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PREFACE

This work is an axiomatic investigation of real
numbers based on Edmund Landau's GRUNDLAGEN DER .
AKALYSIS. It endeavors, with the use of five postu~
lates or axioms, to prove certain theorems used in

elementary mathematics,

II
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INTRODUCTION

Man and a few of the lower animals possess what
‘may be called Number Sense. This is the power to
recognise a chénge in number in a emall collection
without actually counting the collection.

' ’ﬁHan as time passed began to give names to collections
such as these: a flock of birds, a school of fish, .

a yoke of oxen, The prooess of putting one collection
into one-to-one correspondence with another started

men on his road to counting. After thousands of years
he reallzed that a brasce of pheasants and a yoke of
oxen were alike in the fact that they both represented
the number two, Man began to sst up model sollections
whioh always denoted certaln numbers. After generations
of usé, the name and sound of the collection had often
degenerated and the new word that evolved beaame the
symbol for the number, thus losing the signiflcance

of its conneotion with the original collectidn. The
éardinal number 1s based on thls principle of corres-
pondence, We now no longser look for model cellections;

we set one collection into one~to-one correspondence



IV

with the natural numbers; in other words, we count it.
Man has now learned to count. He has developed
" an ingenious counting board, abaocus, to assist him
in his caloulations. Now he can add, subtract, multi-
ply, éné divide with the ald of his new instrument,
But he has a problem, there is often an empty coluumn,
and when he sets down the result of his calculationsy
49, 409, 4009, a1l look altke, “n unknown Hindu repre-
| gented this empty olass by our symbol for gero called
 in Indian "sunya’. Sunya was translated 1nto Arabic
las "sifr,* meaning empty. This word passed 1nto Latin
&4 "eifra," end from Latin into English as “oipher,®
Clueer as 1t underwent these language changes collected
e ddubie'meahlng; 1% slgnified both gzero and number.
"inally the Italian zero was adopted in the sense
that we use it today~
~ Fractions had different meanings in different
nﬁmber sysﬁems, the Greeks oonsidering them as the
ratio of two numberas, while the Egyptians considered
them elmply as parts of numbers, Our conception of
a fraction is colored by both thege ideas,
The Greeks had no conception of a negative number.
The Hindus, about the seventh century A, D. were the

first to use then,



Now we have integers, fractions, positive and
negative numbers end zero making u§ the rational domaln,
Pythagoras was the first to éisoover irrﬁtional

numbers, wien finding the length of the hypothenuse.

Euclid's proof of the length of tné diagonal of a square,

_involving irrational numbers,’is based solely cn number

theory and has 1ittle to do with geometry. |
Hilbert studied the postulates of Euclid's geometry

and decided that corresponding postulates could be

gset up in arithmetiec, HAlbert, Peacock, Boole and

Peano were azmopg the first to make an axiomatic inves-

tigation of the number system.
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CHAPTER 1

NATURAL NUMBERS
Section 1, Postulates.

Let us consider the class N of natural numbers
whose elements will be represented by the letters u,
Vv, W, X, ¥, and g,

It 48 agreed that the oconcept of equality among
the elements of N (symbol =), subject to the following
rules is understood, |

1) For any peir of numbers x, y, either

Xzv
or | x4y

~ {x not equal to y).
2) Xz X

fbr all values of x.
3) 1Irf X=7Y
then Y = x.

4) I1f X=¥, V=2

then X = 2



The olass N is defined by the following postulates,
Postulate 1: 1 is a2 natural number,
Postulate 2: For each x contained in N there 1s a
consequent x' contained in N, If
X=¥ .
then x' w y'.
Postulate 3¢ 1 ig not the conasequent of any number,
x' £ 1. .
Postulate 4: If x' = y!
then Xu Y.
Postulate 6 (Induction Postulate): Let there Dbe
a class M of natural numbers with the following properties.
I) 1 is contained in M, S
II) If x 1s contalned in R, then x' is contalned in M, -

Then M contains the class of all natural numbers.



_ Bection 2. Addition,
Theorem 1.2.1: If x£y .
then xE ¥y

Pfodf: Let us assume that
x' = ¥,
Then by postulate 4 x = ¥
which 18 contrary to the hypothesis.
Therefore | x' £y,
Theorem 1.2.2: " x' £ x
_Proof: Let M be the class of x for whioh x' § X,
I) By postulate 1 and postulate 3
' £1,

‘ ‘Thus 1l 1s contained in M,

II) Assume that x is contained in M, then by theorem 1.!
(x*)! = x', | i
Therefore x! i1s contalned in M, and hence by postulate 6,
M 1s the olass of all natural numbers N.
Theorem 1.2.5: If x4£1

then there is a u such that
x=u',
Proof: Let M be that class of numbers containing 1
‘and those x's (x £ 1) for which there is one such u.
I) 1 is contained in M,
II) If y is contained in M, then 1f y = u, y' = u’,
hence y' is contalned in M.



Therefore M contalns the class of all naturai
numbers N,

Theorem 1.2.4: A number pair, x, ¥, can be combined in

one and only one way to give x + y (the sum), 80 that
1) x4+41=xx ~ for all x,
2) x4y =(x¢ 7)' for all x and all y.
Proof: A) We will show first that there 1s in the
<aaee of every fixed x at the most one possibility, x ¢ y,
for all y so defined, that
x4+ 1= x'

and xdy =+

Let 8y and by be defined for all y, such that
8y = x', .j“bl = x',
- ' - '
éytw- (ay) s _ : byt- (by) .
Let M be the olaas of y for which
‘ay = by.
I) ' ay = x' = by}

1 is contained in M.
1I) For sny y ocontained in M, we have 8y = by
by definitlon. _
Then (ay)' = {by)' by postﬁlate 2,
whence 81 = (ay)' - (by)’ = byt
end y' is in M,



The solution is unique, if it exists. N
B) We shall now show that x 4 ¥ actually does exist,
as def;ned‘by the following properties, for gll x and y:
| | 1) x+1=x', |
W) x+yr=(x4 ¥

1) For x=1,

define x+3¥=z7' |

Vhen x+1lz1"zx',

and - N e U P S T

Therefore 1 is contained in M.
II) HNow let x be‘any number in M., Then x 4 y exists by
agssumption for all y. Define

- x*ty=(xt.
Then x' ¢ 17: (x ¢+ 1) = (x')¢,
and by o= (xdy) = Uzt 2 (=ED,
hence ;' belongs to M. o

Therefore M is the set of all natural numbers, and

the proof is complete.

Theorem 1.2.5: (x+p+ez2xt (vt z).

- Proof: For a fixed x and y, let M be the oclass of

z for which the assertion 1s true.
) (xdPflalxint=xty=xtlyd;
and 1 is contained in M,
II) 2z is contained in M. Thus
(x+y) +tz=x¢(y ¢ 2,
‘then



(x4 42zt +t2)=(x4 (v 4 2))°
Cxdly 2t =xt vtz |
‘then z' 1g contained in M, |

The assertion holds for all z.

Theorem 1.2.63 xby=v4 Ze
Préof: :Let y be fixed, and let M be the clase of x
for which xt¥y=vtx
I) Bince y+rlzvyh
and by theorem 1.2.4 1+ vy=7'
then léy=-y+1

and 1 18 contained in M.
II) Since x is contained in M, and

X+§334X)

then (x+ N =y e+ X' =7+ x,
By theorem 1.2.4 Coxteyzixet,
then x* +y=y+x,

therefore x' is in M, and M is the class of all natural

numbers.

Theorem 1.2.7 yL£x+y

. Proof: For a fixed x 1ét M be the olass of y for
whioh | y£x47.

1) By theorem 1.2.3 1 £ x,
By theorem 1l.2.4 L£dx+1,

then 1 is contained in M,



II) If y is in M, then

y£ x+ Y,
and : vV A (x+ Y)Y,
and Y'# x+ 3

hence y' is contained in M, and M 18 the class of all

natural numbers N.

Theorem 1.2.8: If Y£¢=
“then xt+ YETt 2

Proof: Let M be the class of x for which
x+¥£T 42
when y and g are rixed, with yf z.
n oyt 4,
then i}} y£1+z.
1 18 contaimed in M
II) If x is contained in M, then
| | x+yExHe,
and | (x+ 7' £ lxd2)Y,
then x' 4+ y#£x'+ 2.
x' ig contained in M, and M 1lg the ciéss of all natural
‘numbers N,

Theorem 1.2.9: If x and y are given, then exactly one

of the following cases holds.
1) X = Y.

2) There is exactly one u such that



| X=J~ U
3) There 1s exactly one V such that
A ;Y XV

Proof:A) By theorem 1.2.7, 1) and 2), 1) and 3), and
2) and 3) are incompatible,

1f, for example, 2) and 3) hold, then
xzyg-um(x-v-azx=-(veu)=(v-u-x

Therefore at the most one of 1), 2), or 3) holds.

B) It x e fixed, let M be the class of y for which
one of cases 1), 2), or 3) holds. ' ,
I) For y = 1 according %o theorem 1,2.3 either

x=21ley (case l)

or | x=u' =1l~-uzy=-u f(case2),
then 1 is contained in M,
11) It y 3s contalned in M, then if either

(case 1) for y) X =¥

then : ' =y~ 1=x=1 {case 3) for y');
or (case 2) for y) X = ¥ ~u,

then when | uel,

x=y~-1z7Yy (case 1) for §');

when | ‘ ufl
by theorem 1.2.3 u

x=y-(1-w =(y~ 1) - W a y' - w (case 2) for ¥y

or (case 3) for y) ye=x=~-v,



then (x4 = x+ v ( ocase 3) for y').
In every case y' is contained in M,

Hence one of the cases 1), 2), arls)'always holds,
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Section 3. Order

Definition 1.3.1: If x = y + u, then x>,

( > is greater than,)

‘Definition 1.3.2: If y = x ¢ v, then x<y.

{ < 1s less than.)

It is readily seen that either x = ¥, or x>y, or

" x<y. If x>y, then y<x, and if x<y, then y>x,

The symbol 2 means greater than or equal to.

The symbol < means less than or equal to.

Theorem 1,3.1: If X<¥, ¥<z,
then X <2
Pick a sultable u, v for which

- Proof:

then
then

ar

Yy=x+v,
zz ¥ +Y

z=(x+v)tduzx+(vs+u),
z >X,

X< 2.

Similarly it follows from x>y, ¥y 72, that x>z,

and from z< ¥, ¥ <x that gz <x,

Theorem 1,3.2% If x€y, y<2z, O X<y, ¥ 5 2z

tl{en_ ;

X< 2o

Proof: Similar to theorem 1,3.1.

Theorem 1.3.3:% I1f x5y, 7 <z then x

Ze

Proof:

8imilar to theorem 1l.3.1.
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Theorem 1.3.4t | X+ yox.

Proof: For (x+ y) : X+ ¥y=X+u whére u =y,
then by definition 1,3,1 (x + y) >x.

