EZRICHMOND

SchooloArts & Sciences University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

1994

Analytic Besov Spaces and Invariant Subspaces of
Bergman Spaces

William T. Ross

University of Richmond, wross@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications
& Part of the Algebra Commons

Recommended Citation

Ross, William T. "Analytic Besov Spaces and Invariant Subspaces of Bergman Spaces." Indiana University Mathematics Journal 43, no. 4
(1994): 1297-1319. doi:10.1512/ium;j.1994.43.43056.

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for
inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information,

please contact scholarshiprepository@richmond.edu.


http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Analytic Besov Spaces and
Invariant Subspaces of Bergman Spaces

WiLLiaM T. RosS

ABSTRACT. In this paper, we examine the invariant subspaces
(under the operator f — zf) «# of the Bergman space L2 (G\T)
(where 1 < p < 2, G is a bounded region in C containing D,
T is the unit circle, and D is the unit disk) which contain the

characteristic functions xp and xg, i.e. the constant functions
on the components of G\T. We will show that such .# are

in one-to-one correspondence with the invariant subspaces of
the analytic Besov space AB, (g is the conjugate index to p)
and then use results of Shirokov to describe such .#. When
p > 2 the situation becomes more complicated and capacity
considerations are needed.

1. Introduction. For 1 < p < 0o and a bounded open set U C C, the
Bergman space L2(U) is the space of analytic functions f on U for which

/ |f(2)|P dz dy < oo.
U

The subspaces M C LE(U) with ze#M C M (We will call such subspaces in-
variant subspaces.) are so fantastically complicated that they defy a reasonable
characterization. In this paper, we wish to continue an investigation begun in
[2], [23] of the invariant subspaces

Xc € M C LE(G\K),

where K is a compact subset of a bounded region G C C and Area(K) = 0. When

1 < p < 2and G\K is connected, «# has a relatively simple characterization as

M = LP(G\E) for some closed E C K. When p > 2 and G\K is connected,
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1298 W. T. Ross

not all A are of the form L2(G\E) but instead take the form
_—_LP
M =\ JIE(G\E,) ,
n

where {E,} is an increasing sequence of closed subsets of K.

When G\ K is not connected, the problem becomes much more complicated.
In this paper we begin to investigate this situation in the special case when G is
a region containing the closure of the open unit disk D, K is the unit circle T,
and the invariant subspace # has the property

XG> XD € M.
(i.e. M contains the constants on the components of G\T).

Remark. Throughout this paper, a ‘region’ will be an open connected
subset of the plane and a ‘domain’ will be a open subset of the plane (it need
not be connected).

It will turn out, via annihilators and the Cauchy transform, that such in-
variant subspaces 4 will be in one-to-one correspondence with the invariant
subspaces (under multiplication by () of the analytic Besov space ABj, (g is the
conjugate index to p) of Hardy space H? functions with

// f(C f(§ ? |dc||de] < oo.

When 1 < p < 2, then ¢ > 2 and AB, becomes an Banach algebra of continuous
functions on T and the invariant subspaces are the closed ideals of AB, which
have been characterized by Shirokov [26] as

— J(E,I)={f € AB,: flg =0, f/I € H®},

for some closed set £ C T and inner function I € H*° (D). Moreover, if I = BS,,
is the usual factorization of the inner function I into a Blaschke product B, with
zeros {ay}, and a singular inner function S,,, with positive singular measure p,
then we set

spec(l) = clos{ax} U supp(u).

With this notation, it is known (see below) that the ideal ¥ (E,I) # (0) if and
only if the following condition is satisfied:

(1.1) /Tlogdist((,EUspec(I))]dCl > —00.



Analytic Besov Spaces and Invariant Subspaces of Bergman Spaces 1299

Thus for 1 < p < 2, every invariant subspace xp, xg € # C LE(G\T) can
be written as M g g ) and we will show that M g gy = LE(G\T) if and only

if #(E,I)=0. Our first theorem identifies M 7 g ).

Theorem 1.1. Let1<p <2 and xg,xp € M C LE(G\T) be invariant.
Then there is a closed set E C T and an inner function I € H*°(D) with

M = M g5 1) = I5(G\E)\/ {Xf%u;(a) : ¢ inner, é € H°°}

Moreover, M # LP(G\T) if and only if condition (1.1) is satisfied.

