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A class of neutral 18-electron molecules with planar tetracoordinate carbon (ptC) centers is

introduced. We show computationally that when n = 3 the neutral singlet molecule

C(BeH)n(BH2)4�n and other isoelectronic (18-valence electron) molecules of main group elements

collapse from locally tetrahedral arrangements at the C-center to (near) planar tetracoordinate

structures. For C(BeH)3BH2 and C(CH3)(BH2)Li2, for example, the tetrahedral type

conformation is not even a minimum on the potential energy surface at the B3PW91, MP2(full),

or CCSD levels of theory. The Mg analogue C(MgH)3BH2 of the Be system also features a

completely flat global minimum (with even higher energy planar minima in both cases as well).

Other neutral compounds that may prefer planar geometries are apparent, and new openings for

experimental investigations and theoretical analyses of planar tetracoordinate main group systems

are identified. The planar conformation persists at one center in the C(BeH)3BH2 dimer, and may

be identifiable in higher order clusters of ptC molecules as well.

1. Introduction

Nearly a century after van’t Hoff and Le Bel’s seminal papers

that convinced us, eventually, of the tetrahedral arrangement

around carbon in many of its compounds,1–3 Hoffmann et al.4

published a letter to ‘‘open the problem of stabilizing tetra-

coordinate planar carbon’’. In that work, they posited several

organic and organometallic molecular motifs in which planar

tetracoordinate carbon (ptC) centers could be stabilized. The

quest to prepare such compounds and to augment the list

of candidate structures has been ongoing since then,5–13 - with

some experimental successes,12,14,15 and a small stream of

theoretical proposals in the past few years.16–19

The challenge in stabilizing ptC centers is that going from

the tetrahedral CH4, for example, to the planar form involves

a significant re-hybridization from sp3 to sp2 at the central

carbon. This change results in the potentially destabilizing

outcome of a doubly occupied p orbital – a lone pair –

perpendicular to the plane of the molecule.4,18,20 The latter

situation is particularly unfavorable when the substituents

are poor p-acceptors, and when other opportunities for the

delocalization of these lone pair electrons are unavailable

within the hypothetical planar structure.4,5,11 For this reason,

the stabilization of ptCs often involves a substantial degree of

coercion either by strain,8,17 entrapment in elaborate cage-like

structures,6,8,10a or electronic effects (such as a p-system) that

favor planar C centers.13,11a,14,16

Boldyrev and Simons showed over a decade ago that 18-electron

(18e) pentatomic (CR02R
0 0
2) clusters such as CSi2Ga2, and

CGe2Al2, tend to favor a planar tetracoordinate arrangement

at the central carbon.16 That category of 18e clusters generalizes,

too, to include CAl4
2�, for example, (where R0, R0 0 = Al) and

other such species that are planar as well.21 Several classical CR4

type neutral compounds, such as CLi4 and C(BH2)4 with good

s-donor and p acceptor substituents have been studied, too,

but with little success to date. CLi4 and C(BH2)4 are tetrahedral

(Td)
3 in geometry, even though the barriers to the planar transition

structures are quite low.5,11 Indeed, no neutral molecule with four

independent R substituents around a C center is known for which

the planar structure is preferred. The neutral CAl4 molecule, for

example, is tetrahedral (the planar form is a saddle point) even

though the dianion CAl4
2� is a computationally well established

planar species.21

Informed by the earlier observations of Boldyrev and

Simons on pentatomic 18e cluster,14,16 we wanted to examine more

broadly the preference for a planar geometry in small molecules. In

particular, we wanted to identify compounds that satisfy the

following conditions: (i) neutral 18e main group molecules,
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with (ii) planar singlet minimum energy structures, even

though they have (iii) acceptable Lewis structures in the Td

type geometry3 and (unlike fenestranes) (iv) no structural

constraint mandating the planar geometry.

To consider only neutral species, we allow in this work for

polyatomic substitutents in which the atom bonded to the

central C is saturated by H atoms. Moreover, we include the

electrons from those H atoms in the total valence electron

count. So, the substituents -BeH and -BH2 contribute three and

five, respectively, to the total electron count. By considering such

polyatomic substituents, we make the tacit assumption that in

the theoretical C(AlH)4
2+ system, for instance, the Al—H bonds

would play a similar role in the bonding preference to that of the

Al lone pairs in the planar and isoelectronic CAl4
2� anion.

