
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

9-2003

Ranked Set Sampling Based on Binary Water
Quality Data with Covariates
Paul Kvam
University of Richmond, pkvam@richmond.edu

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Applied Statistics Commons, and the Biostatistics Commons

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for
inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information,
please contact scholarshiprepository@richmond.edu.

Recommended Citation
Kvam, Paul H. "Ranked Set Sampling Based on Binary Water Quality Data with Covariates." Journal of Agricultural, Biological, and
Environmental Statistics 8, no. 3 (September 2003): 271-79. doi:10.1198/1085711032156.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


Ranked Set Sampling Based on Binary Water
Quality Data With Covariates

Paul H. KVAM

A ranked set sample (RSS) is composed of independent order statistics, formed by
collecting and ordering independentsubsamples, then measuring only one item from each
subsample. If the cost of sampling is dominatedby data measurementrather than collection
or ranking, the RSS technique is known to be superior to ordinary sampling. Experiments
based on binary data are not designed to exploit the advantages of ranked set sampling
because categorical data typically are as easily measured as ranked, making RSS methods
impractical.However, in some environmentaland biologicalstudies, the successprobability
of a bivariate outcome is related to one or more covariates. If the covariate information is
not easily quanti�ed, but can be objectivelyordered with respect to this success probability,
the RSS method can be used to improve the analysis of binary data. This article considers
the case in which the covariate information is modeled in terms of a mixing distribution
for the success probability, and the expected success probability is of primary interest. The
inference technique is demonstrated with water-quality data from the Rappahannock river
in Virginia. In a general setting, the RSS estimator is shown to be superior, including cases
in which error in judgment ranking is present.

Key Words: Binomial sampling; Concomitant; Judgment error; Mixture distribution.

1. INTRODUCTION

The ranked set sampling procedure, �rst suggested by McIntyre (1952), has found
economicalapplicationwhere experimentalunits can be rankedwith substantiallyless effort
than making an actual measurement. First, independent and identically distributed items
from the population are collected and ordered according to the property of interest. From
this ordered subsample, only one observation is measured and recorded, along with its rank
within the subsample. This is repeated so that the resulting sample consists of independent
order statistics. If subsamples have constant size, say k, and each of the k order statistics
are sampled in equal proportion across all subsamples, the ranked set sample is said to be
balanced.
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Initial work on ranked set sampling was directed toward estimating the unknown pop-
ulation mean. Takahasi and Wakimoto (1968) showed that the mean of a balanced ranked
set sample (RSS) is the unique linear unbiased estimator of the population mean, and that
the variance of the RSS estimator is less than or equal to the sample mean variance based
on a simple random sample (SRS) of the same size. The relative precision (RP) of the
RSS estimator with respect to the SRS estimator, (de�ned as the variance of the SRS mean
divided by the variance of the RSS mean) differs according to the underlying distribution
of the data, and is bounded above by (k + 1)=2 for continuous distributions, with the upper
bound achieved only for the uniform distribution. This improvement gained from ranked
set sampling makes intuitive sense because the RSS estimator obtains information from k

times as many independent subsample units, even though both estimators rely on the same
number of actual measurements.

Dell and Clutter (1972) �rst considered situations of imperfect ranking; that is, the
ranking within the subsample might be �awed so that the observation said to be the rth
smallest value out of k may be some other order statistic. They showed that the RSS
estimator based on these “judgment” order statistics remains unbiased, and the precision
is nevertheless improved over the simple random sample mean unless ranking is done
randomly, in which case the estimators have equal precision. Naturally, the improvement in
precision gained by RSS depends strongly on the amount of ranking error in the procedure.
See, for example, Ridout and Cobby (1987).

Stokes and Sager (1988) extended ranked set sampling to problems of estimating the
distribution function by showing the empirical distribution function (EDF) based on a RSS
is unbiased for estimating the underlying distribution function and has smaller variance
than the EDF based on an equal-sized random sample. Kvam and Samaniego (1994) used
the method of nonparametric maximum likelihood to estimate the distribution function for
general ranked set samples in which balance is not necessarily achieved, and asymptotic
properties of the MLE were investigated by Huang (1997). The RSS method has also been
extended to estimating variance by Stokes (1980), and general linear estimators of scale
and location parameters by Kvam and Samaniego (1993).

Experiments based on discrete data, such as binomial outcomes, are not designed to
exploit the advantages of RSS. In typical biological and environmental applications, cate-
gorical data are as easily measured as ranked, making RSS methods impractical. However,
in some settings, the success probability of a bivariate outcome is related to one or more
covariates. If the covariates can be easily quanti�ed and measured, logit models might be
used to relate the success probability to the covariate data. This supplemental information
may not be assessable due to physical constraints or exorbitant expense. If test subjects can
be ordered in terms of success probability based on covariate information, we will �nd that
RSS methodology can improve the analysis of the binary data.