Theorem 1.3.5: If elther x>y, or X a ¥y, Oor X< y,

it rollows reapeotively that elther
X4+ 27y %2z, O X % 2 = y+ Z, O X + zzly-k—z..

?roofrd) Let x>y |
then X=Y 44, } A
xfrz=(y+u) szz=(usy)+zzustly+z)=(y+z)4y
by definition 1.3.1 X+ 2574 2. |

2) If x = y, 1t follows naturally that

X+ 2=y 4z

3) It x<y, then y>‘x,
and by part 1) Y+ 2>%4 3,
then X+ 2<Y¥Y ¢t 2
Theorem 1.3.6¢ If either |

X+ 2>y %z, O X¥rzsF otz OF X+ 27 +2,
it follows respectively that either
| XY, OF X = ¥ OF X <¥.
Proof! From x + z >y + z, we know that either
X>y, O X = ¥, OF X< Y.
If xcy, then x ¥ 2cy + 2, and Af X = 2, X+ 2 =Y ¢+ 2,
then x >y must hold,

Similar proof for the other cases.
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Theorem 1.3.7: If x Z_y, A Z u then X+ 2=Y+u,

where equality holds only if X = ¥, 2z = u.

Proof: From theorem 1.3.5 we have

X+ z3y+z if x 2y,
then X+ 2z 2 Y+zazty2us y=y+u
then ‘ | X+ 2z 4 y'+ U.
Theorem 1.3.8: x < 1,

 Prooft Either x = lor x=u', If x= u'
then , x=u' zu+d>l,

Theorem 1.3.9: If y >x, then y & x .+ 1,

Proof: y = x+ u, vhere u Z 1, then y = x + 1.

Theorem 1,3.10: If y<x + 1, then y & x.

Prooft Assume yy>x, then y £ x + 1, but y< x + 1,
then y < x.

Theorem 1.3.11: In every set of natural numbers there

is a smallest number. ‘
Prooft N is a given class of numbers. M 18 a
olags of x such that every number in M = every
number in N, |
7 y<y', then 1 is contained in M,
I Not every x is in M, because for y qontainéd in N,
/y 4 1 >y, hence y + 1 is not contained M.
There s an m contained in M guch that m' is not

contained in M, If n is in N, then m<n, and my 1 < n,
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~ Bection 4. Multiolloation

T ——— A -

Theorem 1,4,1: Every palr of numbers X, ¥ generaté
a unique number x y, called the produot of x multiplied
by ¥y, with the following propertles, h

1) xel = x

2) x.y' = Xy + x for all y. )

Proof: A) First we will show that for a flxed s,
there is at most one pcssibllity xy for all values of ¥
so0 defined, such that R

;-1 =X

x.y'= xy + x for all y.

Let ay'and by be defibednép?‘al;‘y, such that

8y = %, _ by = x, S
ayt = ay + x, by';‘.by + X,
and let M be the class of y for which

ay - byo

then 1 is contained in M. | .
2) For any y ocontained in M, we have a, = by by definition,
,T%én gyt =z 8y ¥+ X = by 4 X = byt
and y' e contained in M,
M ig the class of all nztural numbers, The solutlion |

is unique, if 1t exlsts,
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. B) Ve shall now show that xy dees exist, as
dafined by the following properties, for all x and y.v

| 1) xl=x

2) x.y' = Xy + %
Let M be the ¢lass of x for which there 1s exactly .

one such possibility. o

1) For x = 1, define Xy = Y.

Then Xlz=1=x

xy‘ =y =¥+ 1= xy+x

1 is contzined in M,

2) Now let x be any number in M, Then xy exlste by
assumption for all y. Define x'y = Xy + ¥. |
Then x' 1ex1l+1laex+lacx', and
'y = xyt + ¥ = (xy 4+ x) + ¥ oz xy 4 (x4 7)) = xy elxy)!
= xy +(x' + y) = iy s ly+x") wixy +y) +x' =x'yex',
hence x* belongs to M. |

~ Therefore M 48 the get of ali natural numbe?e, and

the proof 1s complete.
- Theorem 1.4.,2: , XY = ¥X.

- Proof: For a given y, let M be the class of x
for which  xy = ¥yxX. |
1) S8ince y:1 = y, and 1.y = y, by theorem 1.4.1,.then
y A= l.y.
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.1 is contained in M.
2) If M is the olass of x for which ;xy = ¥x,

then Xyt ym YRt Y= yx!,
and bj1thearem 1.4.1 x'y=xy ¥7,
then x'y = ¥ x'.

Therefore x' is contained in M, and M 1is the class of

21ll natural numbers.

» vy

Theorem 1l.4.3} x(y + 2z) = %y 4xz.‘.

Proof: For a fixed x, ¥, let M be the olass of 2
for which x(y + 2) = xy + xz.
1) Let z = 1,
then Xy +1) =xy =xy+xz3xy+xl
1 is contained in M. '
2) When z 1s contained in M, then x{y + 2) = xy + x%
Then x(y + 2') = x({y + 2)*) = x(y + z) 4+ x=(xy + x2) + x
| = xy + (xz 4+ x) = xy + xz'. '
2! 18 contained in M,
M contains the olass of all natural numbers N,

Theorem 1l.4.4: (zy)z = x(yz).

Proof: Let x and y be fixed, and M be the class
of z for which (xy)z = x(yz).

1) Ifz=1,
then '  (xy):1l = xy = x{y-1).
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Therefore 1 1a contalned in M, _
2) Let z be contalned in M, Then (xy)z = x(yz).
From theorem 1,4.3 (xy)z' = {(xy)z 4 xy = x(yz) + xy
- x(yz +y) = x(xyz"').
Therefore z' is contained in M, and M 1s the olags
of all natural numbers N, A

Theorem 1.4,8: If x>y, or x =z ¥, or x<¥,

it follows respectively xz yyz, OF Xz = yz, or xz<yi.v
Proof:l) For x>y, x= (y + u),

then xza(yi-u)zsii-buz??‘z.

Therefore Xz 2y2.
2) From x = ¥y, it follows that xz z yz.
3) From xcy, follows y >x.

?rom part 1) ¥z >xz,

then o xz<yz.'

Theorem 1,4.68: If =Xz >yz, Or Xz = yz, Or Xzl ¥z,

it follows respectively x>y, or X = ¥, Or X< Y.
Proof: From xz}yz we know that either x>y, .

or X =y, OF X¢ ¥,

but 4f x = ¥y, then by theorem 1.4.5 xz = ¥z,

and Lf x<Jy, thén by theorem 1l.4.5 xz < ¥yz.

Therefore ;:f xz ¥z, then x >y.

Similar proofs for the other parts,



Theorem 1.4.7:t If x>y, z >u, then xz > yu.
Proof: By theorem 1.4.5 xz >¥z,
and ¥z = 2y >u¥ = VU,

Therefore Xz > Yu.

Theorem 1.4.8: If x 2y, z>u, oF X >¥, 2 <4,
then | Xz > yu.

Proof: Similar to that of theorem 1.4.7.
Theorem 1.4.9: If x 2 ¥ 2 2 u, then xé;z,y‘u.

Proof:  Similar to that of theorem l.4,.7.

17



CHAPTER II

FRACTIONS

Seetion 1. Desfinitions and Equivalence

Definition 2.1.1: By a-fraotion 1 1s understood the

*2
‘ordered pair of numbers Xx;, Xp.
Definition 2.1.2: e N ¥ when x3 ¥g = ¥y Xge
X2 Y2
(U means equivalent.)
: Th . [ - : x x L]
eorem 2.1.1 | _i_]; U "x;
2 2
Proof: ) » XyXg = X3 Xge
Theorem 2.1.2: ~ If X Y1, then J1 X
‘ Xg V2 2 %

| L Proofi X,¥p = ¥3%as then y,x, - X ¥2.
Theorem 2.1.3: If :

= " Aha h, i1 %2, then 11 .
2 T2 Yo % R I

18



Proofs X ¥p = ¥1%gs Y%z = 2132

A | 8ince | |
(xy)(zu) = x(y(zu)) = x((yz)u) = x(u(yz) -(xu)(yz)
and (7,%5) (2,7, = (3;95) (2y%p)

= zlxz)'( :Ilyg) R
hence (xy20)(y;¥5) = (zlxe)(ylya)’
.and ' xlzé o 23Xg. i
Theorem 2.1.4: h on x.‘

: szxgx

“Proof: x, (x;%) = x,(xxp) = ,(xlx)xz.

19

(xu)(zy):
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Seotion 2. Order

Definition 2.2.1: ;3._ >%3;, when  X;¥p, ¥y %ge
A e Vg CoTL e

7

’ ¢ X3 ¥y Y X
Definition 2.2.2¢ “,E']“<"‘J”"” when ﬁy2< ylxz
2 "2 :

Theorem 2.2.1t There are arbitrary *1, Y1, so that

X3 V3
one of the following cases holds,
BN, e B 01, or 2.0,
I ¥z XY X Tz
"Proof: For any x3, Xp» yl, Yoo exactly one of the

relations xlyz =3 >0 ¢, X7, ho],ds.
1) 12 X1 J1, then x5, = ¥;%,.

Similar proofs for t'he other parts.
Theorem 2.2,2: If X1 Y1, then ¥1  %1.

. - Fe V2 Y2 %
~ Proof: B8ince x;¥5>¥,%,, then y,x, ¢ X, Tpe

Theorem 2.2.3: If X [ J1, @ 71, i W
X" Jg ¥ Zg Vg o Yy

-

2 u

then Ay 1.
2y " U,



Proof: yyu, = WY, Z1Xp = XyZy Xy¥p > %o
then . (yyup) (23%5) ~= (uy¥,) (%) 2,0, |

by theorem 1.4.5

(ylxz)(zluz) = (uy2,)(x,5,) > (w329 (73%,),
then by theorem 1l.4.6 2qUg > “132'

Theorem 2,2.6: If X Y1, B _ A, 517,
X T3 X Ep Yy T

then | | s NP
| 25 Yo

Pfoof: Bimilar to proof of theorem 2.2.4.

Definition 2.2.3: X1 >J1 nmeans that either
| 2 Yp |
;..1.'. >.z.].:t or %N .ﬁ:'

%4

( > means greater than, or equivalent to.)

Definition 2.2.4: XL ¢ Y1 mesns that either
2" Y2 |
.ﬁ: < z}! or :.]-'- Nﬁ'
. %2 V2 %2 I

{ < means less than, or equivalent to.)

21
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Theorem 2.2.6: Ir X1 .71, @ A, N1 N,

x. M
2™~ Yo ¥ Zg ¥y Yy
Zg Yy

Proof similar to that of theorem 2.2.4.

Theorem 2.2.7: It X%, X 2 7 W,

o
X" Vg X3 22 Vo Yy

| then _z_].; < :1_:!-.04
"/
2y T Yg

Proof similiar to that of theorem 2.2.4.