We have been gratified to find that the 18e C(BeH)3BH2

molecule and its isovalent C(MgH)3BH2 analogue are both

completely flat with planar tetracoordinate C atoms at their

centers. More broadly, the 18e systems that we identify in this

work show a substantial preference for non-tetrahedral type

geometries. Even so, a question we considered is the importance of

this particular electron count. We find for the C(BeH)n(BH2)4�n
series of molecules that it is only when n = 3 (for n = 0 – 4)

that the planar tetracorodinate structure is stable relative to

the tetrahedral alternative. The tetrahedral type isomer is not

even a local minimum on the potential energy surface. The

preferred structure is an unstrained, electronically stabilized,

planar tetracoordinate compound. The molecule represents an

intriguing lead compound; a novel reference point en route to

the possible synthesis of molecular objects with planar tetra-

coordinate carbon centers.

2. Computational methods

The computational results presented in this work, including

the geometrical and harmonic vibrational frequency data have

been obtained at the B3PW91,22 Møller–Plesset (MP2(full)),23

and the CCSD24 levels of theory. The relevant method is

indicated at each stage as necessary in the results section. In

each case, we employed the correlation consistent triple-zeta

cc-pVTZ all electron basis sets25 and in several cases the

6-311+G*26 basis sets were used as well for comparison and

to estimate basis set effects. All of our computational studies have

been performed using the Gaussian 03 suite of programs.27 The

Gaussview program has been used to generate representations of

molecular geometries and molecular orbitals (MOs).

We used the Gradient Embedded Genetic Algorithm

(GEGA) proposed by Alexandrova et al.28 to explore in detail

the potential energy surfaces of a few of the molecules that

converged to planar tetracoordinate minima. This approach

enabled us to identify the most competitive (the lowest energy)

isomers from a scan of the potential energy surfaces (PES) of

the molecules. The algorithm starts out with an initial guess

structure from which it derives generations of increasingly

viable (more and more stable) minimum energy geometries.

The ten most stable minimum energy structures obtained in

this way (confirmed by frequency analyses to be minima at the

B3LYP/LANL2DZ level of theory) were then selected for

re-optimization and frequency analyses at the more demanding

levels of theory mentioned above. The GEGA has been quite

successful in finding global and low-energy local minima on

the PES of atomic clusters.29 For the details of the algorithm,

the reader is referred to ref. 28.

3. Results and discussion

3.1. All fall down: neutral singlet molecules that prefer to be

planar

3.1.1 Ten non-classical 18e species. Classical tetrahedral

CR4 type molecules such as CH4 or CF4 usually have substantial

barriers to the square planar distortion (B5.0 � 1.0 eV).4,11,20

Yet, Schleyer et al. have shown that the barriers to planarity

(DETd-Pl) in simple CR4 type molecules are far lower in cases

where the substituents are good s-donors and p-acceptors.
Take the isovalent CH4 and CLi4 molecules, for instance;11a

the DETd-Pl values reported in ref. 5 are 5.7 eV for CH4 and

0.54 eV (a full order lower) for CLi4.
30 The latter molecule has

a relatively small barrier to planarity because of the delocalization

of electron density from the pZ lone pair at C into the energetically

accessible and empty p orbitals of terminal Li atoms. Nevertheless,

CLi4 and several other molecules with various (s-donor/
p-acceptor) substituents (like CHnLi4�n, CHn(BeH)4�n, and

CHn(BH2)4�n) have been found computationally to persist in

the tetrahedral arrangement (and the planar conformers are

not minimum energy structures) even though the DETd-Pl

values are low.11

Large rigid frameworks such as the fenestranes or aromatic

ring systems in which planar tetracoordinate group 14 atoms

may be stabilized, or charged species such as the C5
2� D2h

cluster,17c or CAl4
2� are interesting instances of the ptC

phenomenon. Our objective in this project has been to locate

simple neutral molecules that prefer the planar conformation

without structural constraints, in accordance with the criteria

mentioned in the introduction.

To identify candidate structures that satisfy those criteria,

we started out at the 8e CLi4 extreme and modified the

structure by replacing the Li atoms with monovalent period 2

main group substituents (R) to obtain neutral 18e molecules.

To be clear, an ‘x electron compound’ in this work is one in

which the valence electrons of all the atoms in the structure

sums to x. These x electrons are not necessarily involved in

bonding to the central C atom. No link to the classical

monocentric 18e rule is implied. Not all 18 electrons in CAl4
2�,

for example, are involved in C–Al bonding; there are four Al

lone pairs pointing away from the C–Al bonding region.

