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Detection and Estimation of
a Mixture in Power Law Processes
for a Repairable System

NI WANG
Capital One Services, Inc., Glen Allen, VA 23060

PAUL KVAM and JYE-CHYI LU
Georgia Institute of Technology, Atlanta, GA 30332-0205

The power law process has proved to be a useful tool in characterizing the failure process of repairable
systems. This paper presents a procedure for detecting and estimating a mixture of reliable and unreliable
(defective) systems. The test of a mixture, based on a simple likelihood ratio, is illustrated with truncated

failure data for copy machines. Bootstrap methods are used to gauge the estimation uncertainty, and
optimal decisions for system replacement are determined based on the observed likelihood.

Key Words: Bootstrap Sampling; EM Algorithm; Failure Truncation; Maximum Likelihood; Minimal Repair;

Warranty.

OR a repairable system, it is crucial to know not
:[F only whether it is reliable at the start of opera-
tion but also how the reliability changes over usage
time. A system must be taken out of operation be-
fore repairs become too frequent and operation costs
soar. While some systems will show age only after
experiencing a great amount of usage time, other
systems may be prone to frequent failures from the
start. For industries that manufacture complex sys-
tems that are susceptible to failures from competing
risks (i.e., risks of failure from different sources), it
is not uncommon to find a heterogenous population
with a majority of reliable systems mixed in with a
small fraction of defective ones.

We refer to these good systems as “conforming”
because the quality might be measured not only in
terms of reliability (e.g., time on test) but in other as-
pects having to do with system operation. The “non-
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conforming” systems will exhibit shorter operation
time between repairs, and unlike a repair to the non-
defective conforming systems, these repairs can in-
clude different failure modes that are seemingly un-
related.

In the automotive manufacturing industry, for ex-
ample, the small proportion of new cars that make
repeat trips to the repair shop are called lemons,
and several states have adopted consumer protection
rights (“lemon laws”) that will force the manufac-
turer to replace the defective product with no cost
to the consumer. There is an industry of law prac-
tices just for lemon law cases, as pointed out in Lehto
(2000) and Megna. (2003).

By treating the defective products as a contam-
inated subpopulation, the time to failure of a new
item can be described with a mizture distribution; if
T is the product lifetime, then its lifetime distribu-
tion, F'(t), is extricated to

F(t) = wFa(t) + (1 - w)Fo(t), (1)

where Fy is the lifetime distribution of the normal
(nondefective) products, w is the proportion of de-
fective (or nonconforming) products that have dis-
tribution F,, where Fy(t) > Fy(t). Here “lifetime”
refers to time to failure after the most recent re-
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pair, so a system that is repaired four times can
have five distinct lifetimes. We refer to the aggre-
gate of these between-failure times as the system’s
“total lifetime”.

Manufacturers of large, repairable systems, in-
cluding the automobile industry, can benefit greatly
by quickly identifying a finished product that was
generated from the nonconforming population F,
and getting it out of service as soon as possible. In
general, the defective items are costly to the man-
ufacturer, thereby greatly influencing the warranty
policy and limiting the protection the manufacturer
will offer to the consumer. Mixtures have been helpful
in modeling repair times for warranty policy, includ-
ing heuristic models by Majeske and Herrin (1995).
Majeske (2003) used a mixture hazard function to
model the time to first warranty claim and estimated
the fraction of vehicles containing a manufacturing or
assembly defect when leaving the assembly plant.

In this paper, the repair process is modeled as a
minimal repair process generated from the mixture
in Equation (1). Once the system fails, it is auto-
matically repaired to be as good as an identical sys-
tem that has survived to the same age. The resulting
sequence of failure times constitutes a nonhomoge-
neous Poisson process with mean rate function equal
to the underlying cumulative hazard rate. Obviously,
if the system has a greatly increasing rate of failure,
the overall cost of operating the system is strongly
dependent on the replacement policy. Kvam, Singh,
and Whitaker (2002) considered estimating the sys-
tem lifetime distribution in the case the system was
known to have an increasing failure rate.