Theorem 2.2.8: If *1 > f_:_t_‘, - then f_l_:lfl__.
) RS [
X, ¥, Yo X,

Proof follows from theorem 2.1l.2 and theoi-em 2.2.1,

Theorem 2.2.9: If XL < V1, then "1 >X1,
~ g -
| s Y2 -
Proof follows from theorem 2.1.2 and theorem 2.2.2.

Proof! Xy ¥o < ¥1%0s L YZp< 2Ty
then Xy ) <y xp)(2y7,),

then xlzg «z’lxz.
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Theorem 2.2,11: Ir R Y1, %1 %A,
2TV Yy P

or 2 N, Mot A h.
X, yg yg “za E ‘, Zo | o
Proof follows from "theorem_ 2,2,5 and theorem 2.2.10,

Theorem 2.2.12: It *1.¥1, Y1 %1, then oA
' B P P 2 2%

Proof rollows from theorem 2.1.3 and theorem 2. 2 1l.

Theorem 2.2,18: For each f;. glven there is a

: " : Xg
2 *1,

X, |

Proof! (xl + xl)xg = x1x2 + xlxz >x3_1'2,

>

‘N‘
[av I §

Cthen = | xl"'xl)f_]_;.
. : : - xz
Theorem 2.2,14: For each ﬁ given, there is a 21 Q_’f_l;.

Proof: x3 %< xixg t X%, = x(x, ¢ xa).,

X3t % %
. ) . z . .

Theorem 2.2.15: 1If e § <ﬁ, there 18 a _1 such that’

o *2 " g ; %2

, x A

- -i-]-‘ <-§-]= <'§.'3""

2 2 2
Proof: ' XYoo < V1 %

then 172 < T _ _
X1Xp + X3¥p< X3Xp + ¥3Xg X Vo t V3V < ¥ X2 + V¥,

. ' X X
then 1 ) < 1,
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x (% 1 T)<(x; + ¥ )% (X R E AP A C AR AP

then f_]_.,<xl“ylc_{;
| E R JE
2 2 yﬁ y2

*
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Section 3. Addition

Definition 2.3.1: By X1 + Y1 1s understood the fraction

¥ Jg
*1Vp 4 Ni%y
o X3, : o
Theorem 2.3,1: If ‘X_Z_L_M{_l_, f_]_,,bf_;, then f;._ + B _ﬁ ¥ L
' X, ¥, 2, U x z Ty u
| 2 "2 2 2 2 2 2 2
Proofi X1 ¥p = yixa. 28, = W2g,°

‘then ! ' , o
lya)(zgua) = (yyxp)lzgug),  (21up)(xpy2) = (uy25)(xp¥0),

(x)2p) (¥up) = (F3up)(xpz5),  (2yx2)ypue) = (u3y2) (x520),

then

(x2)(y 02 4 (232 (¥ou) = (Fyup){xpz0) 4 (u;y,)(x525),
(zzp + 2yxp){ygup) = (Fyup + uy ¥p) (xp2,),
X120 ¢ 21%2 TiVp 4 Wi¥p
xzzz fzug

. x b 4
Theorem 2. 3.2 _’fl_ +f_g 1+ 2 .
| X X |

Proof: By Definition 2.3.1 and theorem 2, 1 4,
"1+"2 L nx 4 %X (3‘14.‘2):: *"11-"2

XX ' XX
Theorem 2.3, 3¢ R+ oo+ XA,

2 Y2 ( yg ."x2

Proof: XL+ J1  XVe 4 NiTp  Ni¥p 4 MVp e EB.
 Theorem 2.3.4: <ﬂ + _{;> I U A G_l_ - j}_) .
. .. xz y2 * 22 12 yz 22

-
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proof: (X1 + z_:_l._) + 2 Rz % 4 B2
| Xp Yo/ Zg *292 %2

(¥1¥2 4 Y1Xp)22 4 Z1(¥pY2) N((WLYQ)ZQ + (y1%0)20) + Z';(Yexp‘)
{x yz)z . A xztygzz)

(x,(y222) # (xpyl)za) +(2172)%
i Xg‘Y?ZzT

~ (xltyzzz) +¥!3132)) + (31¥2)x2

xg‘ygz
L L(T2%2)4 ((lez)xa + (Zlyz)lenuxllyzzz) + (Y1%2 4 %1¥p)%e
” xzwzzg) ‘ Xol¥o2o)
3g + yIZQ - zlya nu33=+ (zi *'fiY
2 T2% *2 \Y2 %
Theorem 2.3.6% 1+ 71 1.
: % 7. %,
2 2 2
Proof; X ¥g +.ylkg‘>xlyas

(x,55 + ylxz)xg > (%, ¥0)%5 = xl(yéng_ = x(xy 0,

Lale g 1%
2 Yg Ta¥2 xe :
Theorem 2,3.6¢ If % g

R __"_1; V3 then _1+_1 N1shr.
L Rl Ty 2 2277z 2
N?roof:_ 8ince x;¥5 >¥;X,, then (xlyg)z2> (ylxz)ga.

x

£

Since  (xy)z zx(yz) = x(zy) = (xe)y, then (mz )y, (yxprz.

and _(‘zlxg)yg = (z1¥p)%p, then (xyzp = 21%2)¥p > (¥z,- 21¥2) Xos
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- (x12, ¢ zlxg)(yzzg), (y,2q + zlya)'(xezglp

Dih R4 0%, NP8V Hya,

X2 23 Xa22 VoZa Y2 %
Theorem 2.3.7: It either X1 Yl, or X1 Y1, or
' 2 Vg
x1 22 1 it follows resz.peutively t.hat elther

*2 Ya |
1§- l>yl+ f1, or 1+l lfﬁ,orf}.-&ﬁz&#ﬂ.
X; Zp Vo zz X, %, ¥, Zg xzr 2, T, 22
Proof: Case 1 follows from theorem 2.3.6.
Case 2 follows from theorem 2.5.1‘
Case 3t "1< 1, then Y1 X1,
¥, %
2 2
and _Zl-rj;?f__l_-yfg.,, then _’f_3_.,+ﬁg._<£;+f}_~.
Theorem 2.3.8: It xl> 1, A1 l then *1 + %1 Y1 4 Y1 .
Y. z,/ 1, X, - ?>'§"’ u,.
2 2 2 2 2 2. 2 2

Proof: By theorem 2.3.6 D+, ¥ + 21,
T T Vp Ip

and ,
i N W R W A 2 DA A
Y2 %2 %y Y ¥y Y2 Y2 Y

then
B ot 3 A e

g 0¥y Vg .
Theorem 2.3.9 If either X1 + 21 .71+ %1, or X1 321 V1%
2 2/ ¥z 23  *g Iz Jp %2
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or X1 ¢ zl<3*’]. + 21, then elther xI.)yl or 21, %1,

or X1 o yl reapectlvely.
E2
Proof: We know that for X2, 0+ A, one of

rollowing must hold either 1> yJ., or ;!m l or ! (yl
' ) ) X2 Yz.,. xz Iz

1+ X175, then X1 4 2 T4, :
'2’5.'2_‘ "2”23’2‘9- .

or if xl< Y3, then X1+ 2":L< Y1 4 %1, therefore x]_)
R RRE T, T ¥y 2 %3 yz

L

smuar oroofa for the other oasaa,

Theorem 2.3.10: Ir X171, zl)“l or 31,71, 21,1,
- x2~ yg ‘zz uz X2 Yg 52 U2

AR L
Xo 2" ¥y W
Proof follows from theorems 2,3. 1, 2 5.6, and 2,3.8,

then

Theorem 2, 3.11* If x1>¥1, then J1 ¢4 “1 31 hag a

X2 yz Tz U %
solution %1, Moreover, if Ul and V1 are solutiana,
m . T v,
- 9 . , 2 2
- v
then N h,
Uy Vg

Proof: By theorem 2.3.9 2 Y1 4 U1 Y1 471,
T, T, 9, g
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R

then | : ui ~-?-3’- .
o uz Va

Construet a fraction M1 as followst
| , Y2
when X1¥2 > Y1Xos then X Y0 = y}_xe + 1,
then let u; = u, and let u, = X5¥p. Then __"; is the
solution because
Yu-“l N1+ u N1% ¢ u Vl"z+u V2 %1,
T Ty Tp e xpip ?‘zyz Xo¥p | Xglp g

Definition 2.3.2. The fraction Y1 , constructed in
Us |
the proof of theorem 2.3,11 is called the difference °

X1 minus ( =) J1.

X2 Y2 |
it ' ’ .El.(\/f.g:.-;-:}. ’
X, Ty Y
' v. x 3
then | P G SR
Vo % V2



30

Section 4, Multiplication

Definition 2.4.1t By X1 Y1 1s understood the fraction:

T2 Yz
%Y1 . fhis fraction ie called the product of 1 by'l,
*2¥2 . 2 g
Theorem 2.4.1: If xl yZL 21 ,\:_J_._, then” f.}_ f&w.{l .?3-. .
. xa yz zz ug 32 52 72 ua

- Proof: X2 = ¥3X2, 21Uy - Uy 22, then
(xlyz) (Zlug) (ylxz)(ulZQ) ' (xlzl) (yzng) fod (ylul)(xzzg).

and 4 W D A A

%5 2g Joup
Theorem 2.4.2! i}.ﬁmﬁ f}_ .
xa yz yz X,

CPreorr BTy MWy NN N n
| *g Vo ¥p¥z Yo¥a Y2 *p

Theorem 2.4,3! (_’f_}' f_]_._)i;/v s | <f_; f_l_._) .
2 2

X5 ¥ Vg 2q

Xy Yg Y Xo¥g g (Xp¥p)ig RS

*

Proof: (11 ?1) R e L N O (%3191)%1 *1(¥1%1)

0 N N i N 6 N AN
~MX YV % |T. z
T2 "2°2 2 2 "2
Theorem 2.4.4: El_._(f}_f- ""l)w xh+H5h,
¥2\¥2 25 ¥y X %

Proofs X1 /Y14 F1) X1 i%p 4 WV2  X(Na%s 4 %a¥p)
e\V2 Tl X Ta% *p\¥p2g)
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*1(Y1%2) ¢ *1(%192) Xlghiz) 4 X1(2152)

1.
Zg

(XV1) 22 ¢+ (Ff)¥2  Tad1 o+ 42 % T

z
~ Txpigle, (%2075 Xg¥p %223 Xp Tp Zo

e

Theorem 2.4,6¢ If X191, or X J1, or 2 71,

, . X, Yo *g Y2
then it follows respectively that either

‘hn Y1722, or i!:i];wz}.i}.a or. xli¥<ﬁi}.'

