain M ∈ Lat(L,Dp) there
is a connection between the existence of pseudocontinuations of the functions in
M and the existence of ((1− λL)|M)−1.

Fix 1 < p < +∞ and let M ∈ Lat(L,Dp),M 6= (0). The polynomials are
dense in Dp, hence it follows from Proposition 2.8 that σ(L|M)∩ D is discrete if
and only if for each f ∈M the meromorphic function

λ→ cλ(f, φ) =
〈

zf

z − λ, φ
〉 / 〈 λ

z − λ , φ
〉
, λ ∈ De

is independent of φ ∈M⊥, φ 6= 0. We shall show in this section that if for some
f ∈ M and φ ∈ M⊥, cλ(f, φ) has a non-tangential limit on a set E ⊂ T, then
cλ(f, φ) must be a pseudocontinuation of f across E. Furthermore, we shall use
this to obtain a condition on M⊥ which will imply that all functions in M have
a pseudocontinuation across some E ⊂ T with |E| > 0, and we shall use our
results in turn to prove a theorem about index one Mz-invariant subspaces in
the Bergman spaces.
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We start out by recalling some basic facts about Dp. Recall that an analytic
function f on D belongs to the Dirichlet space Dp if it has finite Lp-Dirichlet
integral

Dp(f) =
1
π

∫
D
|f ′|pdA.

It is easy to show that Dp ⊂ Hp and so we can norm Dp by

‖f‖p
Dp

= ‖f‖pHp +Dp(f).

Moreover [43], Chapter 5, Section 5 18, the above is equivalent to

‖f‖pHp +
∫
|w|=1

∫
|z|=1

∣∣∣∣f(z)− f(w)
z − w

∣∣∣∣p |dz|2π
|dw|
2π

and in fact, by a formula of J. Douglas [19], these two quantities are the same
when p = 2.

From Section 5, the dual of Dp is Dq (where q is the conjugate index to p)
via the pairing

〈f, g〉 =
∫
|ζ|=1

f(ζ)g(ζ)
|dζ|
2π

+
1
π

∫
D
f ′(z)g′(z) dA(z).

For ζ ∈ T and f ∈ Hp, it was shown that if∫
|w|=1

∣∣∣∣f(w)− α
w − ζ

∣∣∣∣p |dw|2π
< +∞,

for some α ∈ C, then the non-tangential limit of f at ζ equals α (see [39],
p. 358)19. Thus, as was done in [39] for p = 2, we may define the Lp-“local
Dirichlet integral” of f at ζ ∈ T to be

Dp,ζ(f) =
∫
|w|=1

∣∣∣∣f(w)− f(ζ)
w − ζ

∣∣∣∣p |dw|2π
.

For f ∈ Hp and g ∈ Hq and ζ ∈ T for which Dp,ζ(f) and Dq,ζ(g) are finite,
we can define, via Hölder’s inequality, the mixed local Dirichlet integral as

Dζ(f, g) =
∫
|w|=1

(f(w)− f(ζ))(g(w)− g(ζ))
|w − ζ|2

|dw|
2π

.

18 The proof there is for the upper-half plane but can easily be adapted to work for the
disk.

19 The proof cited is for p = 2 but one can easily modify the proof to work for general p.
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Note that when f ∈ Dp, g ∈ Dq, then Dp,ζ(f) and Dζ(f, g) are L1(T, |dζ|)
functions. By the Douglas formula and the polarization identity, we note that
for polynomials

〈f, g〉 =
∫
|ζ|=1

f(ζ)ḡ(ζ)
|dζ|
2π

+
∫
|ζ|=1

Dζ(f, g)
|dζ|
2π

.(7.1)

But since polynomials are dense in Dp, then this formula works for all f ∈ Dp
and g ∈ Dq.

Theorem 7.1. Let 1 < p < +∞, M ∈ Lat(L,Dp), f ∈ M, g ∈ M⊥ ⊂
Dq, g 6= 0. If there exists a set E ⊂ T, |E| > 0, such that the meromorphic
function F on De, F (λ) = cλ(f, g), has a non-tangential limit on E, then F is
a pseudocontinuation of f across E.

Remark 7.2. F may not be in the Nevanlinna class of De.

In order to prove Theorem 7.1, we need two preliminary lemmas.

Lemma 7.3. Let M ∈ Lat(L,Dp), f ∈ M, and g ∈ M⊥ ⊂ Dq. Then for
all λ ∈ D, ∫

|z|=1

λ

z − λ (Dz(f, g) + f(z)ḡ(z))
|dz|
2π

= 0.