For practical consideration, we focus on the non-
homogeneous Poisson process with intensity function

o(t) = D /0y, )

which is commonly accepted as an effective model for
many repairable systems, e.g., see Rigdon and Basu
(2000). A convenient alternative parameterization for
Equation (2) is

v(t) = AGtP L. (3)

This model is called the power law process (PLP)
because the intensity function is proportional to a
power of t. We call X the intensity parameter, 8 the
shape parameter, and 6 the scale parameter. The
power law process is frequently used to model re-
pairable system lifetimes, as evident in Duane (1964),
Ridgon et al. (1998), and Ridgon and Basu (1989).

Vol. 39, No. 2, April 2007

Engelhardt and Bain (1987) used a compound power
law model to characterize the heterogeneity of differ-
ent systems by treating A\ as a random variable from
the gamma distribution. This frailty-type model ac-
counts for general heterogeneity of the population,
but is not effective in modeling nonconforming sys-
tems. In this paper, we choose to model multiple sys-
tems as mixture power law processes with two point
mixture distributions. These correspond to two types
of intensity functions, vp(t) and v,(t) for conforming
and nonconforming systems, respectively. The higher
failure rate of the nonconforming subpopulation is
characterized by an inequality between their respec-
tive intensity parameters: A, > Ao.

Consider n manufactured systems with intensity
function v;(t) = A\Bit% 71, i = 1,...,n. The sys-
tems are possibly time truncated or failure truncated.
For time-truncated systems, we observe system ¢ over
time interval (0, 7;); 7; may be the current calendar
time. Denote ¢;; as the jth failure time for system 1,
and j = 1,...,k;, where k; is the number of failures
before censoring time 7;.

For the failure-truncated case, a system is taken
off test after a fixed number of failures is observed.
Denote k; as the pre-fixed number of failures, then
the failure times, t;;’s, are recorded for j =1,..., k;.
In the example that follows, the data can be time
truncated or failure truncated. The detection of a
PLP is shown in Section 2 by using copy-machine
failure times as an example. The copy machines ex-
hibit a PLP mixture of two intensity parameters (and
a single shape parameter, §). Estimation, based on
maximum likelihood, is described in Section 3. In
Section 4, we use these estimates to develop an opti-
mal strategy for warranty decision making.

Exploratory Study of
Copy-Machine Failure

Figure 1 shows the failure-time data for a group
of 20 copy machines (Zaino and Berke (1992)). For
these machines, time is measured by the number of
actuations, i.e., the number of copies made, and the
time at installation is defined to be 0. This data
set (adjusted for staggered installation times) is dis-
played in Table 1. Copiers removed from the test
upon 8 failures were failure truncated, while other
copiers are regarded as time censored at 7 = 40,000
actuations.

For failure time T; and number of failures K;, we

WWww.asq.org
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FIGURE 1. Number of Actuations Between Failures for 20 Tested Copy Machines. Data from Zaino and Berke (1992).

use the notation of Rigdon et al. (1998) for cases
where some systems are failure truncated and others
are time truncated:

ool if system ¢ is time truncated
7\ tik; if system ¢ is failure truncated

K — ki if system 1 is time truncated
* 7 Y k;—1 ifsystem i is failure truncated.

Based on the likelihood for an individual system,

ki
L(Xi, Bi) ocexp(=AT0) [[ Mt ™ (@)
j=1

the maximum likelihood estimators (MLEs) }; and
B can be obtained as
3 k’L N Tz
ﬁi = k'.L 3 )‘1, = 1/3 .
> e log(Ti/tiy) kP

(5)

To obtain a more parsimonious model, we test
equality of the intensity functions for individual sys-
tems. The shape parameter, 3, demonstrates the re-
liability development efforts, i.e., 8 > 1 shows sys-

Journal of Quality Technology

tem reliability decreasing in time and 8 < 1 shows
reliability growth. With the MLE 3; from Equation
(5), it is well known (Chapter 4 of Rigdon and Basu
(2000)) that the conditional distributions of the vari-
ables 2kiﬂ,~/,f3’i, i=1,...,n, given ky,...,ky,, are in-
dependent and chi squared with 2K; degrees of free-
dom. The 100(1 — a)% confidence intervals for 3;’s
are given as

Xi/g(zKi)Bi X%_a/2(2K1’),3i
2k; ’ 2k; !

where x7_, /»(2K;), and X2 /o(2K) are the 1 — a/2
and /2 quantiles for chi-square distribution with
2K; degrees of freedom.