In this article, the RSS technique is extended to binomial sampling for the analysis
of binary water quality data. Suppose we observe a binomial outcome X based on m

independent Bernoulli trials with success parameter p. Although p is not observable in
general, we assume it is functionally related to covariates in such a way that test items
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can be ranked according to their underlying success probability. For water quality data, the
binary outcome is based on whether the total dissolved solids in the river exceeds 50 mg/l,
and a measurementof solid residueon evaporationserves as a potentialexplanatoryvariable.
To model the variability between seasonal time periods, we assign P = P (dissolved solids
exceeds 50 mg/l) a mixing distribution, say G(p) that is fully or partially unknown. If G is a
Beta distribution, for example, the marginal distribution of X is beta-binomial.We assume
the covariate has an ordinal scale of measurement, so logistic regression does not offer a
plausible solution.

RSS is used in otherenvironmentalapplications.In the cleanupof hazardouswaste sites,
the highcost of environmentalsampling is drivenby the expenseof laboratoryanalysisof the
soil samples, which severely limits sampling plans at typical sites. Hand-held instruments
used for soil sampling in the �eld can provide surrogate information about contamination
that directly correlates with the more expensive lab analysis. Instruments that are unable
to accurately measure low-level contamination, for example, can be used to locate high
concentration levels, or “hot spots,” as discussed by Kvam, Tiwari, and Zalkikar (2000).
Lacayo, Neerchal, and Sinha (2001) presented an example where soil samples are analyzed
for plutonium concentration. They noted that levels of Americium in the soil correlate
highly with the plutonium concentrations, and Americium levels can be measured using
a hand-held device that is substantially less expensive than a standard soil analysis for
plutonium. In this example, analysts record the number of independentlysampled plots for
which plutonium concentration exceeds an upper threshold, so statistical analysis is based
on binomial outcomes with surrogate information. Lacayo et al. (2000) suggested a ranked
set sampling plan based on the binomial outcomes, which is discussed in the following
section.

Other potential applications are generated from agricultural experiments, bioassays,
clinical trials, and reliability testing. If an indirect bioassay has a binary response, the test
subject might be a living specimen that contains surrogate information related to health
(e.g., size, age, appearance) that suggests an order in success (e.g., survival or restoration)
probability. For such applications, it may be that the covariate information is available only
at great cost to the experimenter, but ranking the test subject according to the covariate
information is relatively inexpensive.

In manufacturing, test items generated from different manufacturing processes can
give rise to a natural mixing distribution for P , and variability might be revealed in simple
signs of quality that are easily ordered, but not easily quanti�ed. The mixing distribution
also helps model over dispersion in the data, and has been applied in inferences regarding
discrete samples for such purposes. Mixtures are commonly implemented in the analysis of
binary data in the life sciences. For instance, teratogenic data can be modeled in this way to
allow correlation between responses among littermates, as proposed by Williams (1975).

In the following section, the ranked set sample estimator of a binomial proportion is
investigated and compared to the analogous estimator based on a simple random sample.
Because ranking involves experimental units with ambiguous covariates, errors in ranking
are plausible in many settings, especially if subsamples are allowed to increase to sizes of
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four or more. Section 3 models judgment error additively, allowing for error to increase in
order statistics with larger variances. Conditions are investigated for which judgment error
still allows improvement in precision using ranked set sampling. The water quality data are
analyzed in Section 4, which helps to demonstrate the RSS method.

2. ESTIMATION OF PROPORTION

From a simple random sample (SRS), let Yi represent the number of successes (in m

trials) of the ith observed test item, with i = 1; : : : ; N . Then the mean success rate p0

= EG(P ) is estimated using the sample success proportion (mN )¡1
PN

i = 1 Yi, which is
unbiased and has variance

p0(1 ¡ p0)

Nm
+

(m ¡ 1)¼2
0

Nm
; (2.1)

where ¼2
0 denotes the variance of the mixing distribution.

If k such itemsare collectedtogether, it may be possible to order them accordingto these
success probabilities; that is, if P1; : : : ; Pk represent k independent realizations from G(p),
then P1:k < ¢ ¢ ¢ < Pk:k represent the ordered values for the k different items. If ordering the
item according to its success probability is easy relative to generating binomial outcomes
from the systems, we will see that ranked set sampling can be used to improve estimation
of the mean success rate p0 = EG(P ) and other properties of the mixing distribution.
Although we will assume the set P1; : : : ; Pk may be ordered, we do not assume any values
from G can actually be measured. In realistic applications, this ranking will be subject to
some form of judgmenterror, which is investigatedin the following section. Perfect ranking
is assumed here for the purpose of simplifying the explanation of the RSS estimators and
their properties.

