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Releasing Individually Identifiable Microdata with
Privacy Protection Against Stochastic Threat:
An Application to Health Information

Robert Garfinkel, Ram Gopal, Steven Thompson

Department of Operations and Information Management, School of Business,
University of Connecticut, Storrs, Connecticut 06029
{rob.garfinkel@business.uconn.edu, ram.gopal@business.uconn.edu, sthomps3@richmond.edu}

he ability to collect and disseminate individually identifiable microdata is becoming increasingly important

in a number of arenas. This is especially true in health care and national security, where this data is con-
sidered vital for a number of public health and safety initiatives. In some cases legislation has been used to
establish some standards for limiting the collection of and access to such data. However, all such legislative
efforts contain many provisions that allow for access to individually identifiable microdata without the consent
of the data subject. Furthermore, although legislation is useful in that penalties are levied for violating the law,
these penalties occur after an individual’s privacy has been compromised. Such deterrent measures can only
serve as disincentives and offer no true protection. This paper considers security issues involved in releasing
microdata, including individual identifiers. The threats to the confidentiality of the data subjects come from the
users possessing statistical information that relates the revealed microdata to suppressed confidential informa-
tion. The general strategy is to recode the initial data, in which some subjects are “safe” and some are at risk,
into a data set in which no subjects are at risk. We develop a technique that enables the release of individually
identifiable microdata in a manner that maximizes the utility of the released data while providing preventive
protection of confidential data. Extensive computational results show that the proposed method is practical and

viable and that useful data can be released even when the level of risk in the data is high.

Key words: data security; privacy; health information; optimization
History: Sumit Sarkar, Senior Editor; Ramayya Krishnan, Associate Editor. This paper was received on
February 28, 2005, and was with the authors 6 months for 2 revisions.

1. Introduction
As information storage and processing capabilities
increase, a number of groups and organizations
are engaging in the collection and dissemination of
individually identifiable microdata (IIM). Examples
include the Department of Homeland Security, the
Centers for Disease Control and Prevention, insur-
ance companies, and various state and local public
health departments. In some cases IIM are collected
and used by a specific organization. In other cases
data is collected and shared with other organizations.
The collection and dissemination of IIM is typically
considered justifiable when the objectives of the data
recipient are deemed to be “for the greater good” and
statistical data alone is not sufficient to achieve those
objectives.

In recognition of the fact that IIM is highly sensi-
tive, especially in relation to matters such as medical
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or financial information, a number of laws have been
passed that address the question of when IIM can
be collected and shared. Examples at the federal
level include the Privacy Act of 1974, the Computer
Matching and Privacy Protection Act of 1988, the
Paperwork Reduction Act of 1995, the Principles for
Providing and Using Personal Information (“Privacy
Principles”), published by the Information Infrastruc-
ture Task Force in 1995, and the Health Insurance
Portability and Accountability Act (HIPAA), enacted
in 1996. In most cases these laws provide substantial
disincentives for the abuse of IIM. For instance, the
maximum penalty under HIPAA for the abuse of per-
sonal health information is a $250,000 fine and up to
10 years imprisonment.

Nevertheless, although enacted for the purpose of
protecting individual privacy in the face of an increas-
ingly computerized world, all these laws contain
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provisions that allow for the collection and dissem-
ination of IIM. The HIPAA Privacy Rule provides a
good example of such provisions as related to medi-
cal information. The following summary, taken from
the CDC website (2005) describes the current situa-
tion well:

New national health information privacy standards
have been issued by the U.S. Department of Health
and Human Services (DHHS), pursuant to the Health
Insurance Portability and Accountability Act of 1996
(HIPAA). The new regulations provide protection for
the privacy of certain individually identifiable health
data, referred to as protected health information (PHI).
Balancing the protection of individual health informa-
tion with the need to protect public health, the Privacy
Rule expressly permits disclosures without individual
authorization to public health authorities authorized
by law to collect or receive the information for the
purpose of preventing or controlling disease, injury, or
disability, including but not limited to public health
surveillance, investigation, and intervention.

Legal protective measures that contain these types
of provisions can be problematic for at least two rea-
sons. First, there is often ambiguity regarding what
qualifies a given situation as being “exempt” from the
law. The result is that in some cases IIM is “unjus-
tifiably” collected and disseminated and in others a
given initiative might be incorrectly cancelled under
the mistaken belief that the collection and dissemina-
tion of IIM is not justified.

The second concern is that legal protection ulti-
mately takes the form of a deterrent measure and
the data—and therefore the data subjects—are essen-
tially unprotected. That is, under existing law, if IIM
is abused and if this abuse is detected and if the
abuse can be ascribed to certain individuals in a court
of law, then the perpetrators will be punished. This
may come as small consolation to data subjects who
may have suffered loss of employment or employ-
ment opportunities, cancelled insurance policies, or
public embarrassment as a result of the unlawful use
of IIM.

Confidentiality considerations typically center
around three categories of attributes, as described
in Figure 1. Confidential attributes (e.g., salary or
medical diagnosis) are sensitive information of the
respondents or subjects in the data set. A central
responsibility of the data provider is to ensure that

Figure 1

Categorization of Data Set Attributes
Confidentiality-related
attributes

Blood type,
years of education

Identity-related
attributes

Confidential
attributes

Salary,
diagnosis

SS# Gender, ZIP

the confidential information on any of the subjects
is not divulged to the data users. Identity-related
attributes are those that can directly or indirectly help
a user identify an individual or subject in the data
set. These may be such powerful indicators as name
or social security number, or much weaker ones such
as profession or city of domicile. Confidentiality-
related attributes are not confidential in and of them-
selves but are statistically related to the confidential
attributes. Information on these attributes may allow
a user to estimate confidential values even if they
have been suppressed.

The categorization of identity-related and confiden-
tiality-related attributes may not be mutually exclu-
sive. For instance, identity-related attributes such as
gender and age may also exhibit statistically signif-
icant relationships with a confidential attribute such
as a particular medical condition.

It is common to release “de-identified” data in for-
mats that are useful for statistical users. This can be
achieved in any number of ways, as indicated in the
literature review of the next section. Here we consider
how to release data in a safe and useful manner for
“IIM users.” By their nature these released data will
be consistent with any data released for statistical pur-
poses. Also there is no need to make any distinction
between a “data snooper” and a “legitimate” user.
We assume that the subjects of the database desire to
have their confidential information protected against
any and all users.

When considering the release of IIM that contain a
confidential attribute, one obvious approach to pro-
tecting the confidentiality of the data subjects would
be to simply remove the confidential attribute from
the released data. This is an important step, but it is
not sufficient because it is possible to infer the confi-
dential field value based on statistical data that relate
the released confidentiality-related field values to the
confidential field value.
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The objective of this research is to develop a
method that allows the release of IIM while minimiz-
ing information loss and, at the same time, providing
a degree of preventive confidentiality protection to
the data subjects. It is important to note that this tech-
nique is not meant to be a replacement for existing
legal measures. Rather, it is a supplement designed to
offer a degree of preventive protection for confidential
information that is not currently available.