Here we use the notation A \/ B to denote the closed linear span of A and B.
Notice that for an inner function ¢ and |z| > 1, we have ¢(z) = ¢(z*)* (a* = 1/a)
and hence 1/|¢(z)| <1 for [z| > 1. Thus xg\p/¢ € LE(G\T). Throughout this
paper when use the term inner function, we mean a bounded analytic function
on the unit disk D which is unimodular a.e. on the unit circle T (in contrast
to a inner function defined on a general domain). We can refine Theorem 1.1
as follows: If the inner function I is the least common multiple (see definition
below) of the inner functions I; and I (e.g. Iy =1,I, =1I,0or Iy = B, I, = S,),
then

_ XG\D XG\D
M g5 1) = IE(G\E)\/ I—lLﬁ(G) \Y —TQ—L’Q(G)'

For p = 2, the problem becomes more complicated since the analytic Besov
space ABs (often called the Dirichlet space) is no longer an algebra of continuous
(or even bounded) functions and the invariant subspaces of are not completely
understood. It is a result of Beurling [6] that for f € ABj, the radial limit

lim £(rC)

exists quasi-everywhere (q.e.), that is to say everywhere except possibly on a set
of Bessel capacity (see definition below) zero. For a set E C T, define ABs g to
be the set of f € ABy with radial limit zero g.e. on E. One shows [7] that AB; g
is a closed invariant subspace of ABs and it is an open question as to whether
or not all invariant subspaces of ABs are of the form

g;E,I =JH? ﬂABQ,E
for some inner function I and set £ C T. We will show, as in the ¢ > 2 case,

that there is a one-to-one correspondence between the invariant subspaces of
ABs and the invariant subspaces

Xp,XG € M C Lg(G\T).
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We will then then identify # & B Thus a complete description of the invariant
subspaces of ABy as J g will yield a complete description of the invariant
subspaces #. These results generalize to p > 2.

Before proceeding, we mention that the condition requiring both xg and xp
belong to 4 is not a superfluous one. Without it, the problems becomes nearly
impossible to solve as can be seen by the following example: By [4], Corollary
6.9 and Proposition 5.4, given any n € NU {oco} there is an invariant subspace
Ny, of L2(D) with dim(4,, /2.4 ,,) = n. Consider the invariant subspace

(1.2) Moy = xp o+ L2(G).
One shows that 4, is closed in L2(G\T) and that
dim(M ) zeM ) = dim( ANy /2.4 ) + dim(LE(G)/2L2(G)) = n + 1,

making 4, difficult to understand. By adding the condition xp € 4, we avoid
such pathologies as A ,.

2. Preliminaries.

2.1. Sobolev and Besov spaces. Throughout this paper, G will be a
Jordan region in the complex plane C (We make this restriction on G to avoid
needless technicalities), D = {z : |2| < 1}, and T = {z : |2|] = 1}. For the
moment, we let 1 < p < 2 and ¢ be the conjugate index to p (so ¢ > 2). The
dual of L?(G) = LP(G,dA), where dA is area measure, will be identified with
L%(@) via the bilinear pairing

(2.1) ()= [ fada

Define the Sobolev space W{%(G) as the closure of C§°(G) (infinitely dif-
ferentiable functions with compact support in G) in the norm

i1, = ([ 191t dA)l/q.

Since g > 2, the Sobolev imbedding theorem yields that W{°(G) is a Banach
algebra of continuous functions [1], p. 115. Here we mean that every function
has a continuous representative. The following describes WZ°(G\E), where E
is closed, in terms of zero sets. We refer the reader to [3] for a proof.

Proposition 2.1. For ¢ > 2, WI°(G\E) = {f € W8°(G) : f|g = 0}.
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This next result of Havin [12] will be used later and relates the Bergman
and Sobolev spaces.

Lemma 2.2. (Havin) Let U be a bounded open set and1 < p < oco. Then
f € LY(U) satisfies
/ uf dA=0 Yu € LE(U)
U

if and only if there is an F € W°(U) with 8F = f.

Define the Besov space By as the space of functions f on T with finite norm

151, = 1wyt ([ [ | P aciias ) ™,

and note (since ¢ > 2) that B, can be continuously embedded into Lip;_5,(T)
and hence B, is a Banach algebra of continuous functions on T [5]. Define the
analytic Besov space

AB, = B,NHY,

where H? is the usual Hardy space.

Remark. Tt is known [17] (see [28], Chapter 5, Section 5) that the analytic
extension of f € ABy, given by the Poisson kernel, belongs to the L?-Dirichlet
space Dy of analytic functions on D with

1/q
1512, = lacrjacy + ( [ 177 44)) <o

and moreover, the boundary values of f € D, on T belongs to AB, with the LI-
Dirichlet norm equivalent to the Besov norm. Thus we may identify f(¢) € AB,
with its analytic extension f(z) € D,.