The set of (R) substituents that we considered were: –F,

–OH, –NH2, and –CH3 (all 7 electron substituents), –BH2

(5 electrons), –BeH (3 electrons), and –Li (1 electron).31 The

previously identified 18e systems with stable ptCs have been

pentatomic structures (such as CGe2Al2, and CAl4
2�)16,21 with

only four atoms around the planar C center. We allowed in

this work, however, for simple �AHx polyatomic substituents,

as well, and we included the H electrons in the total electron

count. The slate of substituents that we considered afforded us

ten 18e candidate molecules,31 and we optimized all ten –

without constraints, starting in each case with a locally tetrahedral

type coordination at the central carbon, with all the R–C–R0 bond

angles at 109.51 (see Fig. S.1).
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Remarkably, none of the ten structures that we optimized

persisted in a tetrahedral type geometry (Fig. 1). Six of the

molecules (a–e, and j in Fig. 1) collapsed to planar or nearly

planar arrangements.

For the other four structures (f–i), the pernicious insistence

of the Li atom on occupying bridging positions made it

difficult to achieve co-planar arrangements of the atoms.

Instead, the optimized structures in those four cases have

roughly trigonal planar C(BeH)2X bases (where X = F,

OH, NH2, or CH3), with the Li atom capping the C–X bond.

In the C(CH3)(BH2)Li2 and C(BeH)3BH2 molecules ((d) and

(j) in Fig. 1) the four bonds to the central C atom are completely

coplanar. Our data for structure (d) are somewhat ambiguous,

since the planar structure is a minimum at the B3PW91 and

MP2(full) levels and a first order saddle point at the CCSD

level (with nmin =i30.7; see Table S.1 in the supporting

informationw). A re-optimization of (d) at the CCSD level,

following the trajectory of that imaginary frequency, led us to

a very similar structure with one of the Li atoms in that case

out of the plane by 21.51.

For C(BeH)3BH2 ((j) in Fig. 1), our analyses at the

B3PW91, MP2(full), and the CCSD levels of theory are

unequivocal. Using both the 6-311+G* and the cc-pVTZ basis

sets for all elements, we found that the tetrahedral type starting

structure collapses spontaneously to the flat C2v structure

(Fig. 2j) with nmin Z 129 cm�1 in each case (Table 1).

3.1.2 C(BeH)3BH2 – planar preferred.We have been surprised

by the remarkable stability of the planar C2v structure of

C(BeH)3BH2 relative to the starting tetrahedral-type geometry.

The latter conformation, which the valence shell electron pair

repulsion model and simple qualitative descriptors predict to be

the global minimum energy structure for this molecule, is not even

a local minimum. Indeed, it has been impossible to optimize a

tetrahedral type structure for this compound. Tetrahedral input

structures collapse readily for all five of the model chemistries we

considered (Table 1), eventually optimizing to the planar

conformation (Fig. 1(j)).

In the absence of any optimized tetrahedral geometry with

which to compare the planar structure, we computed instead

the orbital energies of a model tetrahedral structure using

reasonable values for the C–Be, C–B, Be–H, and B–H bond

distances (1.660 Å, 1.550 Å, 1.320 Å, and 1.180 Å, respectively),

and compared the nature and energies of its molecular orbitals

with those of the planar structure (See Fig. 2). Fig. 2a compares

the MO energy levels of the tetrahedral type and the planar (C2v)

structures. Fig. 2b provides a detailed look at the latter; the MO

energy levels in 2b are precisely the same as they are for the

planar isomer in 2a, but 2b includes the associated molecular

orbital pictures, as well. Larger pictures of the orbitals in Fig. 2a

and a summary of the atomic orbital parentage of the MOs are

provided in the supporting information.w
The energy level diagrams in Fig. 2 help a lot with deepening

our understanding of the bonding in the molecule. The results

show, for example, that several of the MOs that include

antibonding interactions between the substituents in the Td

structure (in Fig. 2a, and S.1b) become stabilized as the

molecule becomes planar. That is, several of the atomic

orbitals involved in the MOs of the Td structure are reoriented

in the planar conformations in ways that minimize antibonding

interactions among the substituents. The HOMO�1, �5, �6,
�7 and �8 in Fig. 2b (cf. Fig. 2a) are instances of this

relaxation.