The hypothesis 8; = § implies that reliability de-
velopment efforts are equally effective for systems be-
ing tested. Crow (1974) suggests a likelihood ratio
test for testing the equality of 3’s,

Hy - ﬁ1=ﬁ2="'=,3m

against the alternative that at least two of the 3’s

Vol. 39, No. 2, April 2007
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TABLE 1. Number of Actuations until Failure for Copy-Machine Failure Data

t ti1 ti2 ti3 tia tis tis ti7 tig

1 3678 9619 30497 37308 — — — —

2 3328 32456 — — — — —

3 2016 11551 — — — — —

4 1463 1570 1820 1956 — — — —

5 1596 2189 3219 6233 6409 — — —

6 452 472 2467 2517 3727 4537 8079 19694

7 3487 3635 — — — — — —

8 1847 2230 5557 9958 14795 18494 — —

9 3783 3787 18436 35375 — — — —
10 1027 1483 6101 9269 15225 23273 33389 33675
11 20057 31058 33061 39497 — — — —
12 4390 14190 14420 15550 19535 20650 26890 —
13 1233 1555 21318 — — — — —
14 940 1479 1583 2177 13004 35241 — —
15 3439 7451 8503 31126 — — — —
16 1443 3464 3926 4473 4918 5161 7768 10649
17 2818 4276 6656 7581 — — — —
18 1474 2653 19378 20816 — — — —
19 4105 4247 5305 5466 5924 38635 — —
20 1382 2409 3557 8974 9312 16429 22850 25455

are different based on
LR=Y B - kilogh,
i i

where §; is the MLE for §; and 8" is the weighted
mean of the G1,...,5x:

Z?:l ki

i1 ki/Bi

Using an approximation similar to the Bartlett’s
statistical testing for equal variances in indepen-
dent normal distributions, the null distribution for
the test statistic —2 x LR/a is x%(n — 1), where
a=1+ (0, 1k —1/(321, k:))/(6(k — 1)). This
test is applied for the copy-machine failure data in
Table 1, with p-value = 0.59; there is no strong evi-
dence for modeling the shape parameters differently.

g =

Given the shape parameter 3 is identical for all
systems, we can proceed to test the equality of A;’s.
Under Hy : A\; = A, the likelihood function is

n k;
L\, B) H exp(—\TY) H )‘i/gtiﬁj_l

=1 j=1

The MLEs for A; and (3 satisfy the following estimat-

Vol. 39, No. 2, April 2007

ing equations:

;= Z?:l ki
s, 1
ik IS 101y -y 3 log(ti5)
3 = Zl il Og( 'L)—leog(lj

If all the n systems are time truncated at 7, then 3
is solved explicitly as

Z?:l ks
i1 Z§;1 10%(1:—1)

In other cases, explicit solutions for 3 and A; are not
guaranteed.

8=

Lee (1980) proposed a test for comparing rates of
several independent PLP processes. A test can be
constructed based on the count data k; when 3; are
assumed to be the same. Conditional on the total
number of failure times k = Y-, k;, the distribution
of the failures counts K; is multinomial, with cell
probabilities

)\iT ,Lﬂ

n B (6)
i1 NT

and the problem is reduced to testing multinomial

™ =

Wwww.asq.org



144 NI WANG, PAUL KVAM, AND JYE-CHYI LU

parameters with Hy : 7y = mp = ... = m, (versus H, :
some 7, are not equal) on the simplex Y m; = 1. Let
Br be a consistent estimator of 3 (this is explained
in the next section). A test for homogeneity based on
Equation (6) can be constructed from

Br

—n__ 8.
Z?:l Tiﬂn

with corresponding dispersion statistic

< (ki — k#;)?
n = Z T

i=1

;=

Under Hy, g, has a limiting x? distribution with n—1
degrees of freedom. For the copy-machine data, the
test statistic g, is calculated to be 33.84, and the
hypothesis of homogeneity for A is rejected with a
p-value 0.019.