The spaces W{°(G) and B, are related through restriction and extension.
By standard trace theory [16], p. 182, [18], the trace operator

T: WP%(G) — By, (Th)(C) = h(()

is a well defined, continuous, surjective linear operator with, by Proposmon 1.
ker(T) = W¥°(G\T). (Note that h(¢) is well defined since ¢ > 2 and so W{*° (G)
is a space of continuous functions.) Thus T' will induce the continuous 1nvert1ble
operator

(2.2) T: Wi (G) /Wi (G\T) — By, TIh](¢) = h(C),
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where [h] is a coset of W*(G)/WZ°(G\T). By the above remark
(23)  TTUABy) = {f e W(G) : flx € AB,}/WEO(G\).

2.2. Ideals of the Besov space. Since AB, (¢ > 2) is a Banach algebra
and analytic polynomials are dense, the (-invariant subspaces are precisely the
ideals of AB, and have been characterized by Shirokov [26] as follows:

Theorem 2.3. If J is closed ideal of ABy, there is a closed set E C T
and an inner function I with

F=F(E I ={fcAB,: flz =0, f/I € H®}.

Remark.

(i) The set E is the common zeros of 4 and the inner function I is the greatest
common divisor of the inner parts of the functions in & [15], p. 85.

(i) If f € AB, with f/I € H*®, then f/I € AB, with ||f/I||s, < C| flls,. In
fact, division by the inner factor is a continuous operator on other spaces
of ‘smooth’ functions on the disk [13].

(iif) From basic Hardy space theory [15], Chapter 5, an inner function I can be
factored as I = BS,,, where B is a Blaschke product with zeros {ax} C D
(repeated according to multiplicity) and S, is a singular inner function
with positive singular measure u. Moreover [15], p. 68-69, S, cannot be
continuously extended from D to any point in the support of u. Hence, if
f € AB, with f/I € AB,, then f must vanish on the support of i as well
as the closure of {ax}, i.e. on spec(I).

For a general closed set £ C T and inner function I, the ideal ¥ (FE,I) might
be zero. To understand when this happens, we make the following definition: A
closed set E C T is called a Carleson set if

/logdist((, E)|d¢| > —o0.
T

It is clear from the above condition that F has Lebesgue measure zero and it is
known [7] that a F is a Carleson set if and only if E has Lebesgue measure zero
and

Z |I,| log | I,| > —o0,
n
where {I,,} are the complimentary arcs of E.

Proposition 2.4. The ideal F(E,I) is non-zero if and only if condition
(1.1) is satisfied.
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Proof. The proof is essentially known (and true for other ideals of analytic
functions [29] [30]) but not explicitly stated for the Besov space, so we outline
it here. If condition (1.1) is satisfied, then we can find a non-zero ¢ € A® ()
analytic on D and continuous on D Vn € NU {0}) with ¢~}(0)NT = E and
¢/B € A [29] [30], Theorem 4.1. Notice that condition (1.1) implies that the
support of p is a Carleson set and we thus can apply [30], Corollary 4.8, to obtain
a non-zero ¢ € A® with ¢/S, € A*. Thus 0 # ¢y € F(E,BS,).

For the converse, it is known that if f € AB, (¢ > 2), then f satisfies the
Lipschitz condition [1], p. 97-98,

(2.4) If(2) = f(w)] < Clz —w*"%9 2z, weD.

In particular, if f is a non-zero element of % (E, BS,), then by Jensen’s inequal-
ity [15], p. 51-52,

/T log |£(¢)] [d¢| > —oo
and by (2.4), along with the fact that f vanishes on F U spec(I),

log | f(¢)] < (1 —2/q)logdist(¢, E Uspec(I)) + C.

Hence condition (1.1) must be satisfied. O

3. The correspondence. We now relate our invariant subspaces of the
Bergman space with the invariant subspaces of the Besov space. If xg € M C
LP(G\T) is invariant, then # contains the polynomials and hence (since G is a
Jordan region and polynomials are dense in L2(G))

LP(G) C M C LE(G\T).
Thus,
LP(G\T)* C M+ C LE(G)*

with, by our bilinear pairing (2.1), z M C M*. Here for a set X C LP(G) we
let

Xt ={ge L) : (f,g) =0 Vf € X}.
Thus, there is a one-to-one correspondence between the invariant subspaces

xG € M C LP(G\T)
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and the R-invariant subspaces of the quotient space
LR(G)/LE(G\T)*, Rlg) = [zg].

Our first result (which is also found in [2]) says that R is similar to M¢ (multi-
plication by () on the Besov space B;. We will include a proof here so we can
refer to parts of it later.

Theorem 3.1. The linear transformation
J: LE(G)*/LE(G\T)* — By
defined by

Tg©) =7 [ 92 a0z

T Jgz—C(C

s a continuous invertible operator with JR = M¢J. Thus there is a one-to-one
correspondence between the invariant subspaces xg € M C LE(G\T) and the
lattice of (-invariant subspaces of By.