The remainder of the paper is organized as follows.
Section 2 contains a review of related literature. Sec-
tion 3 provides a conceptual overview of the model
and solution technique and introduces a motivating
example. Decision variables and various stochastic
measures are introduced in §4, and §5 is devoted to
precise definitions of risk. Section 6 contains the lin-
ear programming model, and §7 discusses the exten-
sive computational results, as well as implementation
issues and managerial implications. Conclusions and
future research are presented in §8.

2. Related Literature
The information systems literature contains a con-
siderable amount of research in the general vein of
information security and confidentiality protection. A
great deal of research effort has been dedicated to
the problem of maximizing the amount and the util-
ity of data that can be released without jeopardiz-
ing the individual’s right to privacy (see, e.g., Adam
and Wortman 1989, Chowdhury et al. 1999, Gopal
et al. 1998, Garfinkel et al. 2002, Muralidhar et al.
1995). A number of techniques have been developed
to address the problem of maximizing information
provision while ensuring that the revealed informa-
tion does not permit a user to infer confidential data
about any individual subject. Suppression of cells in
the tables to be released is a common strategy (Cox
1980, Carvalho et al. 1994, Causey et al. 1985, Duncan
et al. 2003a, Fischetti and Salazar 2001, Kelly 1990,
Geurts 1992, Zayatz 1992, Cox 1992). Other meth-
ods include row and column aggregation (Willenborg
and Hundepool 1998), data perturbation (Muralidhar
et al. 1995, Duncan and Fienberg 1999, Sarathy and
Muralidhar 2002), and camouflage (Gopal et al. 1998,
Garfinkel et al. 2002).

A number of software products, including u and
7-Argus (Hundepool and Willenborg 1996) and

Datafly (Sweeney 2002a), have also been developed
to enable safe dissemination of data products. The
increased use of data-mining tools also presents a set
of unique confidentiality problems that the academic
literature has begun to address (Li and Sarkar 2006a,
b; Menon et al. 2005).

In all this work, the threat to confidentiality gen-
erally comes down to the identity disclosure prob-
lem, i.e.,, whether the user can positively link the
identity of an individual with a set of variable val-
ues (Dobra et al. 2003). A standard precaution is
to sanitize the data by eliminating attributes that
directly lead to the identity of the data subjects
(e.g., name or social security number). The resulting
data set is presented in a format that enables the
users to obtain statistical information on the remain-
ing attributes, but prevents a user from associating
confidential data with subjects. Recent research has
explored the risk of identity disclosure in the released
data set that may persist even after the elimina-
tion of attributes that directly lead to the identity of
data subjects. The fundamental issue addressed in the
k-anonymity problem is the generation of data sets in
which each subject is indistinguishable from no fewer
than k other subjects (Domingo-Ferrer and Mateo-
Sanz 2002, Sweeney 2002b). The k-anonymity prob-
lem has been shown to be NP-hard (Meyerson and
Williams 2004), and fast techniques that yield good,
but not necessarily optimal, solutions have been the
subject of a great deal of research (Aggarwal 2005,
Aggarwal et al. 2005, Domingo-Ferrer and Tora 2005).
Work on k-anonymity has also been applied to more
specific problem settings such as locational privacy
(Gedik and Liu 2005), distributed databases (Jiang
and Clifton 2005), and facial derecognition (Newton
et al. 2005).

Regardless of the application area, the fundamen-
tal problem is the same, preventing the reidentifica-
tion of a subject to within k records. The techniques
developed in this paper differ from prior work in that
the released data set explicitly includes the identity of
the data subjects. We extend the general philosophy
of prior research, that of transforming data prior to
their release to protect the data subjects, to the domain
of IIM. In this setting the “R-U confidentiality map”
(Duncan et al. 2003b) is adopted as a framework for
capturing the fundamental trade-off between mitigat-
ing risk and the utility of the released data.
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Table 1 Individually Identifiable Microdata

Postal C-Reactive Choles- Blood

Name code Gender protein terol  pressure Glucose Diagnosis

M.A. 06040 M H H H Vv {Diabetes, Heart,
MRSA}

G.P. 06269 M H H H V  ({Diabetes, Heart}
M.L. 14260 F H H H V' {Diabetes, Heart}
W.F 14260 M L H L N

R.H. 06040 F L H L N

FJ. 06269 M N N N N

M. G. 98195 F N N N N Heart
J.M. 98195 F N N N N

A.B. 98195 F N N N N

J.R. 14260 M N N N H Diabetes
R.S. 98195 M N N N H  {Diabetes, Heart}
R.G. 90210 M L L L N

S.T. 23059 M L L L N

J.T. 23059 F N N v N Heart
M. D. 44187 F N N vV N

3. Recoding Individually Identifiable

Microdata: Conceptual Overview

The technique described in this paper can be thought
of as a special type of recoding (e.g., u-Argus,
see Hundepool and Willenborg 1996). In conven-
tional recoding the values of individual attributes are
merged attribute by attribute. The method presented
in this paper involves first grouping attribute values
into sets, and then merging over these sets. To illus-
trate, consider the problem faced by a data provider
in possession of the individually identifiable med-
ical data set depicted in Table 1. Table 1 contains
data according to the following abbreviations: gen-
der {Male (M), Female (F)}, C-reactive protein (CRP)
levels {Low (L), Normal (N), High (H)}, cholesterol
{Low (L), Normal (N), High (H)}, blood pressure (BP)
{Low (L), Normal (N), High (H), Very High (V)}, and
serum glucose (Gluc) levels {Normal (N), High (H),
Very High (V)}. The field “Diagnosis” is considered to
be the confidential field. The data depicted in Table 1
will be used as an illustrative example throughout the
paper. Additional, more detailed application areas in
public health and data mining are provided in the
e-companion.!

To ensure protection of confidential information
on the subjects represented in the data set, grouped

! The e-companion to this paper is available on the Information Sys-
tems Research website at http://isr.pubs.informs.org/ecompanion.
html.

and de-identified data is normally released to sat-
isfy the information needs of statistical users. This is
illustrated in Table 2, where all individual identifiers
are removed and aggregate information on the confi-
dential attributes, grouped by confidentiality-related
attribute values, is released. Such a table, if deemed
safe by the data provider, will be released in our
model along with the perturbed database to be devel-
oped in the remainder of the paper.

We define an input channel as a combination of
confidentiality-related attribute values for which con-
fidential information is released. For example, C-Re-
active protein = H, cholesterol = H, blood pressure =
H, glucose =V, would be represented as the input
channel {H, H, H, V}.