Proof. Let λ ∈ D. Then

λ

∫
|z|=1

Dz

(
f − f(λ)
z − λ , g

)
|dz|
2π

= λ

∫
|z|=1

∫
|ζ|=1

1
z − ζ

(
f(z)− f(λ)

z − λ − f(ζ)− f(λ)
ζ − λ

)(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π
|dz|
2π

= λ

∫
|z|=1

∫
|ζ|=1

(ζ − λ)f(z)− (ζ − λ)f(λ)− (z − λ)f(ζ) + (z − λ)f(λ)
(z − ζ)(z − λ)(ζ − λ)

×
(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π
|dz|
2π

=
∫
|z|=1

λf(λ)
z − λ

∫
|ζ|=1

1
ζ − λ

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π
|dz|
2π

+
∫
|z|=1

λ

z − λ

(∫
|ζ|=1

(
f(z)− f(ζ)

z − ζ

)(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π

+
∫
|ζ|=1

f(ζ)
λ− ζ

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π

)
|dz|
2π

.
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Notice that ∫
|ζ|=1

1
ζ − λ

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π

=
∫
|ζ|=1

1
1− λζ

ζ

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π

= 0 [|dζ|]-a.e. z

since the integrand above belongs to ζHq. Also notice that∫
|z|=1

λ

z − λ

∫
|ζ|=1

f(ζ)
λ− ζ

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dζ|
2π
|dz|
2π

=
∫
|ζ|=1

λf(ζ)
λ− ζ

∫
|z|=1

1
z − λ

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dz|
2π
|dζ|
2π

=
∫
|ζ|=1

λf(ζ)
λ− ζ

∫
|z|=1

z̄

1− λz̄

(
ḡ(z)− ḡ(ζ)
z̄ − ζ

)
|dz|
2π
|dζ|
2π

= 0

since the integrand in the inner integral above belongs to z̄Hq. Thus

λ

∫
|z|=1

Dz

(
f − f(λ)
z − λ , g

)
|dz|
2π

=
∫
|z|=1

λ

z − λDz(f, g)
|dz|
2π

.(7.2)

By (2.5) and (7.1)

0 = λ

∫
|z|=1

Dz

(
f − f(λ)
z − λ , g

)
|dz|
2π

+ λ

∫
|z|=1

f − f(λ)
z − λ ḡ(z)

|dz|
2π

.

By (7.2), this reduces to

0 =
∫
|z|=1

λ

z − λ
(
Dz(f, g) + fḡ

) |dz|
2π
− λf(λ)

∫
|z|=1

ḡ(z)
z − λ

|dz|
2π

.

But notice that ∫
|z|=1

ḡ(z)
z − λ

|dz|
2π

=
∫
|z|=1

z̄

1− λz̄ ḡ(z)
|dz|
2π

= 0
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since the above integrand belongs to z̄Hq. Thus we have

0 =
∫
|z|=1

λ

z − λ(Dz(f, g) + fḡ)
|dz|
2π

which completes the proof. �

Lemma 7.4. Let M ∈ Lat(L,Dp), and let f ∈ M, g ∈ M⊥ ⊂ Dq, g 6= 0.
Then for [|dζ|]-a.e. w ∈ T we have〈

λ

z − λ , g

〉
(cλ(f, g)− f(w))→ 0 as λ→ w non-tangentially, |λ| > 1.

Proof. Let J be the set of points w ∈ T such that Dp,w(f),Dq,w(g), and
hence Dw(f, g) are finite. Note that J has full measure in T and from our
previous discussion, the non-tangential limits of f and g exist for all w ∈ J .

We have to show that for [|dζ|]-a.e. w ∈ J〈
zf

z − λ , g

〉
−
〈

λ

z − λ , g

〉
f(w)→ 0, as λ→ w non-tangentially, |λ| > 1.

We substitute 1/λ̄ for λ, set

H(λ) =
〈

f

1− λ̄z
, g

〉
,

and note that for λ ∈ D 〈
1

1− λ̄z
, g

〉
= (zg)′(λ).

Moreover 〈
λ̄zf

1− λ̄z
, g

〉
=
〈

f

1− λ̄z
, g

〉
= H(λ)

since 〈f, g〉 = 0. Thus, we must show that for [|dζ|]-a.e. w ∈ J ,

H(λ)− (zg)′(λ)f(w)→ 0 as λ→ w non-tangentially.

To prove this, we notice from Lemma 7.3 that

H(λ) =
〈

f

1− λ̄z
, g

〉
+
∫
|z|=1

λ

z − λ (Dz(f, g) + fḡ)
|dz|
2π

.(7.3)

The Poisson kernel Pλ(z) (λ ∈ D, z ∈ T) is equal to

Pλ(z) =
λz̄

1− λz̄ +
1

1− λ̄z
.
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Thus, using Lemma 2.1 of [38] and (7.3), we get that for w ∈ J

H(λ) =
∫
|z|=1

Pλ(z)(Dz(f, g) + fḡ)
|dz|
2π

+
∫
|z|=1

λ̄z

(1− λ̄z)2
(f(z)− f(w))(ḡ(z)− ḡ(w))

|dz|
2π

+ f(w)λg′(λ).

By Fatou’s theorem, the first term in the above equation goes to Dw(f, g)+
f(w)ḡ(w) for almost all w ∈ J as λ approaches w non-tangentially. For the
second term we note that∫

|z|=1

λ̄z

(1− λ̄z)2
(f(z)− f(w))(ḡ(z)− ḡ(w))

|dz|
2π

=
∫
|z|=1

λ̄z

(1− λ̄z)2
|z − w|2 (f(z)− f(w))(ḡ(z)− ḡ(w))

|z −w|2
|dz|
2π

.