Proof. For any bounded open set U, we can apply Havin’s Lemma (Lemma
2.2) and the Calderon-Zygmund theory [3], p. 266, to get that the operator

0: Wi(U) - LE(UY*

is continuous and invertible with inverse given by the Cauchy transform

(3.1) @g)(w) = Cow) = -+ [ 93 a0,

m zZ— W

If R, is multiplication by z on LE(U)* and M, is multiplication by z on
W2(U) (both well defined and continuous) then, noticing that 8(zf) = 28 for
all f € WEO(U), we have

(3.2) R,0 = OM,.

The Cauchy transform C' = 9~ will induce the continuous invertible oper-
ator

C: LE(G)H/LA(G\T)* — Wi (G) /Wi (G\T).

Notice that R, and M, will induce the multiplication operators R and M on
the cosets of L2(G)/LE(G\T)*+ and W°(GQ)/WZ°(G\T) respectively with, by
(3.2),

CR=MC.
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Thus if we define
J: LE(G)H/LE(G\T)* — B,

by J =T o C (recall the definition of T' in (2.2)), we obtain

Tl = - [ £ ane)

and JR = M.J, where M, is multiplication by ¢ on By. O

Corollary 3.2. If xp,xc € M C LP(G\T) is invariant and g € M 4
then

Tl =1 | I a2,

T Jow 2~ ¢

The function J[g] € ABq and hence there is a one-to-one correspondence between

the invariant subspaces xp, Xa € M and the ideals of the analytic Besov space
AB,.

Proof. If xg,xp € M C LP(G\T), then by the invariance of ., we get
LE(G) \/ xnLE(D) C M C LE(G\T).
Taking annihilators one obtains
LE(G\T)* C oM™ C LE(G)* N (o LE(D))*

Thus if g € A", then Cg € W(G) and since M+ (xpL2(D))*, we have

0= (glz=N") = [ Lsaa

for all || > 1 (Note that (z — X\)~! € LE(D) for 1 < p < 2). Thus

J(9)(Q) = (TCy)(¢) = = / 9_qa.

T Jew Z = ¢

The above function belongs to B, and is analytic on D, hence J[g] € AB,. DO
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Notation. If & is an ideal of AB; we let .# g be the unique invariant
subspace of LP(G\T) which contains x¢ and xp and corresponds to & via J.
One checks that

(3.3) M g = (Bf € WPO(O) : flr € FH™

4. Invariant subspaces of Bergman spaces. Before proceeding to our
main results, we first make a comment about inner functions. If I is an inner
function and I = BS,,, then [ is analytic for all points in the complex plane with
the exception of the support of p, {1/dy}, and the accumulation points of {ax}.
Moreover if w* = 1/w, then for |z| > 1, I(z) = I(z*)*. Thus |I(z)|~* <1 for all
|z| > 1 and so xg\p/I € LE(G\T). We also define V'(I) to be the set of inner
functions ¢ which divide I, that is I/¢ € H™.

Theorem 4.1. Let1 <p <2 and xg,xp € M C LE(G\T) be invariant.
Then there is a closed set E C T and an inner function I with

M= M 5,1 = IR\ [P E(G) ¢ € V(D)
Moreover M # LE(G\T) if and only if condition (1.1) is satisfied.

Proof. By (3.3), the unique subspace A g g, ) corresponding to FJ(E,I)
is
M g g1y = Off eW{(G) : flr € F(E,D)})*.
To finish, it suffices to show

B{f e WP°G): flr € F(B,D)})*

-z VX2 eevin ).

Let h € LP(G\E) and f € W2°(G) with f|r € #(E,I). Then by Proposi-
tion 2.1, f € W{°(G\E) and so by Havin’s Lemma, Lemma 2.2,

(0f,h) =0.
Thus by (3.3), Lg(G\E) C '%e(!](E,I)‘

Let f € W2°(G) with f|r € #(E,I). Then for ¢ € V(I),

(4.1) /éfm dA = lim 9 4a
el ¢ e=0 Jon{jz]<14e} @
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= lim 5<i> dA.
=0 Je\{jzl<1+e}  \ 9

By Green’s theorem [31], p. 54, and the fact that f = 0 on the boundary of G,
this becomes

— lim 1/ fdz
€024 |z|= 1+.»5¢S

By the Lebesgue dominated convergence theorem and the fact that f|r/¢ € H*®
we obtain

f

—'Z ¢dz =
By (3.3) we get
XG\D
¢\ € Mg g1y

Using the invariance of # g g 1) and the density of polynomials in LE(G), we
have

wn eV {XSPre)ee v} c Mp

Taking annihilators and then C = 87! of (4.2) will yield

(4.3) CMlB s CC (L{:;(G\E)l N { (%Lﬁ(G))L pe V(I)}) :