There are a few interactions that are evidently more destabilizing

in the planar geometry, such as the HOMO and HOMO�4 in

Fig. 2b. But such interactions are more than compensated for by

the several other bonding interactions that are facilitated by the

planar conformation (Fig. 2).32 This substantial stabilization occurs

in the planar C(BeH)3BH2, and not in planar forms of CH4 or

CF4, for example, partly because of the unavailability of any empty

valence p orbital on the substituents for electron delocalization in

the latter systems. Moreover, the abundance of lone pairs on

Fig. 1 Minimum energy 18e structures obtained at the B3PW91/cc-pVTZ level of theory. In each case, the optimization began with a tetrahedral

type arrangement at the C center. The optimized coordinates are given in the supporting information.w *‘Distorted planar’: in (a), (b), and (c) the

atoms bonded to C are all coplanar, except for the Li atom that is bonded to the C center and to the F, OH, and NH2, respectively. The H–B–C–Li

dihedral angle in these structures is between 331–421. wThe central C is coplanar with the four atoms bonded to it. zThe system is not quite planar:

The Be–C–Li bond angle is 1701. The B–C–Li–B dihedral angle is 1661.
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halides in their compounds means a great deal of repulsion

between terminal sites in planar conformers of halomethanes.

The HOMO–LUMO gap in the planar structure in Fig. 2 is

substantial, and that characteristic is consistent with the observed

stability. But that gap is about the same for both the planar and

the tetrahedral structures in Fig. 2. So, the strong preference for

the planar conformer is to be understood primarily in terms of a

redistribution of the electron density (to better engage the valence

p orbitals of the hypovalent centers) plus associated changes in

orbital interactions as the molecule relaxes to two-dimensions,

with no big change in the HOMO–LUMO gap.

3.2. The planar molecule is the global minimum

We wanted to find out conclusively whether this non-classical

C(BeH)3BH2 planar structure is the global minimum on its

potential energy surface or not. To answer that question, we

employed the GEGA program described in the methods

section to obtain the ten lowest energy isomers for this group

of atoms, and re-optimized the resulting structures at the

B3PW91 and the MP2(full) levels of theory. And the outcomes

were fascinating.

As shown in Fig. 3, the planar structure identified initially in

Fig. 1(j) is in fact the global minimum energy isomer for

C(BeH)3BH2. Although we considered the ten lowest energy

structures derived from the GEGA search, a number of those

structures looked very similar and gave identical geometries

and energies to one of the five points shown in Fig. 3 after

re-optimizations at the B3PW91 and MP2(full) levels.33

Remarkably, all five of the low energy structures in Fig. 3,

spanning some 2.0 eV relative to the global minimum, are

completely planar. Moreover, the central C is tetracoordinate

Fig. 2 (a) Simple Walsh diagram for the collapse from the local Td geometry to a planar conformation for C(BeH)3BH2 at the MP2 (full) level of

theory. We used the label Td* to remind ourselves that the molecule does not formally have tetrahedral symmetry. The Td* energies and orbitals

were obtained from a single point calculation. (b) The MO energy level diagram for C(BeH)3BH2 and the corresponding orbital pictures. The

occupied MOs are in red, and the unoccupied MOs are in black. The highest occupied and lowest unoccupied MOs (the HOMO and the LUMO)

are abbreviated ‘H’ and ‘L’, respectively. H-1 is the MO that is just below the HOMO in energy. L + 1 is just above the LUMO.
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in all but one case (the fourth highest energy structure in Fig. 3) in

which the C atom forms essentially a double bond to the boron

atom (with a CQB bond distance of 1.358 Å) and s-bonds to the

two Be centers with far weaker p contributions.

3.3. Structure and bonding in C(BeH)3BH2

The computed geometrical and bonding information obtained

for the optimized C(BeH)3BH2 structure are summarized in

Fig. 4 and Table 1. A simple view of the bonding in the

C(BeH)3BH2 molecule assigns four electrons to the two B–H

bonds and six electrons to the three Be–H bonds (a total of ten

electrons), leaving eight electrons for three C–Be and one C–B single

bonds. That would be a straightforward Lewis description of the

tetrahedral conformation, but it is quite inadequate for the planar

structure. There are, for example, a substantial p contribution to the
bonding and clear evidence of multicenter bonding involving

ligand-ligand (i.e. Be–B) interactions, as well.

The small Be(b)–B Wiberg bond indices (WBI) B0.20(2) in

Table 1, the short Be(b)–B bond distances, and the large

Be(a)–C–Be(b) bond angles (Table 1, and Fig. 4) are consistent

with a significant degree of bonding between the Be(b) atoms

and the B center. The non-linearity of the C–Be(b)–H fragment

is evidence of a substantial rehybridization at the Be(b) center

(from sp toward sp2) in order to facilitate the Be(b)–B interaction.