The information in Table 2 enables users to iden-
tify trends and high-risk groups. For example, from
Table 2 it is possible to determine that those with
high levels of C-Reactive protein, cholesterol, and
blood pressure as well as very high serum glucose
levels, i.e., the subjects described by input channel
{H,H,H, V}, are at greater risk for heart disease,
diabetes, and a dangerous infection called methicillin-
resistant Staphylococcus aureus (MRSA) than the gen-
eral population (which in this illustration is quite
small for the purpose of having a viable working
example).

The ability to determine that those particular sub-
jects are at high risk for those diseases is impor-
tant. However, the statistical information alone is not
enough for public health workers who may also want
to contact those subjects. For instance, a public health
worker may want to notify those at risk for diabetes
and heart disease of new dietary guidelines and infor-
mation regarding how to identify and seek treatment
for so-called “silent heart attacks” (a heart attack that

Table 2 Statistical Data

Confiden- # {Diabetes,
tiality #Sub-  # Diabetes # Heart  # {Diabetes, Heart,
related jects (%) (%) Heart} (%)  MRSA} (%)
H,H H,V 3 0(0) 0(0) 2 (67) 1(33)
L,H LN 2 0(0) 0(0) 0(0) 0(0)

N, N, N, N 4 0(0) 1(25) 0(0) 0(0)

N, N, N, H 2 1(50) 0(0) 1 (50) 0(0)
LLLN 2 0(0) 0(0) 0(0) 0(0)

N, N, V,N 2 0(0) 1 (50) 0(0) 0(0)
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is not accompanied by symptoms such as chest pain
and difficulty breathing), which afflict diabetics more
commonly than the general population. In this case
the public health worker would want those at risk to
understand the risk factors for silent heart attacks and
advise them to be screened by a physician for silent
ischemia, which is a precursor to a silent heart attack.
Likewise, the ability to identify and contact those at
risk for MRSA represents an important public health
initiative.

In this work we show that this can be achieved
while protecting the confidential information of the
subjects. The information utility measure, correspond-
ing to that of Duncan et al. (2003b), is inversely pro-
portional to the number of spurious subjects who
could potentially be contacted and told that they may
be at risk. Such subjects should easily be able to verify
that the warning does not pertain to them.

The application of the technique proposed here re-
sults in a modified version of the original microdata
set with the individual identifiers intact and the confi-
dential attributes removed. Further, it is based on out-
put channels, which are defined as sets of one or more

input channels. It contains as much information as is
safely possible to reveal on the confidentiality-related
fields. Table 3 illustrates, in essence, the format of the
released 1IM.

3.1. Mapping from Input Channels to
Output Channels

Figure 2 provides an input channel-based represen-
tation of the information in Table 1. Releasing the
information as shown in Figure 2 is equivalent to
“full revelation,” in the sense that the data recipi-
ent knows exactly which input channel describes each
subject.

Even though confidential information is not in-
cluded explicitly here, it would be simple for a user
to stochastically infer confidential information about
the subjects described by a given input channel. This
is illustrated in Figure 2, which shows, for each input
channel, the percentage of subjects that have a partic-
ular disease. An extreme solution would be to protect
the subjects by assigning all of them to a single output
channel that contained, as its elements, all six input
channels. Figure 3 illustrates the result.

Table 3 Individually Identifiable Microdata Format
C-Reactive Blood
Name | ZIP |[Gender| protein Cholesterol | pressure | Glucose Diagnosis
M. A. | 06040 M
G.P. | 06269 M
M. L. 14260 F
W.F. | 14260 M
R.H. | 06040 F
F.J. 06269 M
A
M.G. | 98195 | F %,
%
JM. |98195| F %,
e}
AB. |98195| F 5%,
®
J.R. 14260 M
R.S. | 98195 M
R.G. |90210 M
S.T. |[23059 M
J.T. 23059 F
M. D. | 44187 F
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Figure 2 Full Revelation

Diabetes 0%

Heart 0% Input channel 1 M. A.

Diabetes, Heart 67% (H,H,H,V)

Diabetes, Heart, MRSA | 33%

Diabetes 0%
Heart 0%
Diabetes, Heart 0%

Diabetes, Heart, MRSA | 0%

Diabetes 0%
Heart 25%
Diabetes, Heart 0%

Diabetes, Heart, MRSA | 0%

Diabetes 50%
Heart 0%
Diabetes, Heart 50%

Diabetes, Heart, MRSA | 0%

Diabetes 0%
Heart 0%
Diabetes, Heart 0%

Diabetes, Heart, MRSA | 0%

Diabetes 0%
Heart 50%
Diabetes, Heart 0%

Diabetes, Heart, MRSA | 0%

By assigning all subjects to an output channel com-
prised of all input channels, the data recipient is only
able to determine that each subject described by that
output channel is at the same risk for a given disease
as the general population. Figure 3 illustrates a key
condition that must be satisfied in order to use this
technique. Clearly a necessary and sufficient condi-
tion for feasibility of the overall problem is that the
output channel consisting of all input channels is
“safe” (to be formally defined in §5). That is, mere
membership in the original data set is not risky for

Input channel 2

F.J.
M. G.
Input channel 3
(N,N,N, N) J. M.
A. B.
Input channel 4 _ - J.R.
(N,N, N, H) R S,
Input channel 5 R. G.
(L, L,L,N)
S.T.
J. T.
Input channel 6
(N,N,V,N) M. D.

G.P.

M. L.

W. F.

(L, H, L, N)
R. H.

any individual. Obviously, if this criterion is not sat-
isfied, no microdata can be revealed. One solution to
the overall problem of safely assigning subjects to out-
put channels while minimizing total information loss
is illustrated in Figure 3. However, that solution, even
if safe, contains no useful information beyond that of
Figure 2, except for the individual identifiers (IIDs).
Since all subjects are assigned to a single output chan-
nel, they become indistinguishable and any query will
result in a list that includes every subject in the data
set.
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Figure 3 Minimal Revelation
Diabetes 0%
Heart 0% Input channel 1
Diabetes, Heart 67% (H,H,H,V)

Diabetes, Heart, MRSA | 33%

Diabetes, Heart, MRSA | 0%

Diabetes, Heart, MRSA | 0%

A third approach involves partial revelation. This
is illustrated in Figure 4, where the data recipient
still receives some information regarding which input
channels do not describe a given subject (e.g., M. A.
is not in input channels 4, 5, or 6).