) ) * ~,
© Xg Zg” Vg Iy g Zg Vg 29 Xy 29 Fg 25

Sty
fae)

Proofil. If _{;72’__1 then X;3¥g >¥1Xg
X V2 |

(xlyz)(zlzz) >(y1x2)(z]_zzb, (xl?l)(ygza) 7(’:{181)(’(252)

L b SO L WL s W

) 1r *1 Y1, tnen 7171 Y1 % vy theorem 2.4.1.

x5 ¥p Xg 25 Jp 2y
3) Ir _f_l_<i];, then _{1>f_}, , and by case 1)
. x 2 ¥ 2
Y1 21 %1 %1, then 15,0 5,
Y.L % 5, E T
g %p. *3 % 2 Zp Y3 %2

Theorem 2,4.6: If e W | !Q’f_;,‘or ! f__J; Z_}_f_}, or

— (2%

i X, 82" Y3 2y Tty Y5 T
. o x .
f_]_., f_); <_{}_ f_:!.,, then it follows respectively _1 7,3_]_.,,
X, 2, ¥, 2 - 'Y
2 "2 272 R 2 ‘2
or . A0, or il..(f.!: .
X ¥ X



Proof follows from theorem 2.4.5, in as much as

the oases are mutuslly exclusive, all possibilities

8re exhaugted, 7 |
v %, U vy, u
Theorem 2.4, '?: Ir __;> 1, ""]‘>'§'l" then ':'E]';"'J"': 1 _&_1._ .
xa yz Zy Y o 2 22 Vg Up
Proof: By theorem 2.4.5 X zl i N e -"1 , and
*g By Vg Z
naonh my B, then NhTY,
Yz 23" 22 ¥z 7 g yz A Ty . Tp 27 ¥p Uy
" Theorem 2.4.8: It xl >yl, f_l_>f_3;, or f_}_>f};, fl_l_.>3_1_; '
: %V 7Y, 2 T2 %2 e

then X % V1 % |
xz 22 YZ o
Proof follows from theorems 2.4.1, 2. 4, 5 and 2,4, 7
Theorem 2.4,9: If x1>Y3 v 2% then X1 R-T1 Wy,
| % yg 2 Yy X, 257 T, Uy

Proof follows from theorens é;&.l and 2.4.8.

Theorem 2,4,10¢t Given any two fractions ‘fg ana‘f;', there

- TR -
exlsts a fraction ;f; such that'_z;.ziﬂhf;. If also
A u, Yo Ug X,
A u v
ﬁ-—l(v--lé ’ then «—!‘2(\'-—;'
V2 Vo % Up Vo |
Proof: ‘f; is unlque by theorem 2.4.6. Define “l = X3¥p

u
and up = xpyy.® Men M1 X¥a Ny X(TiYp)
“ ug JB x,?,yl Yz 32(3132) 2
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Section 5. Rational Numbers and Whole Numbers

‘Definition 2.5.,1: A rationel number s the giasa of

all fractions equivalent to a given fraction.
U, V, W, X, Y,and Z will be used to denote rational
© numbers, ‘

Definition 2.5.2t X = Y when ﬁothk oclasses contailn the

- same fraction, Otherwise, X7 Y,

Iﬁ view of the definition of a rational number,
and the properties of fractions previously eatabliahed,
the following theorems are evident, ‘
Theorem 2,65,1¢ X = X, o
Theorem 2.5.2:~If X =Y, then Y = X,
Theorem 2,5,3: If X=X, I=2, then X = Z.
Definition 2.5.3: X >Y if fractions *1 and J1 can

113

be ohosen from X and Y respectively such that ﬁ>f_l_,_ .
A . Xy ¥
2 72

Definition 2.5.4: X<¥ if fractions X end Y1 can
= =
. 2 .. ¥

be chosen from X and Y respectively such that xJ. xn N Vl.
L Xo Yo
Theorem 2.5.4: If X and Y are arbitrary, then only

cne of the followlng cases holds, X = ¥, or X>Y or X< X,
Proof follows from theorem 2.2.1,
Theorem 2.5.5: If X>Y, then Y« X.
 Proof:. Theorem 2.2.2.
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Theorem 2.5.68¢ If X<Y, then X >X.

Proof: Theorem 2,2.3.
Definition 2.5.5¢ X 2 Y means either X >Y¥, or X=X,
Definition 2.56.6: X = Y means either X<Y, or X= Y.
Theorem 2.6.7: If X ZY, then ¥ £ X, |

| 'Proof:'_ Theorem 2.2,8, ,

Theorem 2.5.8: If X £¥, then Y <X,
- Proof: Theorem 2.2.9. | |
Theorem 2.5.9: If X<¥, ¥<Z, then X<Z.

Proof: Thaorem 2.,2.,10,

Theorem 2.5.10: If XSY, Y<3z, or X<¥X, ¥<32, then X<2
-~ Prooft Theorem 2 2 11, |
Theorem 2.5.11: If X<Y, Y<Z then X< Z.

Proofz‘ Theorem 2.2, 12.

Theorem 2,5.121 For any given X there 15 & z >X. o
‘Proof: Theorem 2.2.13. | |
Theorem 2.5.13: For any given X there 1s a Z<X. Thus,

there is no smalleat ratiﬁnal_ number,
- Proof! Theorem 2.2.,14. ‘
Theorem 2.6.141 If X<¥, then there is a Z such that

. ~ X<Z <Y,
| Proof: Theorem 2,2,15.
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Definition 2,5,7t X + ¥ means the class defined by the
sum obtained by adding one of the fractions of Y to one
of the frgetiéhs of X, ,
Thecrem 2-.5. 15 X¢ Y= I + X.

Proof! ’.I‘heorem 2.3.3. , .
Theorem 2.6,16: (X + ¥) +z'== X4+ (Y& 2),
| Proof: Theorem 2,3.4. |
, Theorem 2,5.178 X+ XX
_ Proof: Theorem 2,3.5, .
Theorem 2.5.18: If XY, then X + z> Y + 2.

- Proof: Theorem 2.3.6.
Theorem 2.5.19: If X~Y, oi' X= Y, or Xc¥, then it
follows respectively that X + 22X ¢ z, or X + Zs XY+ 2,
or X +. Z< Y 4 2.

P Proof: Theorem 2.3.7. |
 Theorem 2.5.203 If Xy Z>Y+2, or X+42Z=Y 472 or
X P Z< X + 2, then it follows respectively that o

X>¥Y, or X= I,”" ~ or XX,
Proof: Theorem 2.3.9.
Theorem 2.5.21: If X>Y, Z>U, then X% Z2,Y¥ 4 U.

\ Proof':f Theorenm 2.3.8. »
Theorem 2.5,22. If X 2 ¥, z;n or Xs%, z2U
then X+ Z>Y 4 U,
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Proofi rheorem 2.3,10:
Theorem 2.5,23% If X >¥, there 19 only one U auch that »
YpRU=X, and X>U, _
?root: . Theorem-2.3.11.
Definition 2.65.8¢ 'l'he U of theorem 2.5.23 is the

difference obtained by subtracting Y from X, and is
written S UTXaY, | |
Definition 2.56.9: XSE means the olass defined by the
product obtalned from multiplying one of tha fractions
of X by one of the fraotions of Y.

Theorem 2,5,24¢ XY - ¥X,
Procft Theorem 2, 4. 2. ‘
Theoren 2.5.85¢ XY}z = X(¥z).

" Proof: Theorem 2.4,3, |
Theorem 2,6,26: ~ X(Y + Z) T XY + Xz,
Proof! 'z‘heb‘ren; 2.4.4.
Theorem 2,5.27: If X>Y, or X = ¥, or X <Y, then it

follows respeotively that XZ;IZ, or XZ = XYZ, or XZYZ,
Proof’ ?heoram 20“1‘.5. .
_ 'Theorem 2.5.28: It xz>3zz, or XZ = ¥z, or XZ ¢¥Z,

then it fcllows respectively that X>Y, or X = Y, or XX,
Proof' Theorem 2 4,6,
Theorem 2. 5. 29. It XpY, Z>U, then X2 >YU,

Proof: Theorem 2,4.7.



37

Theorem 2.5.30: . If X £Y, z>U, or X-Y, z 2 U,
then . X2 >Yu,
Proof: ‘Theorem 2.4.8,
mheor;m 2,5,31: 1f 'x,i_!, 7 2 U, then Xz ZYU,
Proof: Theorem 2.4,9, -
Theorem 2,56,32: The equation YU = X, whei'e x and ¥

are given, has only one solution, U,
“Proof: Theorem 2.4.10,

Theorem 2,5.33% If x.J¥ 'cr' X J, or | then
T 24 GREE L0 SRR 8 &

it follows respectively that either x>y, or x = ¥,
or | : R <Y ;
 Proof: If .0 then x = x:1>y.1 = y; therefore x >y.
. I |

Ir -‘gi_:-,v%, then x = x-l ®« y-1 =2y, and x = Y.
1e .

X Yy then x = .x-l Y-l wwy, and x<y.
o
Definition 2.5,10t A ratlional number 1s called a whole

‘number when there is a fraction of the form {: contained

in the olass.

Theérem, 2.5.§§z % +§N X3 ¥ _§ §m_ix

. Proof: 1 by theorem 2.3,2, 2 by definition 2.4.1,

Theorem 2,6,36: The olass of all whole numbers satisfies

the postulates 1 through 6 of natursl numberé, if instead

of 1 we write the class -%- , and instead of x we write
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“the claas -’f , and instead of x' we write the olass %".
Pi‘oﬁi‘a Let ¥ be the ’claas of all whole numbers,
1. The class % is & whole number. | ; 3
2. For sach whole number ocontained in W, there is a
sonsequent whéle numﬁer contained in W,
N-JZ_ then -.',\,1"

]_ .
3. The olase -g-': is not the eunsequenca of any numbex-.
4, If the class of -i—m]l_ , then x' = y', snd x = ¥,
_then | P

» 6. Let N be a clasa of whale numbers withe the propertless,
_;.__e,. The class "I ‘belongs to X .
If the olass ¥ belongs to § then 3

'belongs to N.

~ Now let N be the olass of x for which the olase 3
,bglcngs to N, Then 148 in N, and if x 1s in N, then
x' 18 in N. Thus every natural number belongs to N,
and every whole number belongs to N .

Definition 2,656,111 If x refers to a whole number, the

the whole class 'I is given,

X ¢ & rational

Theorem 2.5,36% If Z 18 the fraotion 7
n@mber, ‘then yz = Xe
prooft §Zo L~ Fox

Definition 2.5.12: 'rhe U of theorem 2.5.32 1s the quotn.ant




of X divided by Y. |
Theorem 2.8.37% If X and Y are given, thére s a g .
‘such that U XX, o

Proof! % is a rablonal number; from theorem 2.5,12
it follows that ﬁze whole numbers z, v,

p 4
373

where v < 1 by theorem 2,6.33, then by theorem 2.5.27

“

X=Xz =xEv) s (xBvI(xH1=x2 xf =¥,
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OHAPTER 3
THE CUT
Section 1. Definitlon
Definition 3,1,1: A set A of rational numbers is called

a cut when

a. There is a rational number in A, but not every
rational number is in A, |

b. Every rational number in A 1s smaller than
every ratlional number in B,

o. There is no largest rational number in A.