To prove equality in (4.3) and thus finish the proof, we let g belong to the right
hand side of (4.3) and show that g € Ceﬂf&;@'(E’I) by showing g|t € Z(E, I), see
(3.3). To do this, notice from (4.3) that g = C(dg) with

dg

(4.4) S SdA=g(\) VA€E
G R~
dg o
(4.5) / dA=0 VneNU{0}.
G\D T°
By (4.5),

/ %9 naa =
ow I
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= lim @z" dA
e=0 Ja\(lzl<14er 1

. g
= lim o(z2") dA Vn e NU{0},
=0 Jo\{lzl<1+¢) <I ) o

which, by Green’s Theorem [31], p. 54, becomes

. 9 n
0——;11%2—%_/'/1':14—6 T dz VYn e NU{0}.

By the Lebesgue dominated convergence theorem we obtain

__ L (9.
0= % TIz dz VYn e NU{0},
which, by the F. and M. Riesz theorem [15], p. 47, yields g|r/I € H*. Thus
glr/I belongs to ¥ (E,I) and we are done.
Finally, notice that from (3.3) and Proposition 2.1 that #(E,I) =0 if and
only if M g 5 1y = LE(G\T). So from Proposition 2.4, M g g 1) # LE(G\T) if
and only if condition (1.1) is satisfied. m|

We say that an inner function ¢ is a multiple of an inner function o if
¢/ € H*®. We say an inner function I is the least common multiple of the
inner functions I; and I if I is a multiple of I; and I5 and if the inner function
¢ is a multiple of I3 and I, then ¢ is a multiple of I.

Corollary 4.2. If the inner function I is the least common multiple of the
inner functions I1 and Iy, then

XG\D ;p XG\D ;5
Il La(G) \/ I2 La(G)'

'/%gi(E,I) = LY (G\E) v

Proof. As in the proof above, we need to show

(B(f € Wi*(G) s flx € F(E,DP*
R G RAVEESHEAVES S H )

Using the same proof as above, one shows

(46)  LE(G\E) C (0{f e W(G) : flv € F(B,)})* = M g(p 1.
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Letting f € W2°(Q) with flr € F(E,I), we see that f|r/I; and f|r/I5 belong
to H*, and thus by (4.1)

XG\D XG\D
L\ a4 25
I1 an I2

belong to M g g . Now apply (4.6), the invariance of & g g ), the density
of polynomials in L2(G), to show

X
ORI T T ERACIAVE S HO AR H(o)

Taking annihilators and then C' = 87! of (4.7) will yield

1 1
(4.8) CM g C WP(G\E)NC ((K?ﬂLg(GQ n (’—‘%%Z(G)) ) .
1 2
To prove equality in (4.8), and finish the proof, we let g belong to the right
hand side of E4.8) and show g € Ce/%ng(EYI) by showing g|t € #(E,I). From
(4.8), g = C(0g) with

1 dg
_;/Gz_/\dA_g()\)—O YA€ E,

/ 99 ngA=0 vneNU{O},
e\ 11

/ 8—gz”dAzo VYn € NU {0}.
o\ 12

Proceed as in the proof above (using the F. and M. Riesz Theorem) to show that
glr/I1 and g|r/I2 belong to H* (Just replace the inner function I in (4.5) with
I, and I respectively.). Letting I, be the inner part of g|r, we see that I, is a
multiple of both I; and Is. Since I is the least common multiple of I; and Iy,

then I, must be a multiple of I, making g/I € H*®. Thus g|yr € ¥ (E,I) and we
are done. O

5. The classical Dirichlet space. For ¢ > 2, every non-zero subspace of
ABy is an ideal of the form

IH®N{f € AB, : f|g =0}
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for some inner function I and Carleson set E. For ¢ = 2, AB5 is a well studied
space of analytic functions which is not an algebra and whose invariant subspaces
are not completely understood. AB; is better known as the Dirichlet space Dy
and are the radial limit functions of analytic f(z) on D with finite Dirichlet
integral

[ 1P aa.

D

If f € AB3, a theorem of Beurling [6] says that the radial limit
lim f(r¢)

exists everywhere except possibly for a set of Bessel capacity Cy (see below) zero.
For f € ABs, let

Z(f) = {C €T+ lim f(r() = 0}
and for a set F C T, let
ABy g ={f € ABy: Co(E\Z(f)) = 0}.
ABs i is a closed subspace of AB; [7] as is
Fpr=IH>NAB, g,

for an inner function I and a set E C T, and it is a conjecture that every invariant
subspace of the Dirichlet space has this form.