A graphical plot can be applied to detect the het-
erogeneity in the intensity parameters if the number
of failures is large enough. Conditional on 3 and J;,
the total number of failures for the ith system, Kj, is
a Poisson random variable with mean )\iTiﬁ . Then, if
K is sufficiently large, the transformed count data

K; — X1?

is approximately distributed as a standard normal
distribution under Hy, where A; = A. Hence, after
replacing A and § by their consistent estimators, a
normal plot for Z; can be used to examine the ho-
mogeneity for A;. To show how this procedure works,
we use a simple PLP simulation below.

(7)

Simulation Example 1

We simulate a mixture power law process with

= 200 systems, using the simulation procedure
given in Meeker and Escobar (1998, p. 418). The pro-
portion for nonconforming systems w is set to be 0.05;
the intensity parameters for conforming and noncon-
forming systems are A\g = 1, A, = 5, respectively.
The common shape parameter 3 is chosen to be 1.5,
indicating reliability deterioration and the censoring
time, 7, = 7 = 4, is the same for all the systems.

Figure 2(a) shows the normal plots of the trans-
formed Z;’s for the mixture population in the sim-
ulation, where a lack of fit can be detected visually.
The normal plot for the conforming systems is shown
in Figure 2(b), which has no strong visual evidence
for lack of fit.

Journal of Quality Technology

Mixture Model

After testing the copy-machine failure data for
goodness of fit, we assume the regular population is
related to the nonconforming population via a com-
mon shape parameter for the joint processes mod-
eled with intensity functions vy(t) = ABtP~! and
va(t) = AoBtP~1. We next consider the mixture
model to describe these two subpopulations.

PLP Likelihood for Mixture

The likelihood based on the failure data {t;;, 1

it <mand 1< j <k} is a function of the parame-
ters of the PLP intensity function, {\o, As, 3}. That
is, the shape parameter 3 is the same for both vy (t)
and v,(t). The mixing parameter w is the propor-
tion of nonconforming items in the population and is
assumed to be small (w < 0.5). The intensity func-
tions for conforming and nonconforming systems are
vo(t) = AoBtP~1 and v, (t) = A\,Ft° 1, respectively.
Then the likelihood function is

Gt)O(H{l— )AF G5 exp(—Aor?) Ht

7j=1
—I—w/\k gk exp(— aT Ht },

where t = {t;;}, ¢ = 1,...
6= {/\Oa/\a7w1:3}'

Obviously, there is no general closed-form solu-
tion in Equation (8) for the MLE of 6. To set up
a simple iterative method for solving the MLE, the
EM algorithm (see McLachlan and Krishnan (1996),
for example) can be applied by defining the unob-
served quantity z;, where z; = 0 if the ith system is
from the conforming population (z; = 1 otherwise),
so that P(Z; = 1) = w.

With z = {z, i = 1,...,m}, the “full data” like-
lihood (including z) is relatively simple and well be-
haved:

,n, 5 = 1,...,k;, and

1—21
n ki
L(6;t,2) o [ ] 4 A6 8% exp(—xorf) [] 55
i=1 j=1
ks =
x { Ak gk exp(—\ 7] )Htfj_l
j=1
9)

The EM algorithm solves for the MLE by estimating
z (or a function of z determined through the log like-
lihood) and maximizing over the simpler likelihood in