We will use &, b, ¢, d, e, £, and g to denote outs.

, The set A 18 called the lower clasg and the numbers

in A are called lower numbers.. Thé‘numbars nbt in A
are oalled upner numbers and make up what is oalled the
upper olass.

The following theorems goncerning ocuts are evident
1n view of the deflnitions of rational numbers and cuts,
Theorem 3.1.11 2 = a.

Theorenm 3.,1.2: If a=b, then b = a,
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Theorem 3.1.3: If a=zb, &nd b=z o, then az 6.

Theorem 3.1,4: If X is an uﬁper number of &, and X7 %
tnen Xy le also an upper number of a. - '
Proof follows from part b of definition 5.1 1.

hTheorem 3.1.6: If X is & lower number of &, and X3<X,

then Xy is also a lower number of a,.

Proof follows from part b of definlition 3.1l.1.
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_Bection 2, Order

Definition 3.2.1: Let a and b be cuts, Then & >b 1ot

_there 18 a lower number of e which ig an upper number
of b,
Definition 3.2.2% _'Let a and b be outs. Then a<b °

if t}:;eré is an upper number' of a which is a lower
nunber of b, |

The rolldwing ‘theorems conoerning outs aré now
readily established, |
Theorem 3.2.1: If a>b, .then b<a,

ffhéorém 3.2.2¢ If a<b, then b a. ’

Theorem 3.2.3:! Let a and b be arbitrary, then they

must fall into one and only one of the following olasses,

&.“:b, a)b, . 8.<b.

Definition 3.2.3t &+« b means either a>b, or a = b,

Derinition 3.2.4: a < b means elther a<b, or a = b,

Theorem 3.8.4: If a ?b, then b « a.

Theorem 3.8.5: If a < b, then b Z a.
Theorem 3.3.8t If a<b, bso, then ace,

Theorem 3.3.7t If a S b, o, or ach, bs o, then ac 0.

Theorem 3.2.8Y If a = b, b = o, then a & a.
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Seotion 3. Addition
Theorem 3.5.1: Let s and b be cuts. Then (I} the:

set of all numbers representable in the form X + ¥,
‘where X 18 a lower number of a end ¥ is o lower number
of b, 13 a cut. o

(11) Na number of this eet may be rapreaented
ag the sum of an upper number of a and an upper
number of b, | . .

Prooft Let X be a2 lower number of & and Y be
& lover number of b, Then X + ¥ is in the set,
| | Given some Xj; which 1s an upperinumbar 61"’- 8y
and some ¥; which ia an upper number of b for-all
corresponding lower numbers.‘x,lx ‘oontamad in g and
b reSpeotivelly. Bines X< Xl, ¥<'£l, ‘then
X4 Y X 4%, Therefore X, 4+ Y £X47Y, anaxl+z

- is not oontalnad in the set, proving 1II. Thus the

~set satisflea condition a of defs.nition J.1.1.

| To show that condition b is gatisfied, let 2 be
a number such that = 2Z<X 4 Y.

’Bhenz (X + Y) X"Z"'I < (X # ¥):1, by theorem 2.5.28
<}, then by theorem 2.5.27

X+ X
XT—‘T"<XI"’X; aﬂd Y-x--—-z<'.‘['ln¥.

Th;{xs X m and XY 'i""'"i' are lower numbers of
a and b respectively.
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But the sum of these two Tational numbers is Z,
hence Z is in the set, o o
Let X3 be a lover number of a such that X, > X.
Théni X3 + ¥ is in the'set;an&,the set 1s not void,
Hence the aet, X + ¥, 18 a out.

Definition 3.3.1: According to theorem 3.3.1 1t is
. poselble to construct a cut of the form avr b, It is
called the sum nbtaiﬁed‘by the addition of b to a -
resulting in a out:

We then have the following tﬁgorgﬁa“

4

Theorem 3.3.2t1 4+ bz b+ a.

Theorem 3.3.3: (a4 b) + o = a«+.(b“4 8),

Theorem 3.3.4! In every given c&t, for any rational number

A, there 1ls a lower number X and ancupper number U
such that |  U~XsA
) Prooft Let X; be a lower numbq;,han&.ccneider ell
ratlonal numbers of the form Xl + nh; where n 18 a
whole number, . » :

Let ¥ be an ﬁpper number, then'. !t>x-1.

By theorem 2.5;37,4there 1% an n such that
‘ nA> X + Xy,
and X, trAS(Y - X)) 4 X3 2,
therefore fxl + nA 1s not a lower number for all n.

In the set of n, for which X3 + nA 15 an upper
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number, ‘there is some smallest whole number,”" u, by .
theorem 2.5.57. If uz 1, let X = X;, then Uz X; 4 A,
whence A = U - X, -

Ifuyl, let X=X + (u-1)4 then

Us=X fubzX4 A

‘Now X is a lowér-numbarsand U is an upper number,
henoe U~ Xa A,

Theorem 3.3.5! e +b>a.

. Theorem 3.3,8:¢ If a >b, then a+ ¢ > + o,

ZTheorem 3.3,7¢ If &b, or as=b, or ac<b, then it

. follows respectively that a 4 6>b+ 0, or a4o:b 4 o,
or S ato<bdoa,

Theorem 3.3.8! If a+e>b+¢6, 0or ad+o:b+4 6, or

"a+ 0cb+ o0, then it follows respectively that ,
a>b, or a="5b, or a ¢b.

Theorem 3.3.9! If a >y, o >4, then"a ~o>b 4+ d,

Theorem 3.3.10: If a-—b ¢>d, or a>b, c-d, then'
a4o>b+d.

Theorem 3.3.11t If a2 b, ¢ <4, then a4 ob 4 4,

Theorem 3.3.12: If‘ a>b, then there 1s some o suoh
that.  bt+a=a
Proof: I) There is at most one solution, for if
¢y £ 0g, then bt ey £b4 ey,
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II) First it must be shown that the set of rational
numbers of tae form X - I,‘where-x~1s a lower number of _
aend ¥ 18 an uppef number of b, X>¥, constitutes aiout.

1) We Know by theorem 2.5,.23 for X>Y¥,

x Y exists. -

'No upper number x1 of a oan have the form x - Y beaause

X-¥e(X-0 $ ¥z X <Xy,
henos not all<numbers are in the set (X - ¥).
. | 2)  If X - Y is defined in the above. manner,
then 1f fnr some rational number U, U<:X - E, ‘then

Ut YeX-Y) + XX,
Let U4 ¥ = X5, where X, 18 & lower number'of'a.
Then U = X2'~ Y, and 1s contained in the set (X ~ ¥),
hence for any X - ¥, we can find a amallér.number in
| lthe set. |
" 3) - Since a 1s a'aut, it 1s possible to choose
from a & lower number Xs such that X.>X,
Then Xy - Y)Y H(X - X)X, |
and - o Xy = XOX = X,
theia:ore Xa ~-i lg a laﬁge: number in the set then X - X,
‘Thus by 1, 2, end 3, X~-Yisa out, Let 1t be called o,

 Now we have to prove that b 4+ ¢ = a. To do so the

following conditions must be satisfied, |

a) Every lower number of b + o must be a lower
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number of a,.
b)  Every lower number of a must be 2 lower number
of b + o.
Proof of ai Every lower number of b 4 ¢ is of
‘the form ( X = X) + ¥;, vhere X is 2 lower number of a,
Y ieg an ﬁpper nunber éf b, and ¥; ig a lower number
of b, and % >Y.
- Now Y-y, |
,((x-—*x)a-:z)-“x Y) = (x- x)+(:tl (¥ - ¥%3))
=(X-Y) +YeX (X = ¥) 4 ¥, <X,
then (X - Y) + Y, is a lower number of a.
Proof of bt 1) Each Y considered sbove 13 also
a idﬁer number of a. Then, if X 4a a lower number of
a such that X X, thén by theorem 3+3.4 there is a
. lower number !1 of b, end an upper number Iz of b
such that - ¥y = X~ ¥, Then since ¥,>21
$ (Y- - ((x D+ +X-1)
=X-Y)+Y=X (x-z)-yxl;x,
Yp-¥p=X-Y and ¥-Y :X-Yp then
Y= (Y- 1)4-:: - (X - :t)-m
then Y is a lower number of b + c.

2) Each lower number of a whioh is also a



lower number of b is less than each lower number of a

oonsidered in part 1, and henoce is aleo in b 4 o.
This completes the pfoof; | ‘v,

Definition 3.5.2t The o of theorem 3.3.12 is the

difference obtainéd by subtracting b from s, and is

written ¢=b-~a,

48
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Bection 4. Multiplication

Theorem 3.4.1: I) Let a and b be outs, Then the set

of rational numbera of the form XY, where X 1s a lower
number of & an& Y is a lower number or b, form a out.
II) No number in the set can be repreaented by
the product of an upper nunber of a and an upper number
of b. |
;“ Proofil, Let X be’apy lower number of a and Y be
any lower number of b, Then XY is in the set.
Pick an xl which is an upper number of s, and
8 Yl which is an upper number of b. BSince X< X,
Y, ¥, then XY<X)¥;, and XY # XY, Thus Xj¥y
18 not contalned in the set, and the set does not
‘contain all rational numbers. |

2, If X is a lower numbeé'pf a and ¥ is a lower

number of b, and Z<XY, Then X(32) = (xP z =212 =3,
Z, 1z.1 = (1% =Y.
Thus % is a lower number of b, and since 7Z = x% ’

Z is contalned in the met XY. _

3. For any given XY in the set, choose a lower
nd@ber ii of a such that X, >Xi; Then X,¥>XY, hence
'thére 18 a larger number than XY in the set.

Defiition 3.4.1t The out constructed in theorem 3.4.1 -

1s called ab., It is the product of a times b and the
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multiplicstion results in & unique ocut.
In view of the above definition and the properties

of rational numbers the following theorems are evident.

Thecfen 3.4.8: ab = ba.

Theorem 3.4.3: _ {ab)e = a(be).

Theorem 3.4,4:  alb 4 ¢) = ab » ao,

Theorem 3.4.6: If a>b, or a=b, or &cb, then

it follows respectively that elther .
" aa>be  or ~ ac = bo, or ac <¢bo,

Theorem 3.4.6: If ac >bo, or ac = be, or . asc<bo,

then it follows respectively that a~b, or a =b, or acb.

Theorem 3.4.7: If a>b, e¢~>d, then aoc )bﬁ.‘

Theorem 3.4.81 If aZ b, ¢>4, or a>b, ¢ = d, then ac ) bd.
Theorem 3.4.9: If a < b, o=d, then ac = bd..