Figure 4 reveals some general concepts that are
important in the remainder of this work. First, it is
always the case that the output channel to which
a subject has been assigned has, as an element, the
input channel that originally described the subject.
This ensures that the output database is “inclusive,”
in the sense that any query on the released microdata

Diabetes 0%
Heart 50% Input channel 6
Diabetes, Heart 0% (N,N,V,N)

Subjects
Diabetes 0% assigned
Heart 0% Input channel 2 Name
Diabetes, Heart 0% LHLN) M. A.
Diabetes, Heart, MRSA | 0% G. P.
M. L.
Diabetes 0% W.E
Heart 25% Input channel 3 R. H.
Diabetes, Heart 0% (N.N,N,N) F.J
Diabetes, Heart, MRSA | 0% M. G
V" Output channel 1 s
{All} J. M.
Diabetes 50%
Diabetes A-B.
Heart 0% Input channel 4 JR.
Diabetes, Heart 50% (NN, N, H) Heart 13% RS
Diabetes, Heart, MRSA | 0% Diabetes, Heart 20% |7 &
Diabetes, Heart, MRSA | 6.7% s T
Diabetes 0% —
J. T.
Heart 0% Input channel 5 M. D
Diabetes, Heart 0% LLLN)

for subjects meeting certain criteria will be guaranteed
to yield a set of subjects that includes the set of sub-
jects that would have resulted from the same query
run on the original data set. Second, the data recipient
is told the composition of each output channel, i.e.,
the input channels that comprise each output channel,
is made known. Note that transformation from input
to output channels can be considered simply expan-
sion of the confidentiality-related fields. Furthermore,
by performing this expansion at the “channel level”
instead of the “attribute level,” the user receives more
useful information. Consider output channel 1 in
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Figure 4 Partial Revelation
Diabetes 0%
Heart 0% Input channel 1
Diabetes, Heart 67% (H,H,H,V) Subjects
assigned
Diabetes, Heart, MRSA | 33%
Name
Diabetes 0% M. A.
Heart 0% G.P.
ea ° Input channel 2 Output channel 1
Diabetes, Heart 0% (L, H,L,N) {1.2,3} M.L.
Diabetes, Heart, MRSA | 0% Diabetes W F.
R. H.
Heart 11%
Diabetes 0% : F.J.
Diabetes, Heart 22% M. G
Heart 25% - -
Input channel 3 Diabetes, Heart, MRSA | 11% | [~
Diabetes, Heart 0% (N, N, N, N) o
Diabetes, Heart, MRSA | 0% A-B.
Diabetes 50%
Heart 0% Input channel 4 Subjects
N.N.N.H assigned
Diabetes, Heart 50% (NN, N, H)
: Name
Diabetes, Heart, MRSA | 0%
J.R.
Diabetes 0% R.S.
o R. G.
Heart 0% Input channel 5 Output channel 2
Diabetes, Heart 0% (LLLN) {4,5, 6} S.T.
Diabetes, Heart, MRSA | 0% J T
M. D.
Diabetes 17%
Diabetes 0%
Heart 17%
Heart 50% Input ch |
np,l\j ; ?/m;\le 6 Diabetes, Heart 17%
Diabetes, Heart 0% (N,N,V,N)
Diabetes, Heart, MRSA | 0%
Diabetes, Heart, MRSA | 0%

Figure 4. At the attribute level it would be ({L, N, H},
{N, H}, {L, N, H}, {N, V}), which could be considered
to be the union of 3 x 2 x 3 x 2 =36 input channels, as
opposed to the three input channels of Figure 4. Thus,
the data recipient receives much more precise infor-
mation regarding which input channels might accu-
rately describe the subjects and which do not.

The solution in Figure 4 results in a data set that,
ignoring safety, is more useful than the one depicted
in Figure 3 but less useful than that of Figure 2. To pro-
tect the confidentiality of the data subjects, some data

utility was lost. Notice that the mapping, while “dis-
guising” which input channel truly describes a subject,
also results in the addition of spurious subjects to any
query requesting subjects from a particular group. To
illustrate how utility is measured in this context, con-
sider a public health worker who wishes to contact
subjects who are at risk for MRSA. First, assume that
the data provider has decided that he or she does not
want any user to be able to infer that a given “risky”
value of the confidential field applies to any subject
with “too great” a probability and that the mapping
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depicted in Figure 4 is feasible (i.e., safe by that cri-
terion). For instance, the data provider may not want
any user to be able to infer that the confidential value
“Diabetes and Heart” applies to any subject with a
probability greater than 0.3.

Then suppose a public health worker determined
from the statistical data in Table 2 that subjects
described by input channel 1, ie.,, {H, H, H, V}, rep-
resent the at-risk population in which he or she is
interested. By using the perturbed individually iden-
tifiable microdata represented by Figure 4, a query for
subjects described by input channel 1 would return a
list of the nine subjects described by output channel 1.
Three of these subjects truly meet that search criterion;
the other six do not. Also, because the probability
that a given subject in output channel 1 has “Diabetes
and Heart” is 0.22, membership in output channel 1
would not pose a risk based on the bound of 0.3 estab-
lished by the data provider. The public health worker
also receives a guarantee that every subject he or she
is interested in is included in the query output. The
addition of spurious subjects results in data that has
less utility to the users, and because the optimization
model of §6 maximizes data utility, the number of
spurious subjects added to queries will, in general, be
as small as possible.

Clearly, the amount of risk that the data provider
tolerates has a direct bearing on the overall util-
ity of the released microdata set. This fundamental
trade-off between risk and utility, typically framed
in terms of an R-U confidentiality map (Duncan
et al. 2003b), is an important decision aid for data
providers to effectively create the IIM release strategy.
The computational analysis reported in §7 provides
important insights on the inherent nonlinearities in
the risk-utility relationship.

4. The Channel Expansion Technique

We formally define an input channel d;' as the
vector of confidentiality-related attribute values that
describes the rth group of subjects. Let D™ := {d"}
and D" := {d"} be the set of input and output chan-
nels, respectively. Also let V = {v*: k=1,...,K} be
the set of possible “risky” values, v’ = “none,” and
V' =V U {v°}. We will often abuse notation by writ-
ing ke V or ke V' to mean v* € V or v* € V. The
following notation and definitions will also be used:

m: the number of individuals in the data set;
mi™:  the number of individuals in the input
channel dsd™;

mi™%: the number of individuals in d" with
confidential value v*;
P(v*): the probability that an individual in
the data set has confidential value oF.
Clearly, P(0") = (1/m) _dinepin my;
P(v*|d™): the probability that an individual in di

has confidential value o*. It follows that
P(* | d") = min* fm;
m3":  the number of individuals in the output
channel d5;
the probability that an individual in out-
put channel d* has confidential value
v* (see (1) below);
the number of individuals in input chan-
nel di" € d%* that are assigned to output
channel do*.