To achieve the ranked set sample, we collect k items, order the success probabilities,
and measure the outcome of a single binomial outcome from the ordered set. If the item
with rth smallest success probabilityPr:k is selected, then the number of successes, denoted
X[r:k], is not an order statistic, but a concomitant value corresponding to Pr:k. If we assume
we have n copies of each such concomitant outcome, then we can denote the balanced
ranked set sample as fX[r:k]i; 1 μ r μ k; 1 μ i μ ng. The RSS estimator for p0 is p̂0 =
(mnk)¡1

Pn
i = 1

Pk
r = 1 X[r:k]i.

To compare the RSS estimator to the SRS estimator, we assume N = nk. If Pr:k

represents the rth smallest observation out of k that are generated from an absolutely
continuous distribution G(p), we denote the mean and variance of the order statistic as
p̄[r:k] and ¼2

r:k, respectively.

Theorem 1. The RSS estimator p̂0 = (mnk)¡1
Pn

i= 1

Pk
r = 1 X[r:k]i is unbiased for p0

with smaller variance than the SRS estimator, which we shall write p̃ = (mnk)¡1
Pnk

i= 1 Yi.

Proof: Takahasi and Wakimoto (1968) showed that if G is continuous,
Pk

r = 1 p̄r:k

= kp0, and
Pk

r = 1 ¼2
r:k = k¼0

2 ¡ Pk
r = 1 (p̄r:k ¡ p0)2. From the properties of conditional
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variance, the variance of the RSS estimator can be written as

var(p̂0) = (m2nk)¡1(E[var(X[r:k]jPr:k)] + var[E(X[r:k]jPr:k)])

= (m ¡ 1)(mnk2)¡1
kX

r = 1

¼2
r:k + (nmk2)¡1

kX
r = 1

p̄r:k(1 ¡ p̄r:k)2

= (m ¡ 1)(mnk)¡1¼2
0 + (mnk)¡1p0(1 ¡ p0) ¡ (nk2)¡1

kX
r = 1

(p̄r:k ¡ p0)2

μ p0(1 ¡ p0)=(mnk) + (m ¡ 1)¼2
0=(mnk) = var(p̃0): (2.2)

The amount of savings gained in precision due to ranked set sampling is characterized
fully by the relative precision (RP), which can be expressed:

RP =
var(p̃0)

var(p̂0)

= 1 +
m

Pk
r = 1 (p̄r:k ¡ p0)2

kp0(1 ¡ p0) + k(m ¡ 1)¼2
0 ¡ m

Pk
r = 1 (p̄r:k ¡ p0)2

= 1 +
¼2

0 ¡ k¡1
Pk

r = 1 ¼2
r:k

m¡1(p0(1 ¡ p0) ¡ ¼2
0) + k¡1

Pk
r = 1 ¼r:k

2
: (2.3)

&

Theorem 2. With sample size N = nk �xed, the relative precision in (2.3) is an
increasing function of m and k.

Proof: It is a matter of routine calculus to show that RP in (2.3) is increasing in
m. Also, it is easy to show RP increases as a function of k¡1

Pk
r = 1 ¼r:k

2 . Theorem 2 in
Takahasi and Wakimoto (1968) states that k¡1

Pk
r = 1 ¼r:k

2 is a decreasing function of k,
thus the theorem holds via the chain rule. &

Through calculus of variations, it was shown by Takahasi and Wakimoto (1968) that
(k + 1)

Pk
r = 1 (p̄r:k ¡ p0)2 μ k(k ¡ 1)¼0

2, with equality obtained if and only if P has the
Uniform(0,1) distribution, thus the RP in (2.3) is maximized if P is distributed U(0,1). For
the Uniform distribution, this upper bound of relative precision is

RP μ 1 +
m(k ¡ 1)

2(m + k + 1)
; (2.4)

which only achieves the previous (nonmixture) RSS bound of (k + 1)=2 in the limit as m

increases to in�nity. For Bernoulli outcomes, where m = 1, the effect of variance in the
mixing distribution is understood only through the dispersion of expected order statistics
in

Pk
r = 1 (p̄r:k ¡ p0)2.
The RSS procedure produces improved precision for other distributions, which can be

much less than the bound in (2.4). For the power-function distribution, with probability
density function

f(x; ¬) = ¬x¬¡1; x > 0; ¬ > 0; (2.5)
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it can be shown (e.g., Malik 1967) that for values of 1 μ r μ k, E(Xr:k) = ¡(k + 1)¡(r +

1=¬)=(¡(k + 1 + 1=¬)¡(r + 1)), thus RP values in (2.3) can be calculated for various
values of k and ¬ > 0. It can be shown that as the power function becomes more skewed
(and thus less disperse), the relative precision decreases considerably.