Theorem 3.4.10: For every rational number R, 'the get

of rationsl numbers less than R forms a cut,
Proof: By theorem 2.5.13 there is an X<R. R
Atself 1s not less than R, | A
I X<m, X, = R, thien x<x1
<If X <R, then by theorem 2.6, 14 thare is an Xl
such that o X<X1 <R, ‘
Definition 3.4.2: Tha cut construoted in theorem 3.4.10

will be designated by R*
Theorem 3.4.11: al%* = g
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Proéf; a-l* is the aét of XY, where X 1a a lower
number of & and ¥ <1l.

Every such number of the form XY is 1eaégthan X,
and thus ie a lower number of 8.

 Uonversely, for any lower number of 8, say X,
1t 13 poaslble to choose from & & lower number x1> Xe

put Y= &. X, then z<3 X, =1, and X = XX,
x,]_ X3 1 - »l

Hence every lower number of a is a lower number of a-l*,

Theorem 5.4.12: If a is ngén then there is a unique
b such that - =%, |

Proof: "Let us oonaider tha set of all numbera
of the form ‘X' where X 8 any upper. number of a -
with the possible exception of the amalleat onel ir.
there 1s such & smallest). We will show that the class
18 a out,

1) There is a number in this set, For vhen X
is an upper number of a, X + X is also‘an upper number,
but not the smallest. Then 'X;?“X is contained in
the set, Therefore the set is not voild,

There 18 a rat&onal numbar not contained in the
set, For, if X; is a lower number of a, then for all

upper numbers X contained in a X ﬁ X - Then
1
X“-l*xlx X?'il
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Henoe '%E 16 not contained in the get. The set does
1 . }

not oontain all numbers.
2) Let 'X be a number in the set, where X is an
upper number of a, and suppose that U<‘:'!= o
- Phen UX<3'~X -1= (% whenee X<-]-“~ . Then % is
U . .
an upper number of a and is not’ the smallest.

1
. Then since U% <1, U=T, and U 15 also oon’cained

C‘-i

in the set. e
3) If X is an upper number of a, (but not the

’smallest) there 1s another upper number X, of a such

that X3< X anc’i by theorem 2.5. 14, there 1s an ¥, such

that T Ky <Xy <X

Then xa is an upper number of a and is not the amallest,

| . leq= &
and frogx- 2-2 zx}-{ - _1A X’ it follows that 'Xz

 For each number in the set , there is a number which
is largar. By deflnition B.1.1 the set 13 a eut.
Let it be oalled b. | | o

Now we nust prove that ‘ab 3'1*; To do @0 we
must ghowt R

A) Any lower number contained in ab <1,

B) Any rational number less than 1 is a lower

number of ab.
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Proof of At Any lower number of ab may be ﬁrittén
in the ferm X‘g N whsre X 13 & lower numbar of a,
xl A8 an upper number ot a. Bince X <Xy, then:

x§'<\xx§ =1, Then every lower number of ab4 l.
1 1l ' '

Proof of B: Let U <l., For any lower number X
of a, by thearem 3.3.4 there 18 a 1cwer nunmber xl
contained in a, and an upper number X, of & such that
Xy - X, = (1 - U)X, Then since X, >X, X, - X< (1 ~UlXg.
Then (X ='X;) + UX, <(1 - U) X, + UX, 2 X, = (Xp=Xy) + xl,‘

= Love = Lo ) ke = 2L
UX24 Xl, X, = ('B'U)Xz = U(Uxa) <%y = vl

Therefore 'gl is also an upper number of a, but is not

X
‘the smallest. From Uz* I X;, it follows that

N X1 v 1
U= E =Xy X ¥
U . 1

‘Then since X, is a lower number of a, and %i ‘48 a

lower number of b, then U i1s a lower nuﬁber_of db.v This
completes the proof,

Theorem 3.4.13: In the equation bo = a, where a and b

are glven, there 1s a unique solution c.
Proof: 1) There is at most one solution, because

it cl = 02, then bol sz .
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2) Ira A'i*s found by theorem 3;4.12 such that
bd = 1%, then ief c= dg ,  Then by theorem 3.4,11
be = blda) =(bd)a = 1* a = a. o
Definition 3.4.3: The cut ¢ ‘constructed in theorem 3.4.13
16 called the quotient obtained by dividing a by b.
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“ gection 5, Ratlonal Cuts and Whole Cuts

Definition 3.5.1: A out of the form X* 1s called &
rational ocut. o | |

Definition 3.5.2: A out of the form x* is called &

‘whole cut,

Theorem 3.6.1: If X>Y,A' or X = Y,' or X<¥, then

X* >y®, or X% =731% or X% < Y%, and the converse

e
ey

is also truel
Theorem 3.5.2:_ (L) (X  X)% = x* 3 Y#; (II) (X ~ Y= XY,
tor x 1 (11D (xmw = xvae () (PrE T

Proof: (I) a) Any lower number oontained in X% 4 ¥Y*

is the sum of a rational number less than x and a rational
number less than !.- Therefore it is also less than
X + Y and is also a lower number of (X + X)*®,~
| b) Any ratlonal number U‘contained in {X + Y)*
13 lese than X + ¥, Then sinpe 37:“! < 1,
U= ng‘“g -+ EX“"!’ U is the sum of a rational |
number 1858 then X and a rational number less than !
Therefora U 1 a lawer number of X" 4 Y%, Hence,
(X + Y)* = x¢ + X*, ,
.o 1) Ir X ~¥, then x= (X~ 1Y) 4Y, Bypart I
x* z (X - Y)* 4 Y%, then (x LR L A
(1II) &) Any rational number X*Y* 1g the product

of a rational number less than X and a rational numbgr
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leaa7thén Y. Therefore any number less than XY is a
lower number of (XY)*.
| b) Any lower number U contained in (XI)“ is

less than XY, By theorem 2.6,14, there 18 a rational |

; U
number U; such that L ERRS XY, Then %lc 1, and ——% < X,

U U : . :
Since U= = (Y'ﬁl). U is a product of a lower number

o£ i“‘and a lowér'number of ¥*, Hence U is p lower numbér;
of X*Y*, and we have ﬁrove&ﬁthat (XX)* = X¥Y, )
(IV) . Since X = 3¥, 1t follows by part III that
(Y)*x* then (-)* = -—-- '
Theorem 3.5.3: A whole out satlafles the five postulatea

of natural numbers, when 1% 1s taken in the place of 1,
and | (x")* = ("),
Proof: Let W* be the set of all whole outs.
1) 1% is in the set W* | |
2) For x* contalned in W*, there is an (x*)' in We,
5) Sthoe x' #1, then (x1)® # B ana (xM' 7 1%,
&) If (x*)' = (y*)7, then (x")* = (y")%, x' = y',
~ x=y, andx*=y*
5) Let N* be a olass of whole cuts such that
~8) 1* is contained in N¥, -
b) 1f x* is oontained An N*, then (x*)°* ig

contained in N®,
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 Let N be the class of ﬁhnle numbers. x for which x*
lis‘ébnta;ned,ip R®, ‘Then:l is contalined iﬁ N, ana‘for
every x conta&néd invN,.x*.aisakis contained in N,
Hehce~§ is the set of ail’éﬁale«numbere, and N® 18
. the set of all whole outs. o o

Thug, ainoe in terms or =y P «, sum, dlfference,

“product and. quotlent as previously defined, the rational

'outs have all of the properties of rational numbers
_established in chapter II; in particular, whnle cuts
have all the prapertiea of whole numbers.

Theorem- 3. 5 4% The rational numbers. are those ocuts

for which there is a emallest upper number . In&aed,
X 1s_then the ecut. ,

Proof: 1) The out X (previously X*) has X ( a
rétional number in the originsl sense) for the least
upper number. ?

~ 2) Given X as tha lesst upper number in the out a,
then elnceiavery lower~number is less than X, and every
upper number is greater than or equal to X, the cut is X

(or the old X*).

Theorem 3.5.5t If & is & out, then X is a lower number
when X'ia less than a, or an upper number when X 18

grééter tﬁan or equal to &a.
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Theorem 5.5.61' If ach, ther’é‘is a Z such that

&< Z.(b¢

Theorem B3.5.7¢ Every Zpab has the form Z= VXY ,
where X < &, Y b, : .
,"Prd'of: Let da be the smaller of the auts 1 and

% - ah ’, then &«-l, a i 7 -38b
la+Di +1 , R {a + b) 4 1

By theorem 5‘.5;6 Zl and Z, ejcist auch that

| ﬁa<Zl‘<af+ d, b<Zy<b + 4. " Then
‘zl'zzg(é +ab+a) = (as b+ (as+ad
Sta+ b+ (ad4llaz é’b +((a +b) + 1)a

| Sab+ (2~ ab) =

- -z 1 '
= o - - >
Now 2% ';2’ Zp » and Zg z'z‘ (lez)za z,> a.

. fThen if we take X 3% , and Y = 2gy WE have -
' - t 2 - .

£

z~("")(z) XY,

as was to be shown.

Theorem 3.5.8: For every a there ig a bb =
Proof: I)I ,There\; 1g onl‘y one sblut;.on, because if
by 7 by, then . byby > byb,, o
II) Congider the set of rational numbers X such that
XX a,. This get is a cut., For
1) Xf X<l, and X<a, then XAc X1 = X<a,
If X<1and X <a, then XX < X1 = X = a. Hence the

set contalins some numbers, but not all numbers.
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2) If XX<a, Y<X, then xx<xx2a.~ |
) If" XX <a, one can choose a Z smaller than.-

a_- XX Thus Zc1,

'the amall *
aller of the cuts 1 and X r (X + 1)

' }a-;XX"

‘.,ZC-X (X r 1), then ainee x + z:>x, and .

{x + z)(x + 2) = (X + z)x + (X + 2)2 <(XX ¢ 2%) + (X ¢ 1)z
Xx+»(x+-x+1)2<xx+(a-xx)-a,'

,and XX 13 a ocut, We will call the eonstrueted cut b.

We now,prova that bb = a.' |
‘ If bb>'a, then by théorem 3.5.6 there is a Z
" such that’ vbb‘>z,>§; N |

Now if Z 1a7é lower number‘of a, we can write
2= xlxg, X <b, X,<b; or it X 13 ‘the larger of X

2
- and Xg, X< b, we have Z £ XX ¢a. But this means 27

l

16 a lower of a, whlch oontradicts the assumption
R | bb>Z?a.,"‘ ,
When bb < a, then there is a Z by theorem 3.5.6

such that N LK Z_{é. Z has'by
~theorem 3.5 7 the form 2 =X %2 X Z v, xahf b,
- when X is the smalley of %, and Xn, then X 2 b,

‘ Z"‘XX"&*
" as was glven above, z

Definition 3.6.3t Every cut ﬁhicn 1s not & ratiohal‘

number is called an irrational number.
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Theorem 3,5.9¢ ’rhere is an irra‘cional number.