P(o | do™):

rw*

The decisions to be made by the data provider
are the composition of the output channels and how
many subjects to assign from each input channel
to each output channel. There are two advantages
to making subject assignment decisions at the input
channel level. That is, once the x,,, are determined the
subjects are then randomly assigned from input chan-
nels to output channels, independent of their confi-
dential field attribute values. First, the data provider
will not be required to take into account the confi-
dential field values of individual subjects. Second, by
all subjects in a given input channel being treated as
identical in terms of the distribution of the confiden-
tial field, the probability that an individual in output
channel d3" has confidential value v* is determined
by

Zdi,“edg,“f P(vk | dirn)xrw

P(Uk | dout) —
“ Zd}“edg?f Xrw

1)
Finally, because the x,, variables will, in general, be
very large for realistic sized databases, there is no
practical reason to impose integrality on them.

5. A General Model of Risk

5.1. Risky Input Channels

The first step is to partition the initial set of input
channels D" into two sets, risky and safe (R, S™).
An input channel can be deemed risky based on either
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a single confidential field or a combination of confi-
dential fields. In the first case, define d" € R™ if d®
is k-risky, denoted d™ € R", for some k € V. Then
di e R} only if

P(v* |d™) > P(0F). )

That is, an individual in d¥* is considered potentially
at risk if the likelihood that his value in the confi-
dential field is higher than that of a subject chosen
at random from the original data set. It is possible
that even if (2) holds, the data provider may wish to
set a higher threshold to define whether the poten-
tial threat is real enough to require action. An advan-
tage of defining a higher threshold is that the released
data set will ultimately have greater utility to the data
recipient, because less perturbation will be required
to make the data safe. The data provider can deter-
mine, value by value, the magnitude of the threat that
must be present to cause concern. To do this, a con-
stant u, > P(v*) is established by the data provider for
every of, such that d" € RI" if and only if

P(v*|d") > u, > P(v*), keV. 3)

In the second case the data provider may be con-
cerned, not only with whether the subjects in an input
channel are at risk for a given value of the confiden-
tial field, but also with some measure of “how much”
risk, aggregated over the confidential field values, can
be assigned to subjects described by that channel. The
data provider may feel that, even though (3) has not
been satisfied for any k, the subjects in that channel
may still be at risk. In fact, decisions involving such
factors as employment or insurance coverage can be
influenced by such “aggregate risk.” Thus the data
provider can assign a “weight” ¢, to every k e V’,
which indicates how much of a relative threat that ele-
ment is considered, where ¢, is set to zero. Then the
second criterion for d™ € R™™ is that the total weighted
risk in d" exceeds some parameter b established by
the data provider. That is, d" € R™" if

> P(o* | dM)e > b. 4)
keV’

Then di" € R™ if and only if (3) holds for some k
or (4) holds. To illustrate (3) and (4) from Table 2, let
{vl, ..., v} be {“diabetes,” “heart,” “diabetes, heart,”
“diabetes, heart, MRSA”} and suppose u; =0.25, u, =
0.25, 1y = 0.3, 1, = 0.18, b=0.6, ¢, ..., ¢, = 1. Then,

e.g., d = (N,N,N, H) € R because P(v' | d}') =
0.5 > u; = 0.25. Also notice that d' € RY, illustrating
the point that, although satisfying the criterion for
being at risk for any confidential field value is enough
to classify an input channel as risky, it may be that a
given input channel is at risk for multiple values of
the confidential field, and each of these sources of risk
must be considered. Further, regardless of whether
d" e RI" for any k, di" € R™ because Y ., P(0F | dil) -
. =1>0.6.

5.2. The Safety of Output Channels Including
Assignments

Here we establish conditions to determine whether
a given potential output channel is safe and, if so,
whether a given assignment of subjects to that out-
put channel is likewise safe. The set of potential out-
put channels is first limited to S°*, which are those
output channels that cannot be a priori rejected, i.e.,
output channels that cannot be determined to be
infeasible independent of the x,, variables. A simple
condition is that d* € S°** if and only if

Ao NS™ #£ 3. 5)

If (5) does not hold, the user knows that every sub-
ject in d9* comes from a risky input channel. The
only uncertainties for the user would be which d" €
(dS"*NR™) correctly describes that subject, and there-
fore which element or elements of V cause that sub-
ject to be at risk. In addition, there are a posteriori
conditions, based on the x,,, variables, that determine
whether a given assignment of subjects to an out-
put channel is safe. These conditions are analogous to
(3) and (4) for input channels. Output channel w is
assignment safe only if

P(o*|d®) <u,, allkeV, (6)
or from the definition of P(v* | d°*) in (1),
> (P@" | dM) —u)x,, <0, allkeV. (7)
di,“Eng“t
The second condition is the output channel analog
of (4), namely
> P [dy) <b, ®)
jev’
which, from (1), is equivalent to

> <b — > PV | di“))x,w >0. )

di," Edg_,“t je 174
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In summary, output channel w is “feasible,” i.e., a pri-
ori and assignment safe, if and only if (5), (7), and (9)
all hold.

We continue with the example of Figure 2, where
u; =025 u, =025 u; =03, u, =018, b =0.6,
¢i,..-,¢, =1, and focus on some possible output
channels containing d € R™. The output channel
{din, din} ¢ S° because it violates (5). On the other
hand, consider {df',dI} € S°*. If all subjects from
d" and d" were assigned to that output channel,
(7) would be violated for k =1 and would therefore be
assignment unsafe. Similarly consider {dY', d'} € S°*,
and again suppose that all subjects in dI' and di* were
assigned to it. Then (7) and (9) would be satisfied so
that the output channel is feasible. Note, however, if
the data provider had set a lower value for b, say 0.45,
then (9) would be violated.

6. A Linear Programming Model

6.1. The Objective Function

The ultimate objective of this technique is to pro-
vide the data recipients with a perturbed microdata
set that has the highest possible utility and satisfies
the security constraints set forth by the data provider.
In this setting utility decreases whenever a subject,
initially described by an input channel, is assigned
to an output channel consisting of more than just
that input channel. Furthermore, because the utility
of the microdata set is reduced as subjects are associ-
ated with more common input channels, the “cost” of
assigning a subject to output channel d9™ is defined as
Yo ==Y ginegow 1" This cost is measured as the num-
ber of subjects initially in the set of input channels
that together comprise the output channel. This def-
inition captures the “coarsening” of data that results
from perturbation. It follows that 3™ = m if the out-
put channel is composed of all input channels. That
channel would provide the least possible amount of
information about the subjects in the output channel.
Thus, the data provider’s goal is taken to be to mini-
mize the total cost of the microdata set given by

11, — Z ;utmout (10)

w 7/
out cGgout
dgutes

subject to satisfaction of security constraints.