The bending also signals the possible influence of repulsive H� � �H
interactions between the H atoms on the Be(b) and the B centers.

However, the stabilization won by forming the Be(b)–B bonds

more than compensate for the costs in energy of such H� � �H
interactions.

To be sure, the Be(b)–B bonds that are formed during the

optimization are not simple 2-center–2-electron bonds. There

are not enough electrons to go around. The ptC center in

Fig. 4 is supported by a nuanced bonding pattern that includes

two 3-center (B–Be(b)–C) 2-electron bonds. The large negative

charge on the C center (B�1.60e), the positive charge at Be(b)
(B+0.82e), and the low C–Be(b) bond order (Table 1) suggest

that the electron density is polarized, however, towards the

C–B region.

The C–B interaction is particularly interesting, since the

C–B s component is reinforced by a substantial p-type
interaction in which the C pz electrons are delocalized into

the empty B pz orbital on boron. The structural evidence of

this p-contribution to the bonding includes a relatively short

Table 1 Computed distances in angstrom (Å) and angles in degree (1)
units, Wiberg bond indices (WBIs), point charges (q/e), vibrational
frequencies (n/cm�1), and energy differences between the highest
occupied (HOMO) and the lowest unoccupied (LUMO) molecular
orbitals (DEH–L/eV) for planar C(BeH)3(BH2) at three different levels
of theory

B3PW91 MP2(full)
CCSD

6-311+G* cc-pVTZ 6-311+G* cc-pVTZ cc-pVTZ

C–Be(a) 1.618 1.617 1.625 1.615 1.626
C–Be(b) 1.667 1.668 1.677 1.666 1.677
C–B 1.457 1.454 1.469 1.457 1.463
Be(b)–B 1.906 1.896 1.909 1.893 1.914
Be(a)–H 1.330 1.329 1.330 1.320 1.329
Be(b)–H 1.335 1.334 1.333 1.324 1.333
B–H 1.229 1.226 1.227 1.215 1.223
H–B–H 114.5 114.7 114.7 115.0 115.0
Be–C–Be 105.2 105.5 105.6 105.7 105.2
WBIs
C–Be(a) 0.51 0.51 0.48 0.48 0.48
C–Be(b) 0.51 0.51 0.47 0.47 0.49
C–B 1.55 1.57 1.43 1.44 1.52
Be(b)–B 0.21 0.22 0.20 0.20 0.19
Be(a)–H 0.84 0.84 0.81 0.79 0.81
Be(b)–H 0.88 0.88 0.85 0.84 0.86
B–H 0.82 0.81 0.79 0.79 0.84
C center 3.13 3.16 2.90 2.91 3.04
Charges/e
qC �1.66 �1.62 �1.61 �1.59 �1.63
qBe(a) 1.03 1.04 1.03 1.05 1.05
qBe(b) 0.82 0.81 0.82 0.83 0.84
qB �0.09 �0.13 �0.09 �0.10 �0.08
qH(a) �0.39 �0.39 �0.39 �0.41 �0.40
qH(b) �0.32 �0.32 �0.32 �0.34 �0.34
qH 0.05 0.06 0.04 0.04 0.03
Lowest n/cm�1 129.0 128.9 149.5 146.1 135.7
DEH–L/eV

a b 11.5 12.0 12.0

The HOMO–LUMO gaps obtained from the B3PW91 density func-

tional theory (DFT) method werea 6.70 eV and b 6.61 eV. However,

we exclude these values from the table since it is well known that gaps

obtained from several DFT methods are generally unreliable.

Fig. 3 MP2(full) energies (relative to the global minimum) and

geometries obtained using the cc-pVTZ basis sets for the lowest energy

isomers of the C(BeH)3BH2 molecule obtained from a general search

of the potential energy surface using the GEGA computational

program, and reoptimized at the MP2(full) level of theory. The

corresponding B3PW91 values are included in the supporting infor-

mation (Fig. S.2).w

Fig. 4 A simple Lewis structure and computed geometrical data for

the planar tetracoordinate C(BeH)3BH2 molecule optimized at the

MP2(full)/cc-pVTZ level of theory. All the bond lengths are in

angstrom (Å) units. Additional bonding and frequency data are in

Table S.2 in the supporting information.w
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C–B bond distance (B1.454 Å–1.469 Å in Table 1) compared

to a typical C–B single bond length of 1.58 Å or the sum of the

covalent radii34 for C (0.85 Å) and B (0.75 Å) (=1.60 Å).