Vol. 39, No. 2, April 2007
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FIGURE 2. The Normal QQ Plot for the Transformed Counts Data Z in Simulation Example 1.
Equation (9) by treating the estimated values of z as generate the following estimating equations:
observed data. The algorithm consists of two steps:
the E step (estimating 2) and the M step (finding the ™ 5(1))
. . . /\(p+1) — i=1
MLE using the estimates in the E step). a _—(p Bt
Zz—l 5
E Step APt Ei:l(l _ gzgp )k
. . 0 -
In the pth iteration, z; is replaced (estimated) S (1 — PP @
by its expected value E,(p ) in the full likelihood "k (ot 1)
in Equation (9), given current parameter estimates %(’; J:l) = {Z(l Z;“(p )))\(” )8 log(7;)
AP AP ) 5@ where 1
(p+1)
P(Z;=r) + fﬁ”),\g”)rf log(Ti)}
(0) k
(») (P) 5 » o — n K
w'P exp(— A/ tij ifr=1
IS 30 loatt), (1)

() 4
(1 — w®Yyexp( )\()Tﬂ ) v[(]
7j=1
M Step

By setting the first derivative of the full log-
likelihood function from Equation (9) to zero, we

Vol. 39, No. 2, April 2007

ij ifr=0.

i=1 j=1

and w is updated as w®+V) = 37 ¢ /n. The E
step and the M step are repeated until the parame-
ter estimates converge to the MLEs. In this case, con-
vergence is guaranteed by Theorem 2 in Wu (1983)
because the full-data likelihood is a member of the
exponential family.

WWW.35(.0rg



146 NI WANG, PAUL KVAM, AND JYE-CHYI LU

For the copier data, the EM steps were repeated
until the parameter estimates converged to station-
ary points, which can be monitored by the trace
of the algorithm output. The MLEs are (5\0, ;\a,
8, @) = (0.0091,0.0229,0.5862,0.1439). The result
shows that the systems are experiencing reliability
growth by the fact 3 = 0.58 < 1; about 14.4% of the
total population seems to come from a subpopulation
with higher failure rate. The ¢;’s from the EM algo-
rithm can be regarded as the posterior probability of
being in the nonconforming group for system i. Based
on a simple rule by classifying a system as noncon-
forming if & > 0.5 (this would obviously change if
a nondegenerate risk function were used), machines
6, 16, 20 are classified as nonconforming by the fact
that & = 0.74, &16 = 0.9174, and & = 0.5760.

PLP Model Inference

Titterington (1990) has shown that inference for
mixture distributions can be fraught with problems
of nonidentifiability and unsolvable likelihoods. In
this case, we are assuming the mixture has two com-
ponents, which greatly simplifies the problem struc-
ture. For testing Hy : w = 0 versus H, : w > 0, the
likelihood ratio

_supy, L(6;t)

- supy, L(6;1) (12

is simple enough to compute. Under standard reg-
ularity conditions for the likelihood (see Lehmann
(1997), for example), X? = —2log A is distributed
as x12. However, likelihood-based procedures are not
guaranteed even in this case; the regularity condi-
tions on the parameter space that satisfy require-
ments for MLE limit properties cannot be met. For
the null hypothesis of homogeneity, the parameter
space includes parameter boundary values w = 0
along with the line Ay = \,, corresponding to a
nonidentifiable subset of the parameter space © =

{(wa )\07 Aavﬁ) € ([0’ 1]a (%+)3)}

In place of a conventional likelihood ratio test,
computational methods can be used for tests and
confidence regions for unknown parameters based on
resampling methods, as demonstrated in Feng and
McCulloch (1996). For the hypotheses

Ho : ’U(f) = 'l)o(t)
versus
Hy :v(t) = (1 —w)ug(t) + wug(t),

an approximate test is constructed by the following
bootstrap likelihood-ratio procedure:

Journal of Quality Technology

1. Compute the MLE 6, of 6y = (A, B) under Hy.

2. Generate a bootstrap sample corresponding to
the ©p(t), where the unknown parameters are
replaced by the MLE 6.

3. Compute the test statistic X? = —2log A cor-
responding to Equation (12) after finding two
sets of MLEs.

4. Repeat these last two steps B times (B > 1000,
at least) and store the B values of the test
statistics X2, ... , X52.

5. Compute the significance of X2 using the dis-
tribution of the B test statistics as the null dis-
tribution.

From these steps, the replicated values of —21log A
formed from the successive bootstrap samples pro-
vide an assessment of the bootstrap, i.e., the null
distribution of —2log A. The jth order statistic in
the B replications can be taken as an estimate of the
1005/ B percentile of the null distribution. Thus, the
p-value can be approximated by comparing the boot-
strapped samples with the original X? test statistic.