6.2. The Complete Model
Here we assume that S°** has been generated. Then
the formulation is

min Y Y ¢, (11)

out cgout Jin - qout
dguteSout dinedor

st. Y x,=m", d"eR" (12)
dgptadp
Z Xp = mirnf dlrn € Sin (13)
d?UutsdiYn
Z (P(vk | dlrn) - uk)xrw = Ol
dinedgt

A2 eS8, keV (14)

) (b ~ Y P di,n)>x,w >0, dotesot (15)

dirn Edg}ut ]'EV/

x,>0, d"edeso (16)

Constraints (14) and (15) correspond to (7) and (9).
Note that (13) is an inequality, because the remaining
elements of the safe input channel are left assigned
to themselves as safe, singleton output channels. It
therefore follows that the costs of assigning subjects
from the safe input channel d" to the singleton output
channel {d™} are omitted from (11). Thus, (11) can be
considered the degradation from the “least cost” solu-
tion of assignments only to singleton output channels.
The formulation (11)~(16) has 3 joucgou |d5*| decision
variables and |D™"| + (|V| 4 1)|S°"| constraints.

Solving the problem first presented in Table 1
(where u; =0.25, u, =0.25, u; =0.30, u, =0.18, b =
0.6, ¢, ..., ¢4 =1) using (11)—(16) yields the solution
illustrated in Figure 5.

Notice that the subjects defined by input channel 1
and input channel 6 are used to provide protection for
each other. Input channel 1 is at high risk for v* and
v* and at low risk for v! and v?. Input channel 6 has
a nearly opposite risk profile, at low risk for v?, v°,
and v* and high risk for v'. By combining these two
risky input channels, some risk mitigation takes place;
however, the extent to which this can be done is obvi-
ously dependent on the values the data provider sets
for b and c;. In the case of the solution depicted in Fig-
ure 5, none of the input channels were “split” among
two or more output channels, although that would
not be the case in general, as is seen in Figure 6 and
in the results of §7.
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Figure 5 Optimal Solution to Initial Data Set of Table 1
Subjects
Input channel 1 X1 =3 assigned
(H.H.H,V) = Name
Output channel 1 M. A.
{1,2,6}
G. P.
Input channel 2 Xp1=2 Diabetes 0% M. L.
(LHLN) Heart 14% | | W.F.
Diabetes, Heart 28% R. H.
P Diabetes, Heart, MRSA | 14% | | J-T
61=
M. D.
Input channel 3
(N.N,N,N) Subjects
Xz =4 assigned
Output channel 2 Name
{3}
. o F.J.
Input channel 4 Diabetes 0% V.G
(N,N, N, H) Heart 25% —
J. M.
Diabetes, Heart 0%
A. B.
Diabetes, Heart, MRSA | 0%
Input channel 5
LLLN) Subjects
assigned
Qutput channel 3
4. 5) Name
Input channel 6 - J.R.
Diabetes 25%
(N,N,V,N) R.S.
Heart 0%
R. G.
Diabetes, Heart 25%
S.T.
Diabetes, Heart, MRSA | 0%

The optimal partial revelation solution illustrated in
Figure 5 has greater utility than that depicted in Fig-
ure 4. Comparing the objective function values, the
total cost of the strategy in Figure 4 is 117, while the
cost associated with the strategy in Figure 5 is 65. This
increase in utility can also be seen from the practi-
cal perspective of an IIM data user. Again, assume a
public health worker wishes to identify and contact
the subjects who are at risk for MRSA. From Figure 4,
the public health worker would have received a list of
nine subjects, three of whom were truly in the high-
risk group and six spurious subjects. From Figure 5,
the public health worker would have received a list of
seven subjects, with the number of spurious subjects
reduced to four.

To illustrate the role of the ¢, parameters, assume
that the data provider felt that the confidential field
values {Diabetes, Heart} and {Diabetes, Heart, MRSA}
both represent particularly sensitive combinations.
The data provider could then set, for instance, c; =
¢, =1 and c; = ¢, = 1.25. By increasing the “weight”
that these confidential field values are assigned, the
optimal solution would change from Figure 5 to
Figure 6.

Notice that in the solution depicted in Figure 6,
the effect of raising the values set for ¢; and ¢, was
that the composition of output channel 1 changed
and additional subjects from input channel 3 were
assigned to output channel 1. This also resulted in a
decrease in the probability that a user would associate
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Figure 6 Optimal Solution Under Higher ¢,’s
Subjects
Input channel 1 Xii=3 assigned
(H,H,H,V) " Name
Output channel 1 M. A.
{1,2,3,6}
Diabetes 0% G.P.
Input channel 2 Xp1=2 Heart 17% M.L.
(LLH,L,N) ) W.F.
Diabetes, Heart 22%
R. H.
Diabetes, Heart, MRSA | 11%
J. T
X3y = Xp1=2
M. D.
Input channel 3 M. G.
(N, N, N, N) A.B.
Xgo = 2
Output {c;}annel 2 Subjects
’ Diabetes 0% | assigned
Heart 259 | | Name
Diabetes, Heart 0% F.J.
Input channel 5 J M
(L, L,L,N) Diabetes, Heart, MRSA | 0% -

Input channel 4
(N, N, N, H)
)

Input channel 6
(N,N,V,N

with the likelihood that a subject described by out-
put channel 1 has {Diabetes, Heart} or {Diabetes,
Heart, MRSA}. However, changing the values of c;
and ¢, will typically result in better solutions overall
than simply lowering the values for u; and u,. This
is because lowering the values for u; and u, would
impact the feasibility of every output channel, and
lowering the values of ¢; and ¢, does not.

For example, consider an output channel with
100 subjects, 25 of whom have Diabetes and 28
of whom have {Diabetes, Heart}. Assume the risk
parameters are initially set to values of u; = 0.25,
u, =0.25, u; =0.30, u, =0.18, b=0.6, ¢;,..., ¢, = 1.

Output channel 3
{4, 5}

Subjects
assigned
Name
Diabetes 25% J.R.
Heart 0% R.S.
Diabetes, Heart 25% R. G.
Diabetes, Heart, MRSA | 0% S.T.

Consider the impact of two approaches, lowering the
value of u; and raising the value of c;. If the value
of ¢; is raised to 1.25, then the output channel is
still feasible, because there is little risk elsewhere in
the channel. However, if the value of u; is lowered
to 0.22, then the output channel is no longer feasi-
ble. Lowering the values set for the u; ignores the
distribution of risk over the remaining values of the
confidential field and can result in overly restrictive
solutions. Also notice that Figure 6 depicts a solution
in which the subjects initially described by one input
channel (input channel 3) are spread across two out-
put channels. The assignment of subjects from input
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channel 3 to either output channel 1 or output chan-
nel 2 is done randomly; the x,, simply dictate how
many are to be assigned to each.

7. Computational Results

The computational experience follows the R-U confi-
dentiality map framework (Duncan et al. 2003b). The
goal of the computational experience is twofold: to
gain insights into factors that impact the utility of the
released data set and to provide useful guidelines that
the data provider can use when establishing the val-
ues of important parameters such as u, ..., ug, and b.