Moreover, the WBI for the C–B bond is well in excess of 1.0 Å

for all five of the model chemistries in Table 1, and natural

bond orbital analyses confirm, as well, the presence of this p
component in the C–B bond. The elongation of the B–H bond

(1.22 Å; cf 1.17 Å for the sum of the B and H radii)34 is

consistent, too, with a p type interaction at B in addition to the

s bonding.

The relatively short C–Be bonds (at 1.62 Å and 1.67 Å in

Table 1, cf. 1.77 Å for the sum of radii in ref. 34) suggest that p
delocalization from the central C atom is not isolated to B.

The Be pz orbitals are involved to a lesser extent, as well, as is

also apparent in the HOMO shown in Fig. 2b.

Consistent with the criteria that we outlined in the intro-

duction, therefore, and in line with the observations of

Boldyrev et al. for pentatomic main group clusters,14,16 the

C(BeH)3BH2 molecule and other 18e systems in Fig. 1

combine a range of s and p covalent interactions to stabilize

planar (and near planar) conformations over the classically

expected tetrahedral type geometry. In the systems considered

herein, this is achieved with simple substituents, and without

engineering the chemical environment using strain, aromaticity,

or externally imposed constraints to clamp them in place.

The planar tetracoordinate conformation of the

C(BeH)3BH2 molecule optimizes the bonding between the C

center and the electropositive terminal groups, which are

substantial s donors (notice the large negative charge at C

in Table 1) and p-acceptors. In particular, the molecule

utilizes, quite creatively, multicenter interactions to stabilize

the planar geometry. We comment briefly on the structure and

bonding in the other molecules shown in Fig. 1 (a–i) in the

supporting information.w

3.4. A preliminary assessment of transferability

3.4.1 The case of C(MgH)3BH2. To test the transferability

of our observations for the bonding and geometrical preferences

in C(BeH)3BH2 we carried out a search for the global minimum

of the isoelectronic C(MgH)3BH2 system, and re-optimized the

most stable isomers at the MP2(full) and B3PW91 levels that we

employed for the lighter Be analogue.

Indeed, the Mg systems converged readily, as well, to planar

tetracoordinate C-centered structures (see the MP2 results in

Fig. 5 and 6). The DFT (B3PW91) calculations (see Fig. S.3)

give roughly the same energies for isomer (b) in Fig. 6 and the

third lowest energy structure in Fig. 5, which is non-planar.

However, the preference for the planar tetracoordinate geometry

in the global minimum energy structure appears to be well

established at the MP2(full) level (Fig. 5).

3.4.2 The C(BeH)n(BH2)4�n is planar only when n = 3. We

wanted to understand better the possible influences of

substitutions on the stability of the ptCs, and C(BeH)3BH2

in particular. So, we carried out a series of geometrical

optimizations on the five C(BeH)n(BH2)4�n molecules for

n = 0 to 4, where the 18e structure (3j) is attained only when

n= 3. Our results are illustrated in Fig. 7. Again, all five of the

structures were optimized starting from the tetrahedral-type

conformation at the C center.

The first structure in the series, C(BH2)4, is non-planar, which

is consistent qualitatively with the much earlier observations in

ref. 20 that the planar structure is not preferred for that

molecule. Notice, however, that the lowest energy geometry

that we obtained for C(BH2)4, with no imaginary frequency, has

three H bridges linking three of the boron atoms in the

molecule, reminiscent of the H bridges in B2H6. Moreover,

the isolated BH2 group in the compound is coplanar with one

face of the tetrahedron formed by the central C atom and the

bridged B atoms. Curiously, we have been unable to find this

stable C(BH2)4 isomer identified anywhere else in the literature.

The second structure (where n = 1) is a distorted pyramidal

structure in which the BeH group is tilted somewhat towards

one of the BH2 centers (as indicated by the dashed line). The

n = 2 case is an interesting C2 structure in which we have

identified in the assignment of the bonds two bridging hydrogens

between the Be and B atoms.

The planar tetracoordinate C center is achieved only when

n = 3. In that case, the entire structure is flat (Fig. 3, 4 and 7)

Fig. 5 MP2(full) energies (relative to the global minimum) and

geometries obtained using the cc-pVTZ basis sets for the lowest energy

isomers of the C(MgH)3BH2 molecule. The structures were identified

in a general search of the potential energy surface using the GEGA

computational program, and reoptimization at the MP2(full) level of

theory. The corresponding B3PW91 values are included in Fig. S.3.