The bootstrap approach can also be used to study
the standard errors of the MLE for 8 = (w, A4, Ao, 8).
A simple nonparametric bootstrap is applied here
to avoid the complexity of simulating the nonho-
mogeneous Poisson process. We first construct B
bootstrap samples, t7,t5,. .., ¢}, by resampling with
replacement from the n observation systems. Let
67,...,0% be the bootstrap estimates of @ calcu-
lated from t7,...,t}, respectively, using the EM al-
gorithm. The covariance matrix of @ can be estimated
using the sample covariance matrix of éf, e ,é;g,

B
V=301 - 60 - 67 /(B - 1),
k=1

where 6* = Y2 67/B.

Under Hy, the repair data for copy-machine fail-
ures lead to (A, 8) = (0.0134,0.5639) and the log
likelihood ratio is calculated as X2 = 2.4756. Based
on B = 2000 bootstrap samples representing the null
distribution, the p-value for the original repair data
is 0.32. This lack of strong evidence is due, in part,
to the small sample size of n = 20 for the mixture
problem.

For Simulation Example 1, the histogram for
model parameters using nonparametric bootstrap
method is shown in Figure 3. The histograms show
that all the distributions are approximately symmet-
ric.

Vol. 39, No. 2, April 2007
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FIGURE 3. The Histograms for the Model Parameters in Mixture Power Law Processes Based on Bootstrapped Samples

in Simulation Example 1.

Remark 1

The exact point estimates for both parameters as
well as an exact interval estimate for the shape pa-
rameter for a single system are well studied (Finkel-
stein (1976)}). For multiple systems with identical A
and 3, the asymptotic properties for MLEs X and 3
can be derived. To keep this presentation short, we
consider the case where all the systems are failure
truncated on the right with the same failure number
m. By letting the number of systems n — oo and the
failure number m — oo, the asymptotic confidence
intervals for A and B can be obtained from the Fisher
information matrix as shown in Theorem 1 below.

Remark 2

For the homogeneous population, another estima-
tor for the shape parameter,

~ Tl_ k’b
ST
D iei Zj;l log (ﬁ) )
is called the conditional MLE; Rigdon et al. (1998)

Vol. 39, No. 2, April 2007

showed that conditional on system i having K; fail-
ures, the random variable 2K3/8 has an approxi-
mate x? distribution with 2K degrees of freedom,
where K = "7, K;. The transformed random vari-
ables U;; = log(T;/T;k,—j+1) are distributed as K;
order statistics from an exponential distribution with
(unknown) mean 1/3. The standard estimator for the
mean of Us; is Y iy Zsz‘l Ui/ >, K;, which sim-
plifies to 1/8.

By extending the limit results of Gaudoin et al.
(2004) to multiple systems, the asymptotic normality
of the MLEs can be obtained, allowing hypothesis
tests and confidence regions to be constructed via the
Fisher information. The proof of the theorem that
follows is relegated to the Appendix.

Theorem 1

For ¢ independent systems, let t;;, ¢ = 1,...,n,
j = 1,...,m be the failure times from system i,
where failure times are governed by a power law pro-
cess with parameter vector 8 = (A, ). Then, un-

www.asq.org



148 NI WANG, PAUL KVAM, AND JYE-CHYI LU

der the standard regularity conditions for MLEs, as
n — 0o and m — oo,

Vnm(6 — 8) — N(0,Z(6)"),
where

e L

is the inverse of the Fisher information matrix.