~ Proof: It is suffiotent to show that the b which
satlsfips bb = 1t is irrational. Suppose that b is
rationsl, that is that b = —?, where x and y are chosen
8o t:h..:t y has the smallest possible value, ?hen
1t e bb = 'S‘";Ss” = .;.5-;- " Hence yy < l'(y:{) = = (l‘y)y
<(l’y)(l'y), and y./xd.‘y. |
Put x - y = u, then v +u = x< L'y =7+ 7, u<y.
Now by direot caloulation, | I
(v + w)(v + = (v + wlv 4 (v 4w = (vv y wv) -+.(vw' + W)
= (vv 4 1 {vw)) + ww. | |
How Aif we let y - u = %, then
yx } bt T (v + wiy + u) + tt = (yy 4 l'(yu)) * (uu + 1;1:)
= (yy * (1'uw)(u > £)) + (uu + %)
(yy « 1‘(uu)) # {(1t(ut) 4 uu) + tt) ‘
= (yy + l'(uu)) + (u+ t)(u y t)= (yy + L' (uw)) + ¥7

= 1'(yy) + 1'(uu) = xx + 1'(uu), then %= 1‘(uu),

Henoe 3?-»3 = 1t,
au

| But u<y, and since y was taken to be the lowest
common denominator, this is a contradiction, Therefore,

‘the theorem as stabed holds.
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CHAPTER IV
REAL NUMBERS
Seetion 1. Definition

‘Definition 4,1.1: Henceforth, we will call cuts positive
" numbers, The rational numbers and whole numbers*pre» ‘
'viously considered will now be callea positive rational

numbers snd positive whole numbers respectively‘

Definition 4,1,3: There exlsts a number zero, written 0,
- aifferent from any positive number. |

Definition 4.1,3: There exist nnmbera, different frcm

the positive numbers and 0, called negat;ve numbers such
that‘, 1) for any & ( that is ény‘posltive number) |
there is a corresponding negative number -a (read
minus a), | | | | | |

. 2) 1 ~a=<b, thena = b,
'_‘Definition 4,1.,4: The totality of all positive numbers,

zero,.and all negative'numbers will be oalled the set
of all real numbers, | |

Gapital letters, A, B, 0, D, E, F, and G, will be
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' used to represent real numbers.
From the uet‘inltien, the ususl theorems of equallty
are readily. seen to hold. |
Theorem 4,1,1t . A=A,
Theorem 4.1.21 * If A= B, them B = A,

Theorem 4.1.3¢ If A=B, B=0, then A=C.
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Section 2. Order

j&¢ = {0, when &4 = Q,

Definition 4.2,1: a, when A = a,
{;, when A = -a,

The number |Al is called the absolute value of A.
Theorem 4.2,1¢: JAl is positive for both positive and

negative A's.
Proof by definition 4,2,1,

Definition 4.2.2¢ If A and B are not both positive, then
A 2B means ihat one of the following caaea-hnids:

1) A is negative, B is negative and JAI</B| ,

2) A= 0, B is negative,

3) Ais positive, B is negative,

4) A is positive, B 1s 0.
befinition 4,2,3:t If A<B, then B >A.

. Theorem 4.2.2% Wnen A and B are given exactly one of the

_ following oases holds:t A = B, or A>B, or A<B,
Definition 4.2.4! A £ B means thet either A>B, or A

"
R

"
o]
.

Definition 4.2.6: A < B means that either A<CB, or A

Theorem 4,2.3t If A = B, then 8 3 A,

Pheorem 4.2.4: The positive numbers are greater than O;

the negative numbers are less than O,

Proofﬂ; By‘definition 4.2.2 a’0,
o. fThen from A0 by definition 4,2.2, it follows that
A is positive, i.e. that A = a.

*
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3. By theorem 4,2,2, since - a # 0, e2nd -a ¥ b (any
positive number)  -a< O, |

4, Hence for any A<0, by definition 4.2.3, 0 >A, and
by definiltion 4,2.2, A is & negative number, A = -a,

Theorem 4,2.,5% IAI 2 0.

Theorem 4.2.6: If A<B, B<C, then A<C,

Proof: Three czses must be coneldered.
1. Let C >0, Then if A >0, then also B>0, by
theorem 3.2.7. For the caze A S 0, then A< C by
" definition. " |
2. ‘4Let ¢ =0, Then B<CO, and A(B'implieé that A
ie negative, A<O = G, |
5. Let C<O. Them B<0, and A<O, By definition 4,2.2
A<B implies J&/>JBl, and B< G implies Bl >/C)
tuen |Al >[C} hence A< T, | |
Theorem 4,2,7y If A <B, B<C, or A<B, B S g, tuen A< G,

Theorem 4.2.8: If A =B, B0, then ASC.-

Definition 4.2.8¢ If A £ 0, A is rational if A =0,
or for A<9Q, if [Alis rational. ‘
Definition 4.2.7: VWhen A<O, A is called irrational

if 1t 1s not raticnal.
Note thet if a is irrational, then a + X 18

irrational§ 1f a+X=Y¥, a=¥~ x,’ whence & would be

rational. Thus (a + X) is a positive lrrational number,

‘and  -(a f X) 18 a negative irrational number.
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Definition 4,2,8¢ If A S O, then 1f A = O, A is oalled
a whole number, or for A<O, if [A/ 1s a whole number,
then A iﬁ called a whole number,

Theorem 4.2.9: Every whole number is ratlonal.
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Section 3. Addltion
W

_Definition 43,1t
-{ IAl + /B/) , when ACO, B<O

)~ B ~ | (Al > Bl
0 , when A)p, B< O, /m = Bl
A+ B={ «(/Bl - 1Al) o | Al < (Bl
B+A , when ACO, B>0j |
B » when A = 0}
A s wWhen B = Q,
- Theorem 4.3.1: A+ B=B+aA,
Definition 4,3.2: .« [0 for A = 0,
- <Az {,AI for A'< 0.

Theorem 4.3.2: If A0, A =0, or A¢ 0, then it follows
respecfively that -A<O0, ~A = 0, or ~AY O,
Proof by definitions 4,1.3, ané 4.3.2.

Theorem 4.3.3% | -(=A) = 4,
Proof by definitions 4.1.3, 4.2.1, and 4,3.2.
Theorem 4.3.4: | =& = (AL |
Proof by definitions 4.1.3, 4,2.1, and 4.3.2.
Theorem 4.3.5; A+ (-A) =0,
Proof by definitions 4.3.1 and 4.3.2, and theorem 4.3.4,
Theorem 4.3.6: «(A& + B) = -A 4+ (=B).

_Proof: By theorem 4,3.1 -(A {B) = - (B 4 A)
and -A 4 (-B) = -B 4 (~A). We may assume without loss



67

of generality that A~ B. , .
1. Whén A>0, B>0, then =A 4 (-B) = - (A + B),
2. Vhen A>0, B =0, then ~A + {(~B) = <A 4 0= -4
= «(a+40)=-(A+B),
3. When A>0, B<O, Af
1. A A >IBl, then A + B = A = | Bl, -A + (-B) = -5 - | B
= «(A - |Bl) = -(& + B), |
11, A= |Bl, then A+ B=0, -A 4 (~B) = -a 4 /Bl
=0=-(a4B), |
111, A<|Bl, then A + B = =(/8/ - A),
. ~A 4+ (~B) =-A41Bi= |Bl - A=~ (4¢+B),
4. Wnen £ = O then -A +(-B) = 0 {(-B) = -B = ~(0 4 B) |
= - (A + B),
5. When A<O, B<O then A+ B =~ (4 - |B\),
-A ¢ (~B) = [A[ - |B] = =(A 4 B),
Definition 4.3.3% A-B=A4+4 (-B).
Theorem 4.3.7: - =(a ~ B) = B - A,
Proof: By theqrems 4.3.6 and 4.3.3
«(A-B) = =(A+ (-B)) ==-a ¢ (~(-B)) = <A +-B = Bt (-A)
= B - A,

Theorem ¢.5.8¢ If A~ B >0, A-B=0, or A~ B<O,

tﬁhen A>B, A= B, or A<B, respectively.
Prooft Because -B 1g a real number, one can write
-B in the place of B for the oorresponding ocase of
A-B>0, A~B=0, or A~ B<O, and
A?> -B, A= - B, A<-B,
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In the case of A= 0, or B= 0 the aesertion 1s evident.
For A~-0 gnd B~ 0 we have
: [0 1t jAl > | =Bl
A-B=< A~ (»B) = 0 if A= =B
0 if |Al <, |"B\
By definition 4.3.1 the other casea can be handled in
& similar,manner.

Theorem 4.3.9: If A>B, A =B, or A<B, then it

 follows reapectively that -A< -B, -A = <B, or -A>-B,

Theorem 4,3.10% Every real number may bse represented as
~ the difference of two positive numbers.
“Proofs 1) If A>0, then A = (A + 1) - 1,
2 If A= 0, then A=1-1,
3) 'If A<O, then -A = |A| = (|A] + 1) -1,
A= -((a +1) <1) =1~ (14] + 1),
Theorem 4.3,11: If A= ;1 ~ 8g, B=b; -~ by,

‘then Ay B= (al + by) - (ag + by)
| Proof: 1) Let A >0, B >0, then for any positive
numbers a, b, ¢, 4, we have
(a +b) +(c*d =(a+b)a4 (@re)=(larb)+d 4o
so+lar(b+ad=(c+a+(b+a,
“then (a4 B) 4 {ay 4+ b,) = a +0b.
2) Let A <O, BCO, then by theorem 4.3.7
Z - A>0, b, ~-b =-B>0,

e

g = 8y 2
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Then by part 1,
 -A+(-B) = (a5 + by) = (a) # b))
At B = <(-a +(+8)) = (ay + by) = (ap + byl
3) Let A>0, B<O,

then a3 - a5 >0, by - by >0,

A) Let A>|Bf, then &; = ag >by = by,
Since aj - by = (a2 - ag) +ag) + by
= (a) - 8) + (ag = by) = lag + ) t (g - ag)
= (ag + by) +((by = by) + ((ay = &) = (g = By)))
= (( ag + b)) + (by = By)) + ({ay = ap) - (b, - b))
(ap + (by 4 (bgy = ) # ((a) = ag) = (by = B3))
= (ay + by) + ({ay = ap) = (bg = 1)),
then (ay; + by) = (a5 + b,)
= (ag 4 bp) + (ag - ap) = (b, = b)) 4 (ag = by)
= ( ay-a g) - {by=b) =A- B =A4B,

B) Let A <|BL o
Then from part A) A+ B = ~(~B 4 (-4))
= ~((by - by) + lag = a7)) ==((by + ag) = (by 4 &)
(by + &) = (by £ ag) = (a; + By) = (ay + D)