Because
λ̄z

(1− λ̄z)2
|z − w|2 → −1

as λ → w non-tangentially, we can use the dominated convergence theorem to
get that the above converges to −Dw(f, g).

Putting all this together, we get that

H(λ)− (zg)′(λ)f(w)→ 0(7.4)

almost everywhere on T as λ→ w non-tangentially. �

Proof of Theorem 7.1. Let f , g 6= 0, and E ⊂ T be as in the statement
of the theorem. If F (λ) = cλ(f, g) converges non-tangentially to F (w) on E, and
if F (w) 6= f(w) on some subset A ⊂ E with |A| > 0, then by Lemma 7.4, the
analytic function 〈

λ

z − λ , g

〉
, λ ∈ De

would have non-tangential boundary values which are equal to zero [|dζ|]-a.e.
on A. By Privalov’s theorem this would imply that 〈(z − λ)−1, g〉 = 0 for each
λ ∈ De, but this would mean that g ≡ 0, which contradicts the choice of g. �

For a function g ∈ Dq we use [g]L∗ to denote the smallest L∗-invariant
subspace of Dq.
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Corollary 7.5. Let g ∈ Dq such that (zg)′ has finite non-tangential limits
on some set E ⊂ T with |E| > 0. Then every f ∈M = ⊥[g]L∗ has a pseudocon-
tinuation f̃ across E. Furthermore, this pseudocontinuation is given by

f̃(λ) = cλ(f, g) = λ

〈
f

λ− z , g
〉/

(zg)′(1/λ̄).

In particular, for each λ ∈ De with (zg)′(1/λ̄) 6= 0, f → f̃(λ) defines a bounded
linear functional on M.

Proof. As in the proof of Lemma 7.4, one verifies that for λ ∈ De,〈
λ

z − λ , g
〉

= −(zg)′(1/λ̄).

Thus, the hypothesis implies that 〈(z − λ)−1, g〉 remains bounded as λ ap-
proaches E non-tangentially, and so by Lemma 7.4 cλ(f, g) approaches f(w)
non-tangentially [|dζ|]-a.e. on E, i.e., cλ(f, g) is a pseudocontinuation of f across
E. �

Notice that an easy calculation shows that if g ∈ Dq then for every f ∈
⊥[g]L∗ and every polynomial p, one has

cλ(f, g) = cλ(f, p(L∗)g)

and hence cλ(f, h) is independent of h ∈ [g]L∗ , and so σ(L|⊥[g]L∗)∩ D is discrete
for any non-zero g ∈ Dq. We have not been able to show under the hypothesis
of the previous Corollary that σ(L | N) ∩ D is discrete for any non-zero N ∈
Lat(L,Dp) with N ⊂ ⊥[g]L∗ .

Corollary 7.6. Let g, h ∈ Dq and set M = ⊥[g]L∗ ∩ ⊥[h]L∗ . If
(zg)′(λ)/(zh)′(λ) has a finite non-tangential limit on a set E ⊂ T, |E| > 0,
then σ(L|M) ∩ D is discrete.

Proof. We note that the hypothesis implies that h 6= 0, and that the con-
clusion is trivial if g = 0. Thus, we assume that g, h 6= 0. If we let

P = {λ ∈ De : (zg)′(1/λ̄) = 0 or (zh)′(1/λ̄) = 0},

then

cλ(f, g)− cλ(f, h) =
〈zf/(λ− z) , g〉

(zg)′(1/λ̄)
− 〈zf/(λ− z) , h〉

(zh)′(1/λ̄)
is meromorphic in De with possible poles at the points λ ∈ P . We shall first
show that for any f ∈M, cλ(f, g) = cλ(f, h) for every λ ∈ De\P .
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We have for [|dζ|]-a.e. w ∈ E〈
λ

z − λ , g
〉

(cλ(f, g)− cλ(f, h))

=
〈

λ

z − λ , g
〉

(cλ(f, g)− f(w))− (zg)′(1/λ̄)

(zh)′(1/λ̄)

〈
λ

z − λ, h
〉

(f(w)− cλ(f, h)).

Thus, by Lemma 7.4, our hypothesis, and Privalov’s theorem, the meromorphic
function 〈

λ

z − λ, g
〉

(cλ(f, g)− cλ(f, h))

equals zero in De, and this implies cλ(f, g) = cλ(f, h) for all λ ∈ De\P . We note
that M⊥ = [g]L∗ ∨ [h]L∗ . Thus, by Proposition 2.8 and the above, in order to
show that σ(L|M) ∩ D is discrete it suffices to show that

cλ(f, p(L∗)g + q(L∗)h) = cλ(f, g) = cλ(f, h)

for all λ ∈ De\P and all polynomials p and q. This is a straightforward calcul-
ation. �

The H2-duality, Proposition 5.9 (with B = Dp and D = Lqa), and the
previous Corollary immediately imply the following result.

Corollary 7.7. Let 1 < q < +∞, and let G,H ∈ Lqa such that G/H has a
finite non-tangential limit on a set E ⊂ T, |E| > 0, then ind[G,H] = 1.
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