Optimal Strategy in Warranty
Decision Making

Suppose that, from the recent repair history of
a group of similar systems, we know the intensity
parameters for the nonconforming and conforming
systems are A, and Ay, respectively. Further sup-
pose that, under the minimal repair warranty pol-
icy, failed products experience minimal repair with-
out any cost to the consumers, but the manufacturer
incurs a cost of Cp,, > 0 per repair. Let £, be the
length of the warranty coverage. Then the expected
total repair costs for conforming systems and noncon-
forming systems are CpAo(ty) and CpAg(ty), re-
spectively, where Ag(t,) = Aot? and Ay (ty) = At2.
If the minimal repair costs for nonconforming prod-
ucts are high enough (compared with the fixed cost
Cr of system replacement), we can lower the total
repair costs by identifying and removing those non-
conforming systems before t,,.

Consider the case where the products are exam-
ined after k failures, i.e., the product lifetimes are
failure truncated on the right. We classify the prod-
ucts into two groups based on the hypothesis test
Hy: A =X vs. Hy: A; = A;. The expected costs
due to the classification errors are given in Table 2.
Denote P(H, | Ho) and P(H, | H,) as the Type I
and Type II errors, respectively. The total expected
cost function is

C(k) = m(1 —w)Py(H, | Ho)
x {(Cr + Cmk) — Cin)ot2 }
+mwPy(Hy | H,)
X {CnAats — (Cr + Crk)},  (15)
where 0 < k < \t8 — Cp/Cyp and At? < Cp/Chy,

because the misclassification costs will always be
larger than 0.

Corresponding to the hypothesis test Hp : A; = Ag
vs. H, @ \; = Ag, the likelihood ratio statistic is

exp(—Aatl) H AaBtS

LR = -
eXp(_)‘Otik) H] 1)‘05t

Journal of Quality Technology

= (%)k exp[(Ao — Aa)th)-

0

The uniformly most powerful (UMP) test (Leh-
mann (1997), p. 74) is to reject Hy if t; < m,
where 7 is the critical value to be decided. Un-
der Hy, t;; has a generalized gamma distribution
GGAM(A, 8, k) (see Ridgon and Basu (2000), p. 57),
with cumulative distribution function G given as

and where I'; is the incomplete gamma function de-
fined by I';(v; k) = [y "~ exp(—z)dz/T'(k), v > 0.
By controlling the Type I error level at «, the critical
value 7, can be solved from

Lr(omp; k) = a.
Then the Type II error can be calculated as
Py(Ho|Ha) =1 —T1(Aan}; k)
=1- FI[F[_I(a;k))‘a/)‘O]a (16)

where I';!( - ; k) is the inverse function of T'7( - ; k).
By plugging in Py,(Hy|H,) from Equation (16) into
Equation (15), we know the minimum expected cost
must be contained in the interval k € [1,A.t5 —
Cr/Crl.

Observation 1

If w is small such that the nonconforming prod-
ucts do not affect the total costs in Equation (15) as
much as conforming products, C(k) is an increasing
function in k, and the manufacturer benefits from
earlier testing.

Observation 2

Figure 4 shows the Type II error as a function
of the ratio A\;/Ag under a = 0.05. If the ratio
Aa/Ao > 5, we can see that the Type II error ap-
proaches 0 quickly as k increases. When A, /)¢ is
large, nonconforming products are more easily de-
tected even without a large failure number k.

TABLE 2. The Cost Functions for Misclassifications

Probability Cost function
P(Hy | Hp) CrAot?
P(H, | Ho) Cmk + Cr
P(Hy | H,) CrmAat?
P(H, | Ha) Ck + Cr
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Type Il Error

o] 5 10 15 20 25 30 35

FIGURE 4. Type Il Error from Equation (16) Using Ra-
tios of Different Intensity Parameters.

Simulation Example 2

We illustrate this optimal decision process
through the following simulation. The total warranty
coverage time is set as t,, = 4 years, and we use four
different values of 3 (i.e., 8 € {0.5,1,1.5,2}) to il-
lustrate reliability varying from reliability growth to
deterioration.