We will show, in a similar way to the 1 < p < 2 case, that the invariant
subspaces of ABs are in one-to-one correspondence with the invariant subspaces

Xps XG € M C LE(G\T)

and then identify M 4 5+ To proceed, we must first take care of some technical
matters.

5.1. Capacity. Following [3], we define the Ca-capacity of a compact set F’
by

Cy(F) = inf / |Ve|? dA,

where the inf is taken over all real-valued functions ¢ € C§° with ¢ =1 on F.
We extend this definition to arbitrary sets E by

Co(E) =sup{Ca(F): F C E, F compact}
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and define the exterior capacity C3(E) of an arbitrary set E by
C3(E) =inf{C2(G) : GD E, G open}.
A set F is said to capacitable if Co(E) = C5(E).

Remark. The Sobolev space W2 is equal to L%, the space of Bessel
potentials, and thus the Bessel capacity is equivalent to C5 [14]. We bring this
to the readers attention since the literature often uses both definitions of capacity.

One notes [3] that C3 is a monotone, subadditive set function and that the
Borel sets are capacitable. We say a set F is quasi-closed of given € > 0, there
is an open set W with Co(W) < ¢ and E\W is closed. One argues, using the
fact that Borel sets are capacitable, that a quasi-closed set is capacitable, as is
the difference of any two quasi-closed sets. As mentioned in the introduction,
we say a property holds quasi-everywhere if the set for which it fails has exterior
capacity zero.

Since functions in W2°(G) are not always continuous (or even bounded),
we introduce a suitable substitution for continuity. A complex-valued function
f is quasi-continuous if for every € > 0 there is an open set W with Co(W) < ¢
and flc\w continuous. One can show [3], Lemma 1, Theorem 2, that every

f e le (@) has a quasi-continuous representative and in fact, one can find
a formula for the quasi-continuous representative of a Sobolev function. For
f e W2%(G) we define

(5.1) £ (w) = lim —— £(2) dA(2)

r—0 mr? |z—w|<r
whenever this limit exists and notice by the Lebesgue differentiation theorem,
f = f*a.e. By [11], f*(w) is defined quasi-everywhere and moreover f* is quasi-

continuous. This next result of Bagby [3], Theorem 4, describes Wk O(G\E), E
closed, in terms of zero sets.

Proposition 5.1. W>°(G\E) = {f e W}°(G) : f*|z =0 g.e.}.
5.2. Traces. A result of [16], p. 182, shows that the trace operator
T:Wi*(G) = Ba, Tf=f"Ir
is a well defined, continuous, surjective operator with, by Proposition 5.1,

ker(T) = W22(G\T).
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Remark. By [18], one can also define the (continuous) trace operator

tr: W2%(@) — By

(trf)(¢) = lim f(r¢)
71
and notice that this limit exists a.e. |d¢| and in L%(T,|d¢|). Also notice that
T(¢) = tr(¢) for all ¢ € C3°(G). Thus Tf = trf a.e. |d¢| for all f € W2°(G).
Thus (as before) T' will induce
T WP (G)/WPP(G\T) — Ba, T[] =[x
and T will be continuous and invertible. So (as before) we define
J: LA(G)/LL(G\T)" — By

by J =T o C to obtain

Jgl(Q) = —l/ —g—gz—)—dA(z) q.e.

TJaz—(

and JR = M.,J (see [2] for details). Thus there is a one-to-one correspon-
dence between the invariant subspaces xg € # C L2(G\T) and the invariant
subspaces of Bs. One also shows (as before) that for an invariant subspace

XD, XG € M C L2(G\T) and g € M

Tal) =~ [ £ aac)

and so J[g] € ABj. So, as before, there is a one-to-one correspondence between
the invariant subspaces xp, xg € «# and the invariant subspaces of ABs.

5.3. Zero Sets. For a quasi-closed set E C T, we can find a sequence of
closed sets Fy C Fp C --- C E with Cy(F,,) — Co(E). Since L2(G\F,) increases
with n, we can define the invariant subspace

(5.2 (B = LAGF) -

One can prove the following basic facts about #(E) [23]:
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Proposition 5.2. For quasi-closed sets E, F C K

(1) AM(E) is independent of the choice of {F,}.
(2) M(E) C M(F) = Co(E\F) =0.
(3) M(E) = M(F) < C2(EAF) =0.

Remark. There are quasi-closed sets E C T for which #(E) cannot be
written as L2(G\F) for any closed F C K [23], Proposition 4.3.