A 1 million-subject data set comprised of 200 input
channels was created. Input channel cardinality was
approximately uniformly distributed between 1,000
and 12,000 subjects. The confidential field contained
two risky values (and implicitly a third value of
“None”). The unconditional probability of each risky
value was 0.1, and the conditional probability of each
risky value within each input channel ranged from
0 to 0.5. The experimental design was to alter the
proportion of subjects described by risky input chan-
nels from 0 to 0.20 in increments of 0.01. This design
enabled us to evaluate situations where the amount of
risk present in the original data set is extremely high,
because in most realistic medical data sets it would
be very unusual to have a situation in which this type
of risk was more than 20% prevalent.

For each data set with a given proportion of sub-
jects at risk, the linear program (LP) (11)—(16) was
solved for different levels of risk tolerance. The com-
putational experience was initiated by first consider-
ing a baseline level of risk tolerance where u;, = u, =
0.1, b=0.15, ¢c; = 0.5, ¢, = 1. This baseline level of risk
tolerance was then increased by a risk tolerance factor
(RT) such that u; =u, =0.1+%RT and b=0.15%RT. RT
was increased from a baseline value of 1 in increments
of 0.2 to RT =1.8 (this corresponds to u; = u, =0.18,
b=0.27).

To measure the utility of the released data set the
normalized utility measure

2
Q= > X ¥ xy/m
dgutesout ginedgut

was used to measure the decrease in the utility of the
data as subjects were mapped from input channels to
output channels. Its value will increase as the released

data set becomes “coarsened” to a maximum value
of 1. A value of 1 indicates that all subjects have been
assigned to a single output channel that is comprised
of every input channel in the original data set, and
the data recipient essentially receives no information.
A minimum value of 0 indicates that all subjects can
be assigned to singleton output channels comprised of
only the input channel that accurately describes each
subject. In such a case the value of € is 0 because
the objective function does not explicitly consider the
costs associated with subjects that are assigned to sin-
gleton output channels. In such a situation the data
recipient receives exact information, but that would
only occur when no risk is present in the original
data set.

The first step in the simulation process was to cre-
ate a set of rules to generate the nonsingleton out-
put channels. For this simulation the output channels
were generated from the following rule set:

1. An output channel must contain at least one
risky input channel and one safe input channel (this
ensures that d2' € S°™ for all w).

2. An output channel may not contain more than
eight input channels. The only exception to this rule
is the creation of an output channel comprised of all
200 input channels denoted by d§*.

3. The number of input channels contained in the
output channels is biased toward output channels
comprised of fewer input channels.

Singleton output channels were not generated be-
cause (a) it is, by definition, impossible for a subject
from a risky channel to be assigned to a singleton
output channel; and (b) any safe subjects allowed to
remain unassigned by (13) can be thought of as being
assigned to a singleton output channel comprised
only of the input channel that originally described the
subject. A total of 2,048 output channels were created
based on the rule set outlined above.

Although not represented here, it is possible that
output channels may be expected to satisfy other cri-
teria possibly not involving risk. For example, the
data provider may insist that they make sense from
an application point of view and may specify a set
of rules for discarding potential output channels as
unreasonable. For instance, it may seem strange to
be able to classify an individual as having either low
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blood pressure or high blood pressure without the
possibility of normal blood pressure.

Another possibility is that an output channel
should not consist of an inordinate number of input
channels. That is, it may be considered unacceptable
to indicate that a given subject is described by one of
five different input channels, because this may seem
equivalent to simply saying that the subject is a mem-
ber of the data set and nothing more. Thus, the task
of enumeration of a reasonable candidate set S°* is
likely to be computationally tractable in most real
settings.

However, because this simulation did not enumer-
ate all possible safe output channels, an analysis was
conducted to evaluate the impact of restricting the set
of output channels. To gain insight into the impact of
the rule set on the quality of the solutions (that is lim-
iting the number of output channels and the number
of input channels that comprise each output channel),
a problem was solved initially using just a single out-
put channel and then solved repeatedly using increas-
ingly large numbers of output channels. For the initial
problem an input data set was chosen where the pro-
portion of subjects at risk was 0.15 and where the data
provider had set u; =u, =0.1 and b =0.15 to depict
a situation where risk was fairly prevalent and risk
tolerance was low. The problem was initially solved
using a single output channel and then solved repeat-
edly with larger numbers of output channels.

To evaluate the impact of restricting the number
of output channels under consideration, both the
and the proportion of unused output channels (out-
put channels to which no subjects are assigned, i.e.,
> dinesont X,y = 0) were examined. The purpose of this
analysis was to determine whether a point of dimin-
ishing return was present, after which the addition of
more output channels did not result in better solu-
tions but in an increase in unused output channels.
Table 4 shows the results of the analysis.

In the case of limiting the number of output
channels to 64, only 54 of the output channels
were used. When the number of output channels
was increased to 128, a slightly better solution was
obtained that used 63 of the output channels. At 512
output channels a solution using 68 of the output
channels yielded the best solution, which was not

Table 4 Impact of the Number of Output Channels

Number of output % Output channels

channels Q unused

1 100.00 0.00

2 97.44 0.00

4 55.26 0.00

8 37.21 0.00

16 16.88 0.00

32 9.54 0.00

64 8.39 15.63

128 7.94 50.78

256 7.82 74.22

512 7.51 86.72

1,024 7.51 93.36

2,048 7.51 96.68

improved on with the addition of more output chan-
nels. So although Q initially decreases dramatically,
the improvement levels off when the number of out-
put channels reaches 500. This suggests that impos-
ing rules that restrict the number of output channels
under consideration will not only help improve the
“intuitive appeal” of the data, but also that imposing
such rules is not expected to dramatically decrease the
utility of the data set that is released.

We then moved on to the large-scale simulation.
The results of Figure 7 provide useful insights into the
trade-off between risk tolerance and data utility and
serve as an illustrative basis for recommendations that
a data provider can employ to maximize the utility of
a data set.

An interesting trend is that the rate of informa-
tion loss increases as the proportion of risk increases,
and that this trend is more pronounced when RT is
low. Closer inspection shows that this effect is due

Figure 7 Simulation Results

Information loss

—— RT 1.0 e

0.124+—
0100|714 .
0084—| AT 1s e
0.06 /j/ -
0.02 %

0.00 - T T T T
0 0.05 0.10 0.15 0.20

Proportion at risk

0.14

Proportion of information lost
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to the assignment of subjects to the output chan-
nel di*. These represent very high-cost assignments
and, while always feasible, cause significant erosion
in the utility of the released data set. Although the
assignment of subjects to dJ* has a dramatic effect
on the amount of information that is lost (because all
information is lost on subjects assigned to that out-
put channel), the assignment of subjects to dJ" was
also infrequent, even when the proportion of subjects
at risk was high and risk tolerance was low. Table 5
shows the proportion of subjects assigned to dj™'.