The proportion of nonconforming systems w is set
to one of four different values (w € {0.001, 0.01,
0.05, 0.1}) to compare different scenarios of popu-
lation contamination. Without loss of generality, Ag
is chosen to be 2, and corresponding to this, A, is set
to be three, five, or ten times the value of ), i.e.,
A € {3X0, 5)0, 100} Finally, Cr/Cy, is assumed to
be equal to (\g + Ao)t2 /2. The optimal values of k
under each of the different cases are shown in Table
3, which supports observations 1 and 2 above. For
example, with Ay = 3o, 8 = 2, and w = 0.05, the
expected cost is minimized by choosing & = 8. That
is, the optimal strategy is to test each system until
eight failures occur before deciding whether or not
the system is conforming or nonconforming.

Conclusion

This paper studies the modeling of heterogenous
systems governed by a minimal repair process. An
exploratory study and graphical methods are used
to detect heterogeneity of the power law processes
for 20 copy machines based on repeated failure-time
data. Bootstrap methods are used to calibrate the
estimation uncertainty as well as likelihood ratio test
statistics.

Vol. 39, No. 2, April 2007

TABLE 3. The Optimal k Under Different
Model Parameters in a Simulated Process

w =05 pB=1 B=15 B=2
Xa/Ao =3
0.001 1 1 1 1
0.01 1 1 1 3
0.05 2 4 6 8
0.1 4 6 8 10
Aa/Ao =5
0.001 1 1 1 1
0.01 1 2 3 4
0.05 3 4 5 6
0.1 4 5 6 6
Xa/Xo = 10
0.001 1 1 1 2
0.01 2 2 3 3
0.05 3 3 3 4
0.1 3 3 4 4

When considering a model for conforming and
noncomforming systems, the two-point mixture
model makes intuitive sense and is easily interpreted.
Furthermore, it lends itself to a natural formula for
classifying products as nonconforming or conforming.
However, discrete mixtures are difficult to fit, espe-
cially with small samples. Alternatively, the continu-
ous mixture model generated with a Gamma mixing
distribution for A (Englehardt and Bain (1987)) will
fit the copy-machine failure data, but the estimated
mixing parameters from the Gamma distribution are
poorly fit, especially the shape parameter. This is
due, in part, to the small sample size.

Finally, an optimal decision based on estimated
values is derived to minimize warranty cost. The de-
cision process is aided by “missing-data” estimates in
the EM Algorithm. Future study can consider more
complex warranties based on intricate risk functions.
Our asymptotic results are based on a simple system
of minimal repair with failure truncation on the right,
and confidence statements for the power law process
parameters can be constructed from the Fisher infor-
mation matrix of Theorem 1.
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Appendix
Proof of Theorem 1

The asymptotic normality of the parameter esti-
mates for a single system is demonstrated in Gaudoin
et al. (2004). To shorten this presentation, we only il-
lustrate the derivation of the asymptotic covariance
through the information matrix. The likelihood for
the repair times can be expressed as

L(B,A;t) o< [ ] § exp(=Mh) [T A3t ¢
i=1 j=1

and the corresponding Fisher Information matrix is
obtained as

9logL logL
T— _E( o ) _E( BA%gﬁ )
|\ _g(&lesL _(&logL
K] op? |-

This simplifies to

T= ( n T;‘_T . nm Lo \\2
2 im1 Am,p(7) B2 2im1 (Am,p(4))%),

where
Am p(i) = B(T{,, log Ti m).

Using results derived in Crow (1974) and Gaudoin
(2004), we have

n
N E(TL, log Tim) = 52 [A(m + 1) — log ]
i=1

A8
and
n
ZE(Tfm log? T} m)
=1
nm
= /\—Bz[z\(”(m +1) + (A(m + 1) — log M),

where ¢(z) = OlogI'(2)/0z is the digamma function
and ¢M)(z) = d¢(z)/dz is the polygamma function
of order 1. By the equivalency of ¢(m) with logm
and ¢ (m) with 1/m, the information matrix can be
inverted to Z~! in Equation (14) from the theorem.
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