One also notes that

(5.3) Wo(E) = C(M(E ﬂ O(G\F,)

and by Proposition 2.1, f € Wf’O(G) belongs to Wa(E) if and only if f* =0
quasi-everywhere on F. From this one has

(5.4) J (AME)LEG\T)Y) = T(CM(E):)=T(Wa(E))
{feBz: f*lg =0qe.}.

Remark. The subspace By g(T) = {f € B2 : f*|g = 0 q.e.} can be
described in several equivalent ways. If f € By, then (as mentioned in the intro-
duction, see also [20]) the radial limit of its harmonic extension exists q.e. and
is a quasi-continuous function on T. Since f* is also a quasi-continuous function
on T which equals the radial limit function a.e. |d(|, then [20], Proposition 2.1

(o),
() = }LH} f(r¢Q) qe.

Thus we have that Z(f) is quasi-closed (an easy exercise using the definition of
quasi-continuity) and

By g(T) ={f € B2 : C2(E\Z(f)) = 0}
from which ABy p = By g N H2.

6. Invariant subspaces for p = 2. For an inner function I and a quasi-
closed set £ C T, recall that

gE,I :IH2ﬁAB2?E

is a (closed) invariant subspace of ABy. We now identify 4 gz
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Theorem 6.1.

Mg, = ME) \/{Xj;“” L2(G): ¢ € V(I)}.

Proof. The proof is nearly identical to the proof of Theorem 4.1, except for
some technicalities. We first show that

2

(6.1) M (E) = ULg(G\Fn)L CMg,,

Fix n and let h € L2(G\F,) and f € W2°(G) with Tf € IH? N By 5. Then by
Proposition 2.1, f € W12 ’O(G\Fn) and so by Havin’s Lemma, Lemma, 2.2,

(8f,h) = 0.

Thus by the definition of A (FE), we have (6.1).
By (3.3), notice that

Mg, =(3{f e WPG): Tf € IH* N AByp} )" .

So let f € W2°(Q) with Tf = IH?> N ABy . Then for all ¢ € V(I),

/ arxe gu— [ % g4 tim 3 (i) dA,
G ® a\n ¢ =0 Jo\{|z]<14e}  \ P

which by Green’s theorem [31], p. 54, equals

lim — o !

m —— ~dz.
e=0 20 |z|=1+5¢

By [18], f((1+¢€)¢) — f(¢) in L*(T,|d¢|). Thus using the fact that T'f/¢ € H?,
the above becomes
—l, T—fdz =0,
21 T

hence xg\n/¢ € M g, ,- So, by the invariance of M g, , the density of poly-
nomials in L2(G), and (6.1),

M (E)\/ { XC;\D LX(G): ¢ € V(I)} cMg,,
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By taking annihilators and then C = 07! we get (using (5.3))

C./%Q;EJ CWa(E)nC (ﬂ { (XC(Z';\“”Li(CY*))l tp€ V(I)}) .

Let g = C(dg) belong to the right hand side of the above. Then g*|g = 0 q.e.
and

dg% dA=0 VneNU{0}.
ewo 1

As before (using Green’s theorem)
9 n,, _
/—z dz=0 YneNU{0}
1

and so (Tg)/I € H? which means Tg € TH? N ABy . Thus g € C:/ﬁlf@zE , and
we are done. O

Using a similar proof as in Corollary 4.2, one can prove the following corol-
lary:

Corollary 6.2. If the inner function I is the least common multiple of the
inner functions Iy and I, then

X X
Mg, = ME)\ —f;llPLg(G) \V ;”2\“’ L2(G).

As in the 1 < p < 2 case we have M g, = L3(G\T) if and only if Fp 1 =
0. However, understanding when & g  is non-trivial is more complicated and
is yet unknown. In fact, understanding the zero sets for the Dirichlet space
(i.e. when ¥ g1 # 0) remains an open problem [10]. For example, there are
Blaschke products which divide Dirichlet functions and whose zeros accumulate
near every point of T, in stark contrast to the AB, (¢ > 2) case where the zeros
must accumulate on a Carleson set.

By [22], it is known that every invariant subspace & of ABs is of the form

F =10,

where I is an inner function, f € ABj is outer and [f] = span{¢"f : n =
0,1,2,---}. Certainly & C ¥ 45 and so by (3.3)

e/ﬁlg;:)dﬁlg

z(5).1°
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It is a conjecture that [f] = ABj; z() and hence we will have equality above,
thus giving us a complete characterization of the invariant subspaces xp, xg €
M C L2(G\T). For certain outer functions f, [f] = ABs, Z(f), but the general
question still remains open.

7. p > 2. We mention that the results in the previous section have gen-
eralizations to p > 2. The techniques are exactly the same except for some
technicalities which we mention now.