That the assignment of subjects to dJ* is an infre-
quent occurance is important from the perspective
of the practical utility of the technique outlined in
this paper. Because the premise here is that individ-
ually identifiable microdata of high-risk subjects can
be released in a safe and wuseful manner, it is impor-
tant that, overwhelmingly, the data released is usable
even when risk is pervasive and risk tolerance is low.
Even in the highest risk scenario (lowest level of risk
tolerance and largest proportion of subjects at risk),
only about 2.2% of the subjects in the data set were
assigned to dJ". Figure 8 illustrates the information
loss on the subjects that were not assigned to dj*.
A comparison of Figures 7 and 8 reveals that for more
than 97% of the subjects, namely those not assigned
to di*, the quality of the data released is significantly
higher than that suggested in Figure 7. For example,
in the highest risk scenario, the loss of information
was reduced by more than 30% when the 2.2% of sub-
jects in d5"* were ignored.

Another key consideration for the data provider
is the trade-off between the amount of security pro-
vided and data utility. Obviously, as the data provider
becomes more risk averse and enforces lower val-
ues for u,, ..., ux and b, the expected utility of the
released data will decrease. It is therefore important

Table5  Proportion of Subjects Assigned to d"
Risk tolerance (RT)

Proportion at risk 1.0 1.2 1.4 1.6 1.8
<0.12 0 0 0 0 0
0.14 0.002 0.001 0 0 0
0.16 0.011 0.003 0.002 0 0
0.18 0.017 0.011 0.007 0.002 0
0.20 0.022 0.017 0.013 0.004 0.001

Figure 8 Information Loss Excluding Subjects Assigned to d3"
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for the data provider to understand the details of the
trade-off for the data set in question. Different data
sets will exhibit different trends in terms of how much
the data utility decreases in response to a decrease
in risk tolerance, but the simulation data set pro-
vides some insights into how the data provider can
approach the problem of striking a balance between
the level of protection the subjects receive and the
utility of the released data set.

To explore this trade-off, a simulation was con-
ducted in which RT was initially set at 1.8 and then
decreased in one percent increments. For each one
percent decrease in RT we recorded both the total
increase in data utility and the incremental increase
in data utility. This was done for two data sets. In the
first data set, 15% of the subjects were at risk, and in
the second data set 5% of the subjects were at risk. The
results for the total increase in data utility is depicted
in Figure 9; the incremental increase in data utility for
each successive one percent decrease in RT is shown
in Figure 10.

Figures 9 and 10 illustrate the nonlinear trade-off
between risk tolerance and data utility. In both cases,
the data provider is motivated to avoid being too
risk averse, because the gain in data utility is ini-
tially substantial as the data provider becomes more
risk tolerant. The benefit is more pronounced for the
data set where a greater proportion of subjects are at
risk. These nonlinear trade-off patterns are likely to
be common in real data sets because increasing risk
tolerance can result in an improvement of the util-
ity of the released data set in two manners. First, for
higher levels of risk tolerance, fewer input channels
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Figure 9 Total Increase in Data Utility
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are expected to be considered risky. Second, for any
input channel that does meet the criteria for being
considered a threat, less work needs to be done to
mitigate that threat.

Also notice that, in both cases, there is a point of
diminishing return. For the data set where 15% of the
subjects are at risk, reducing RT by more than 20%
(from 1.8 to about 1.44) results in a situation where
each additional one percent reduction in RT results in
a less than one percent gain in data utility. For the
data set where only 5% of the subjects are at risk,
the point of diminishing return is reached earlier. In
both cases the implications for data providers is clear.
Significant gains in data utility can be obtained by
moderate reductions in RT, and, at some point, the
incremental gains in data utility do not justify addi-
tional reductions in RT. Because these trends may be
more or less prevalent in different data sets, the data
provider should have a thorough understanding of
how different levels of risk tolerance impact data util-

Figure 10 Incremental Increase in Data Utility
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ity before making a final decision regarding the level
of protection that will be provided.

The structure of the output channels, in terms of
the number of input channels that comprise each out-
put channel, was also examined. By examining the
number of input channels that, on average, comprise
the output channels, the data provider can gain some
additional insights into the amount of “noise” that
has been added to the data beyond the inclusion of
spurious subjects to query results.

This is depicted in Figure 11 for all subjects, except
those assigned to d** and to singleton output chan-
nels. The rationale for excluding those assigned to
dg"t is that an output channel comprised of 200 input
channels can dramatically skew the average, even
when the number of subjects assigned to that channel
is low.

Similarly, including safe subjects that have been
assigned to singleton output channels can skew the
average downward, especially when the proportion
of at-risk subjects is low. Even when the proportion of
subjects at risk is 0.2 and RT =1, at-risk subjects are
assigned to output channels that contain, on average,
4.5 input channels. This number drops significantly
as risk tolerance increases. For the same proportion
of subjects at risk, when RT = 1.8, at-risk subjects are
assigned to output channels that contain, on average,
2.8 input channels. Considering that any at-risk sub-
ject will, by definition, be assigned to an output chan-
nel comprised of a minimum of two input channels
(one safe channel and one risky channel), this repre-
sents “low noise” data.

All computations required for analysis were per-
formed on a personal computer using CPLEX V.9.0.

Figure 11 Average Number of Input Channels Ascribed to a Subject
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Solutions for each scenario were obtained within
10 seconds of computational time. The ease of com-
putational burden allows the data provider to exten-
sively fine-tune the data release strategy to effectively
trade off data security and data utility considerations.

8. Concluding Remarks

In this paper we consider security issues involved in
releasing microdata with individual identifiers. The
microdata provided to the users is inclusive in that a
query of the output database will yield a set of sub-
jects that includes all the subjects that would have
been returned in the same query of the original,
unperturbed database. The threat to the confidential-
ity of the subjects comes from the users possessing
information that relates the microdata that is revealed
to confidential information about the subjects. The
general strategy we employ is to take the original
data set in which some subjects are “safe” and some
are at risk and transform it to a microdata set in
which all subjects are safe. The problem of releasing
as much data as possible, subject to the security con-
straints, is formulated as a linear program. Compu-
tational results suggest that the method is viable and
that useful data can be released even when the level
of risk in the input data set is high.

Natural extensions of this work would address the
trade-offs between providing aggregate statistics and
the quality of the disseminated microdata and addi-
tional considerations a data provider might place on
which input channels can be combined to create the
microdata set. The latter issue arises when, for exam-
ple, the data provider wants to minimize alterations
to some subset of the attributes in the microdata. In
our work the revealed microdata do not contain confi-
dential fields. Other techniques, such as perturbation,
allow for the inclusion of these fields in the micro-
data, albeit in an altered format. Extensions of our
approach to work within these settings is also a viable
topic for future research.
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