¢) Let A= |B/,

it

Then a) - 8.2'-"' bs - b1,
al+bl=82+b2,
A4 B=0= (g +b) ~(ag 4 byl
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4) Let - A-0, B O,
Then by part 3)
Byt A= (b +a)=(by+t a8y
A+B= (al + by) - (agp 4 by).
5) Let A = 0, ‘
Then a, = a,, and A - B = B,
A) Let by >Dby, then
(b - b2) + (a; = by) =({py ~ bs) + bg) + a1
Zbyt+ a8y =a +by
B= (b - by) = (ay + by) = (ay + Dy
= (a; + by) - (ay 4 byl
B) Let by = bo.
Then B = 0 = {a; + b)) - (a5 + by).
¢) Let by< b,
Then by part A)
-B=2{(by=-b) =lag? bo) = (23 F by),
B = =(~B) = (ay + by) = lag 4 bg).
6) Let B =0, Then A + B = (a3 + by) = (a5 ¢ o).
Theorem 4.3.12: (AFB) 3+ 0=A4 (B+Cls

Prooft By theorem 4.3.10; A = ay =~ ag, B =Dy - by,
€ = 0y - cg. By theorem 4,3.11 ’
(A+B) 0= ((a) + b)) - {agtb) ey ~ og)
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= ((&}_ ¢ bp) + cl) *-((aa + hg)-} 02)

2 (ay + (by + 0;)) = (ay + (by + o,)

= (ay =a5) 4 (b 4 09) = (by+ o)) =AY (B + 0).
- Theorem 4,3.,13: For any glven A and B, there 1s a

unique ¢ such that B+ 0=4, 0or C= A~ B,

| Proof: That 0 = A - B 18 & solution of B+ C = A

follows from B4 (A-B) =( a~B) 4+B=(A4-B) -B

| =A+ (-B+B)=Aa+0=A, |
From B 4+ C = A it follows that A - B = A ¢+ (-B}
=-B+A=-B4(B+C) =(-B+B)+C=04+0C%=C,

1]

hence ¢ is unicjue. ,
Theorem 4.3.14: If A+ C B+ C, or A+ 0= B+ O, or
Ar 0<B 4+ G, then it follows regpectively that

A>B, or A®B, or , A< B,

Proof: The given relatlions are eguivalent respectively
$0 (A+ G) = (B+C)>0, or (A+C) - (B+0) =0, or
(A+ 0) -~ (B 4+ 0) 0O, from whioh follows respectlvely
(A ~B)>0, or (A=-B) =0, or (A~B)z0, or

AV;_'B, or A=B, or A<B,

Theoreﬁ 4,3,15: If A>B, C>D, then A+ C>B + D,
Theorem 4.3.16: If A= B, ¢ D, or A>B, 0= D, then
: . A+ C>B4D, |
Theorem 4.3.17: 1f 4 B, C =D, then A+ 0 < B D
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Bection 4, Multiplicatidn
Definition 4.4.1: {--( /A4 +B)), when A>0, B< 0,or A<O,B>0;

A'B 4)//B), when A< 0, B<O orA;O,B>0,
» when either A=0, orBbe=0,

Theorem 4.,4.1: If AB = O, then either A or B is zero,

Theorem 4,4.2: |AB| = |4 |Bl,
Theorem 4,4, 3: AB = BA,
Theorem 4,4,.4: - A-l = A,

Theorem 4.4.6: If A ¥ 0, B # 0, then AB'= |al /Bl , if |
~ nelther or both of A and B ave negative, and AB = /0
1f either A or B (but not both) is negative.
Theorem 4.4.6: (-A)B = A(~B) = -(AB),

Proof: 1) If either A =0, or B = 0, then all three

expressions are gzero,

2) It AFO0, B# 0, then by theorem 4,4,2, oll
three expressions have the same absolute velue, A4 B ,
snd by theorem 4.4.5, all three are pogitive, or negative
depending upon whether exaotly one, or none or two of
the numbers &, B are negetive,

Theorem 4.4.7: (-A){-B) = aB,

Proof: By theorem 4.4.6, we have (-A)(-B) = A(-(-B)
o = AB.
Theorem 4,4,8: (aB)0 = A(BO).

Proof: 1) 1If one of 4, B, O is zero, then each

slde of the expression is zero.



2) 1f néither A, B, nor O is zero, then by theorem 4.4.2
sach side has the same absolute value, and by theorem 4.4.5
both sldes are posltive are negative together,
Theorem 4,4,9: alb -« o) = ab - ac,
AB + AC.
Proof: 1) Let A>0, By theorem 4.3.10, B = b - by,

1

Theorem 4,4.,10: A(B + O)

C =03 - op. By theorem 4.3.11 B - 0 = (b, - c3)~(b; - cp)
and by theorems 4.4.9 and 3.4.4
CA(B 4 ©) = (Ab) - Abg) + (Aoy - foy) = Alby - by) + Alog-og)
 ® AB & AC,
2) If A= 0, then A(B +°C)l-= 0= AB 4 ACG,

- 3) It A< 0, then by part 1, (“A)(B + Q) = (~é)B-+(—A)0,
then «(A(B 4 0)) = -(-A)B + («A)C., and | |
A(B ¢ C) = ~((-2)B + (-A)C = =((-A}B + (~((~-4)Q)) = 4B 4+ AC.
Theorem 4.4.11: A(B -~ G) = AB - AC,

Theorem 4.4.18: If. A >B, then for € >0, C = 0, or 0410,

it follows respectively that AC>BC, or AC = BC = O, or
 Ac<BC. .
Proof: Since A - B>0, then (A - B)C >0, or
(A~B)0=0, or (A=-B)C<O, as C>0, or C=0, or C<0.
Then by theorem 4.4.11 (A - B)O = G(A - B) = OA - BO
z a0 - BCO, it follows by theorem 4,3.8 that ‘
AC >BG, or . A0 =BG, or AG< BC.

2
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Theorem 4.4.13: For the équal&.ty BC = A, where 4 and

B are glven and B does not equal to zerb, thezj‘erf’»ié one .
and only one solution C. | ,
Proof: 1) There is only one~sviution, "because if
BO, = A = BO,, then O = BOy - BCp = B(0y = Op)
then by theorem 4.4,1 0 = (G - Cply Gy =C

2.
2) a) Let B>O, then C = %A is & solution, because
epla = (eaz1as |
BG B(B A) : (Bg)a 1 A= A,

b) Let B <0. Them € = ~(~\%fx) is & asolution, because

A= B (ilil 4) = B (~6) = (~|B))c = BG,

Definition 4.4.2: The C construgted in theorem 4,4.13

1g csll the gquotient obtained by dividing A by B.
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yseatien 5. Dedekind‘e Principal Theorenm

Theorem 4.6.1t Let therebe given any separation of all

‘yeal numbers into two classes with the following
propertiest

1) There is a mumber in the first class ‘and a
nunber in the sacon&~class. | | |

.:‘2) Every number in the first clags,is less than
every number in the second class. |
Then ther exlsts exactly one real number A such that
‘every B . A belongs to the firet class, and every B 4
.belcngs to the second class,

Prooft A) If such a number A exists, 1% 1is unique;
for suppose A, and AB satisfled the theoren, with,Al< AE‘ ‘
Then from

(1 + 1)A) S Ay » Ay < Ay + Ag<Bg + Az = (14 1Ay,

we have
| O Wi P OO

C oot

l+1

£2;i“§§ would be in both classes,
1+1

whence the number

contrary to condltion 2).

B) To prove the existence of A, four cases must

be considered:
H 1. Suppose there is a positive number 1n\the

first olass, OConsider the out oconstructed as follows,



75

Every positive rational number in the first class,
except the poséibly greatest rational'number in the
first class; belongs to the iower elassj ell other
positive rational numbers ( that is the possibly greatest
rational number of the first class, and all those in the
second class) belong to the upper class., How, this
separation is a cuﬁ, because

1) Since the firet olasss contains a positive
number, it contalns all smaller positive rational
numbars {there are such numbers by theorem 3.5.5) and
elso contains a number such that there is a larger
positive rational number in the first oclass. Thus
the lower olass is not voi&. |

hisinoe the second class contains a number, 1%
contains gll greater positive rational numbers, there
are #ucl numbers by theorem 3.,5.5. Hence fhe upper
class mlso is not void. |

i1) Every number of the lower olass 1s less than
every number of the upper c¢lass, because every number
of the first oless is legs than every number of the
'aeoond ¢lasgs, and the possibly greatest positive rational
ﬁumber of the first class is certainly grester than

every number of the lower olass.



76

111) The lower oclass contains no gééateat positive
" rational number, because either the first class contalns
no greatest positive rational number, or if it does,
this number by the construction was placed in the upper
class, and then theorem 2.5,14 assures ue that there is
no greatest positive rational number among all the
rational numbers less than any particular such numbsr.

Then by 1), ii), and iii) this separation is a cut,
~Let A be the positive number defined by this out. Then
A satisfies the statement of the theorem, because

a) Suppose there is given a B such that B. A.
Choose according to theorem 3.5.6 ( with s = B, b = A
12 B70, or with o = p=oe , b= AL B<0) 2
positive rational number Z sunh'that B<Z<A, Then
Z 1s a lower number for the cut A, and thus belongs to
the first class, Hence B belongs to the first class
| b) Suppose there i3 a given B such that B A, |
Choose by theorem 3,5.6, a Z such that A>Z >B. Then.
Z is an upper number for the out A and by theorem 3.5;6
thus belongs to the second olass. Hence B belongs to the
gsecond olaas.

2) Suppose that every positive number in the
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second class, and zero is in the first olass. Then
every negative number lies in the first class, and
A = 0 spatisfies the statement of the theorem.

' 3) Suppose that O lies in the second class, and
every negative number lies in the first olass. Then
every positive number lles in the second class, and

again A = O satisfies the statement of the theorem.
| 4) Suppose there is a negative number in the
second clags. Consider the following separabiont
B is in the new firet class Aif -B wae in the original
gecond cless; B ie in the new second olass if -B was
in the original first class. This separation satisfles
the conditlions of the hynnthesls because

1) there is a number in each class,

11) from B; < By 1t follows by theorem 4.3,9 that
«Bao <—rBl. |
Moreover, thie new separation comes under case 1),
gince there is a positive number in the new first
olass. By oase 1) then, there exists a number A;
such that every B <A; lles in the new f£irst olass and
'every B 7A; lles in the new second class. Put, then,
=-A1 = A, and from B<Aor B A1t follows respectively
that =B >4, or -B< A, Thus if =B 1lies in the new
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seoond‘claas or in the new first clase, then B lies

respectively in the original first class or 1# the orginal

second class., |
In oloasing, 1t 15 to be noted that every real

number A gives rise to exactly two such separatiena;

namely one with B S A as the first olags and B >A as

the second olass;} and the other with B< A as the first

oless and B « A as the second oclass,
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