Fig. 6 Geometrical data for the planar tetracoordinate C(MgH)3BH2

molecules optimized at the MP2(full)/cc-pVTZ level of theory. All the

bond lengths are in angstrom (Å) units. Additional data are provided

in Table 1 and S.2 in the supporting information.w
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and the tetrahedral conformation is, as we mentioned above,

not even a local minimum on the potential energy surface of

the molecule. Replacing the remaining BH2 group by a fourth

BeH unit to form C(BeH)4 gives the classical tetrahedral

geometry.

3.4.3 Electron count alone is not enough. The 18-electron

count is not unique for planar molecules. Several arbitrary

assemblies of periods one and two atoms are possible that

would achieve this electron count. Moreover, as we have

already shown in Fig. 1(f–i), the number of electrons alone

is no guarantee that a planar tetracoordinate minimum is

achievable. The size of the atoms and the number of valence

orbitals in the system are decisive as well. The planar tetra-

coordinate C5
2� bow-tie global minimum that Merino et al.17c

identified computationally in 2004 is a 22e species (with its

lowest vibrational frequency = 178.4 cm�1 at the B3PW91

level; Fig. 8). The neutral 20e C5 bow-tie species is a third

order saddle point, and the 18e C5
2+ species examined at the

same level of theory reveals a very large imaginary frequency

(nmin = 620.5i cm�1). Incidentally, we should mention that the

vibrational motion associated with the imaginary frequency

obtained for that bow-tie C5
2+ transition state geometry moves

the central atom of the bow-tie out of the middle to form a

V-shaped chain that optimizes ultimately to give the simple

5-carbon chain, which is, indeed, a minimum on the C5
2+

potential energy surface (Fig. 8). This one-dimensional structure

is interesting but not surprising since 5-carbon and even longer

carbon chains have been observed experimentally.35

Building from the C5
2� bow-tie bonding motif, we found

that, in fact, the corresponding C(BH)4
2� 22e species in which the

four outer C atoms of C5
2� are each replaced by a B–H fragment

is stable, too, in the planar tetracoordinate arrangement (Fig. 8).

Interestingly, if we maintained the 22e count in C(BH)4
2�,

and add a proton (to obtain C(BH)3BH2
�, which is isovalent

with C(BeH)3BH2), the bow-tie unravels to give a new minimum

energy structure that preserves the ptC center with a very different

geometry (see Fig. 8). Finally, if we remove four electrons to

reduce the electron count to 18, the stable outcome is a

C(BH)3BH2
3+ system that is isoelectronic with and isostructural

to the planar C(BeH)3BH2 structure in Fig. 4

These observations evince the versatility and abundance

of planar tetracoordinate carbon compounds in pentatomic

frameworks (and some augmented by hydrogens). They support

the claim, too, that there is no unique electron count that must be

achieved to obtain ptC centers. The geometry evolves with the

electron count, and the number of valence orbitals in the

molecule. Put another way, different electron counts privilege

different planar conformations. So, various electron counts may

be considered as we probe computationally and experimentally -

by photoelectron spectroscopy and other methods - for simple

neutral molecules and ions with ptC centers. These ptC systems

bring to mind, in fact, the non-classical carborane structures

pioneered by Berndt et al.36 Those somewhat more complicated

molecules and the lead compounds identified herein may be

instructive for the possible synthesis of simple main group

compounds with stable ptC.

3.5 Viability of the proposed structure and the persistence of

the planarity

Hoffmann et al. have identified the propensity for dimerization as

one of the definite tests for the viability of novel compounds.37 An

investigation that started offwith three different relative orientations

of two C(BeH)3BH2 monomers (see Fig. 9), turned up two

energetically identical stereoisomeric dimers with no imaginary

frequency. At the B3PW91/cc-pVTZ level, the dimerization

energy (Edimer – 2Emonomers) corrected for basis set super-

position energy is �1.11 eV.

In both of these structures, the two C(BeH)3BH2 monomers

are linked by a Be–H–Be and a Be–C–Be bridge. The C center

invoved in the bridge is pentacoordinate, while, remarkably,

the other C center remains planar tetracoordinate in the dimer

(see Fig. 9).