If P is distributed more generally as Beta(¬; �); the relative precision decreases at
values of (¬; �) away from (1,1) at different rates. From (2.2), we can show that if mk is
�xed, the RSS estimator variance is minimized by choosing m = 1, meaning that if there is
no additional cost associated with sampling test items, it is preferable to test two units just
once rather than testing the same unit twice.

A similar RSS technique for dichotomous data was suggested for environmental sam-
pling by Lacayo et al. (2001), where the order of the covariates determines the order of the
binary outcomes. This deterministic ordering makes the inference analogous to a missing
data problem. Americium concentrations in the soil, corresponding directly to plutonium
levels, can be measured without great expense. Plutonium levels are measured through an
indicator variable for samples that exceed an upper threshold value. The ordered samples
imply a corresponding ordered set of binary outcomes, thus if a �eld measurement from a
sample of k with the highest Americium content does not exceed the plutonium concen-
tration threshold (i.e., Xk:k = 0), then none of the other k ¡ 1 samples will either. The
subsequent inference problem is quite different than the one described in this article.

3. JUDGMENT ERROR

Because the binomial probabilities are not directly measurable, ranking test items ac-
cording to this criteria generally leads to ranking errors, or “judgment errors.” Since Dell
and Clutter’s (1972) article on imperfect ranking, this problem has received signi�cant at-
tention in the RSS literature. To model judgment error, we assume each ordered probability,
Pr:k, is subject to error in proportion with its natural variability. Let Qr:k = Pr:k + °r:k

represent the perceived probability, where °r:k is an independent random variable in [0,1)
with E(°r:k) = 0 and var(°r:k) = !¼2

r:k for some constant ! ¶ 0. Then E(Qr:k) = p̄r:k ,
and var(Qr:k) = (! + 1)¼2

r:k. In applications of interest, it may be reasonable to assume
! < 1. In this sampling scenario, m > 1 is required for the mean and variance of the
mixing distribution to be uniquely identi�ed, because Bernoulli outcomes allow for the
identi�cation of only one parameter.

Theorem 3. Let VJE be the RSS estimator variance under judgment error with ! > 0.
The RSS estimator is unbiased with var(p̂0) μ VJE μ var(p̃0), the right-hand inequality
holding if m > 1 and

! μ m
Pk

r = 1 (p̄r:k ¡ p0)
2

(m ¡ 1)
Pk

r = 1 ¼2
r:k

μ m
Pk

r = 1 (p̄r:k ¡ p0)2

(m ¡ 1)(k¼2
0 ¡ Pk

r = 1 (p̄r:k ¡ p0)2)
: (3.1)

Proof: We write VJE = (mk2n)¡1
Pk

r = 1 (E[Qr:k(1 ¡ Qr:k)] + mvar[Qr:k]) which
can be simpli�ed to (mnk)¡1(m ¡ 1)(! + 1)¼2

0 + (mnk)¡1p0(1 ¡ p0) ¡ (nk2)¡1(1 +
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Table 1. Ranked Set Sample Measurements for Residue on Evaporation (ROE) and Total Dissolved
Solids (TDS) Data from Rappahannock River, Virginia, 1978ñ1989

ROE Rank I(TDS ¶ 50) ROE Rank I(TDS ¶ 50)

63 1st 1 54 3rd 0
56 2nd 0 45 4th 0
54 3rd 0 55 1st 0
50 4th 0 56 2nd 1
62 1st 0 45 3rd 0
48 2nd 0 43 4th 0
49 3rd 0 69 1st 1
48 4th 0 50 2nd 1
52 1st 0 56 3rd 0
59 2nd 1 38 4th 0

m¡1(m ¡ 1)!
Pk

r = 1 (p̄r:k ¡ p0)2. Clearly, the RSS estimator remains unbiased, and the
left-hand inequality is satis�ed for ! 2 [0; 1]. Finally, VJE μ var(p̃0) if and only if k¡2(1 +

m¡1(m ¡ 1)!)
Pk

r = 1 (p̄r:k ¡ p0)2 ¶ (mk)¡1(m ¡ 1)!¼2
0, which is equivalent to (3.1).