For p > 2 the appropriate space to look at is B, and the capacity used is
the Cy capacity (defined in an analogous way). The capacity theory is the same
and the trace operator T is defined as before.

If1 <g<2and f € AB; = Dy, it is known [8] that the radial limit

lim f(r)

exist everywhere except possibly on a set of ¢g-Bessel capacity (equivalently the
C; capacity) zero. As is the ¢ = 2 case, we define the set

2(f) ={¢ € T+ lim f(r¢) = 0}.
For a quasi-closed set (with respect to the C, capacity) E C T we define
AByp ={f € AB; : C4(E\Z(f)) = 0}.

A result of Carleson [7] says that AB; g is a closed subspace of AB. This next
result (which is known but we could not find a proof) says the same for AB, k.

Proposition 7.1. For 1 < q < 2 and a set E C T, ABqE is a closed
subspace of AB,.

Proof. 1t is known (by observing that W is the same as the space of Bessel
potentials LY) that if {f;} is a Cauchy sequence of quasi-continuous functions in
ABy = D, (i.e. quasi-everywhere defined on D and quasi-continuous) then there
is a quasi-continuous f € AB, and a subsequence f;; — f quasi-everywhere (see
[20], Proposition 2.1 for a proof in a slightly different setting).

Thus for f € AB; we define f q.e. on D by setting f to be f(z) for z € D

and f(¢) to be the the radial limit of f at ¢ for ¢ € T. For 0 < r < 1 define
fr(z) = f(rz) and notice that f, is continuous on D and f, — f in L?-Dirichlet
norm. Thus by the above fact, f is quasi-everywhere equal to a quasi-continuous
function, making f quasi-continuous on D. ~

So if {f,} is a Cauchy sequence in ABy g then {f,} is a Cauchy sequence
of quasi-continuous functions in ABy i and by the above fact, the limit function
must vanish g.e. on E. Thus AB,  is closed. |
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For f € AB, we have that f* and f are quasi-continuous functions on D

with f* = f a.e. By [3], Theorem 2 (iii), f* = f q.e. As before, one defines
M (E) and one has (using the above and (5.4)) that

J ( M(E)*/LE(G\T)* )= AB, p.
For an inner function I and a quasi-closed set E C T define
g’..E’I =ITHIN ABq,E

and notice that this is a closed subspace of AB,. Using the same proof as in the
q = 2 case and the above, one proves that

Mg, , = ME)\/ {X—Gqs\—DLg(G) L$ e V(I)} :

One also proves, in exactly the same way as before, that if the inner function
I is the least common multiple of the inner functions I; and I3, then

Mg, = ME)\ FEPIE) \ FTPILG)

8. Codimension. If 1 <p <2 and S: LE(G\T) — LE(G\T) is (Sf)(2) =
2f(2), then for an invariant subspace # and A € G\T, (S — \)| 4 is a semi-
Fredholm operator and

—index((S — A)| y) = dim( M [(z — X) M)

is constant on the components of G\T [19], Lemma 2.1, and is called the codi-
mension on the component of G\T. In [2] they prove the following formula:

(8.1) dim( M| M(z— X)) =1+dim(F 4/ (C=NTF ),

where ¥, is the unique invariant subspace of B, that corresponds to 4 via
the operator J.

Theorem 8.1. If1 <p <2 and xg,xp € M C LE(G\T) is a non-trivial
invariant subspace, then for A € G\T,

1 if N> 1

dim( M [(z — N M) = { 2 <1
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Proof. If A € G\T with |\| > 1, then M,_, is an invertible operator on
I yandso ((—NF 4= 4. From (8.1) we get dim( M /(2 — N) M) = 1.

Since & 4 is a non-trivial invariant subspace of ABy then by a result of [19]
(¢ >2)and [21] (¢ =2), dim(F 4 /CF y) =1. Thus by (8.1), dim( M /2. M) =
2. Since the codimension is constant on the components of G\T we are done. O

We mention that in general the invariant subspaces & of By can be quite
complicated, thus making the invariant subspaces xg € «# C L2(G\T) difficult
to describe. The invariant subspaces % with (¥ = & have been completely
characterized [20] as & = By g(T) for some quasi-closed E C T and thus by
(5.4) M g = M(E). The invariant subspaces ¥ with (F # & (such sub-
spaces are called simply invariant) are quite complicated. In fact, recall from
the introduction that the invariant subspace #,, of the Bergman space, (1.2),
has dim (M, /zM ) = n. Thus by (8.1)

dim(gdﬂn/g’gf”m’n) =n,

(see [24] for a specific example) which is in stark contrast to the analytic Dirichlet
space ABsy where the codimension of any non-zero invariant subspace is always
one.
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