So, although dimerization is likely for electron deficient

compounds such as those considered in this work, our results

suggest that the observed planarity in the monomer units can

Fig. 7 Minimum energy geometries and the lowest vibrational

frequencies obtained at the B3PW91/cc-pVTZ level of theory for the

C((BeH)3)n(BH2)4�n molecules for n = 0 to 4. All five structures were

obtained by starting with a locally tetrahedral arrangement of the

bonds to the C center.

Fig. 8 Structures and the numbers of imaginary frequencies obtained

at the B3PW91/cc-pVTZ for the several test C5 and small isoelectronic

ions: C(BH)4
2�, CB4H5

�, CB4H5
3+.
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persist in the dimers, and may be observable even in higher

order oligomers, as well.

4. Summary and outlook

An unprecedented class of 18e compounds (Fig. 1) has been

identified for which a (nearly) planar conformation is substantially

more stable than the tetrahedral type conformation. Indeed, the

latter alternative is not even a local minimum on the potential

energy surfaces of the systems. The C(BeH)3BH2, and

C(MgH)3BH2molecules (Fig. 4 and 6), are particularly significant.

The global minimum energy structures for both species (and even

some of the higher energy isomers) are completely flat, each with a

planar tetracoordinate carbon center.

These observations confirm that the 18e count in certain

small main group compounds favors quite strongly the formation

of ptCs. However, an 18e count is not a unique condition (neither

necessary, nor sufficient) for stabilizing ptCs in simple compounds.

Like the C5
2� anion identified previously,17c we find, for instance,

that the 22e C(BH)4
2�, and CB4H5

� anions, as well as the 18e

CB4H5
3+ cations (Fig. 8), all prefer a planar tetracoordinate

arrangement at the C center. The neutral systems identified in this

paper are distinguished in part by their strong preference for the

planar or near planar geometries even though simple bonding

models predict classical Td type geometries for them.

The investigations triggered by Hoffmann et al.4 into unusual

bonding patterns at C centers in molecules continue on both

fronts. Synthetic chemistry has to be relied on to confirm or

refute theoretical predictions of non-classical coordinations in

compounds; the computational prediction of molecules is a job

best held by the brave and the humble. Even so, other exotic

and synthetically challenging systems with planar penta- and

hexa- coordinate carbon centers have already been added to the

discussion of bonding possibilities in carbon compounds.

In this work, we have identified a broad class of neutral 18e

singlet molecules that are expected to be locally tetrahedral at

the C center (like CLi4, C(BeH)4, and the CHn(BH2)4�n
compounds),11 but which strongly prefer the planar tetracoordinate

geometry over the three-dimensional alternative. To the best

of our knowledge, the minimum energy species in Fig. 1,

3, and 5, represent the first class of neutral compounds

(as distinguished from metal clusters16 or ions)17 to show this

inversion (with the ptC more stable than the Td conformation)

on the potential energy surface.

Our observations on this class of simple compounds suggest

new potential directions in the exploration of planar tetra-

coordinate main group systems. They affirm the insights of

others who have, over the past few decades, identified simple

neutral species with low barriers to bending.11 Despite the

practical challenges in working with beryllium experimentally,

the grand diversity in the stable planar structures identified in

Fig. 1, 3, 5, and 8 present new challenges for experimental

synthesis, and suggest the likelihood of detecting new ptC

systems in gas phase or matrix isolation studies. And room for

more theoretical investigation of non-canonical coordination

at C centers is apparent as well.

The stability of the C(BeH)3BH2 and C(MgH)3BH2 mole-

cules in particular, suggest that heavier 18-electron systems

with the general formula ME3E
0, where M is a group 14 atom,

and E = �MgH, or E0 = �AlH2, for example, may be planar

as well. To be sure, the stability of the period 2 compounds

does not necessarily mean that the planar conformation will be

preferred in heavier ME3E
0 analogues, since shell structure

and atomic sizes change dramatically in the main group

beyond period 2. Yet, the stability of the class of systems with

ptCs that we have identified (including the C(BeH)3BH2 dimer

and C(MgH)3BH2) gives us reason to hope that intriguing ptC

compounds will be identified and, in time, realized.

We find, admittedly, no obvious route to synthesizing the

C(BeH)3BH2 monomer (or its analogues). However, as simple

substituted methanes with uncomplicated (�BeH and �BH2)

subsituents they stand as theoretical lead compounds that in the

words of one reviewer ‘‘could act as a starting point’’ for the

synthesis of molecules with planar tetracoordinate carbon centers.
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