&
If P is distributed U(0; 1), Theorem 1 states that relative precision is increased with

ranked set sampling provided the error ! bounded above by 0:5m(k ¡ 1)=(m ¡ 1). In most
cases, it would be reasonable to assume ! < 1, so this bound is assured if k > 2. For
the power-function distribution, the bound in (3.1) can also be iterated in terms of relative
precision:

! μ m

m ¡ 1
(RP 1 ¡ 1); (3.2)

where RP 1 is the relative precision (thus RP 1 ¡1 is the relative improvement in precision)
for the power function distribution if m = 1.

4. EXAMPLE

Stream water quality data from the National Stream Quality Accounting Network
(NASQAN) station on the RappahannockRiver near Fredricksburg, VA, are listed in Table
1. This table, summarized from Helsel and Hirsch (1991), is comprised of measurements of
solid residue on evaporation(ROE), measured in mg/l, and an indicator for the event that the
total dissolved solids (TDS) level exceeds 50 mg/l. The data are grouped into homogeneous
(seasonal) time periods. The �rst ROE measurement is the largest from a subsample of four,
the second is the second largest from another subsample of four, and so on. The presence
of TDS in the water is of primary interest in the study.

If the ROE is measured on an interval scale in such a way that the correlation between
ROE and TDS can be established, a logistic regression would be more appropriate than the
binary data analysis that follows. However, in this case we assume the ROE measurements
are onlyvalid for distinguishingthe order of TDS in the water qualitymeasurements, and the
measure of 63 mg/l in the �rst sample tells us only that the other three ROE measurements
during that seasonal time period were less than 63.
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We knowthe estimateof theproportionofsample measurements forwhichTDS exceeds
the upper threshold (p̂0 = 5=20 = 0:25) is inherently more precise than a simple random
sample estimator based on the same number of measurements. However, the uncertainty
of p̂0 is concealed by the unknown G(p). If we allow G(p) to be a Beta distribution with
mean p̂0 and largest allowable dispersion in (0; 1), a conservative estimate of var(p̂0) can
be computed and used for uncertaintybounds for p0. Following Berger’s (1985) suggestion
for maximizing disperseness of prior distributions, we choose the Beta density g(p) that
maximizes the Shannon–Jaynes entropy among all such densities for which p0 = p̂0:

H(g) = ¡
Z 1

0
g(p)ln(g(p))dp:

Numerically, we can maximize the functional H(g) based on g(p) ¹ Beta(¬; �), with
¬ = 0:392 and � = 1:176. From (2.2), our estimate of var(p̂0) is 0.007553 (¼̂p̂0 = 0:0869).
A similar maximum-entropy program was constructed for a binary-data reliability study by
Savchuck and Martz (1994). For the water-quality example, the estimated relative precision
from (2.3) is 1.24, so a con�dence interval based on a simple random sample (which ignores
the covariate information provided by the ranked ROE) is 11.4% larger than a con�dence
interval based on the RSS.

5. DISCUSSION

Section 2 establishes that ranked set sampling can be used in environmental sampling
problems to improve the analysis of binary data. In cases where errors in ranking can occur,
the improvement is still certain unless the ranking is done by randomly choosing from the
subsample. Other applications, including those from life testing and reliability can exploit
the potential improvement in ranked set sampling so long as the test items contain valid
surrogate information that allows items to be ordered in terms of success likelihood.

Extensions to general problems of parameter estimation and mixing distributions de-
pend on the relationship between the conditional distribution of the observed data and
the mixing distribution. Speci�cally, the potential improvement gained by sampling inde-
pendent order statistics depends on the relationship between the variance of the observed
outcomes and the mixing distribution. In the case of binomial sampling, the link between
the variance and G(p) is a simple function of p, and the resulting mixture distribution is
manageable.

Unbalanced ranked set samples can also be considered. In biased experiments, for
example, the test item selected from the subsample of size k might always appear to be the
largest one, meaning X[k:k] is always drawn for inference regarding p0. This is a common
sampling practice in environmental studies where contamination is rare and appears in few
samples. Naturally, the RSS estimator listed in Theorem 1 is biased using this sampling
scheme. Willemain (1980) called this nomination sampling. If the mixing distribution is the
power-function distribution listed in (2.5), then Pk:k , the success probability of the selected
test item, is distributed as Beta(k¬,1), and the marginal distribution of an experimental
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outcome (based on m independent trials) is Beta-binomial(m; k¬; 1). Estimating ¬ or p0

can be achieved iteratively via method of maximum likelihood, as in Grif�ths (1973).

[Received August 2001. Revised November 2002.]
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