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ABSTRACT
We studied the mechanism of action of 3,5-dibromo-4-(3,4-
dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester (JG-
03-14) and found that it is a potent microtubule depolymerizer.
JG-03-14 caused a dose-dependent loss of cellular microtu-
bules, formation of aberrant mitotic spindles, accumulation of
cells in the G2/M phase of the cell cycle, and Bcl-2 phosphor-
ylation. These events culminated in the initiation of apoptosis,
as evidenced by the caspase 3-dependent cleavage of poly-
(ADP-ribose) polymerase (PARP). JG-03-14 has antiprolifera-
tive activity against a wide range of cancer cell lines, with an
average IC50 value of 62 nM, and it is a poor substrate for
transport by P-glycoprotein. JG-03-14 inhibited the polymer-
ization of purified tubulin in vitro, consistent with a direct inter-
action between the compound and tubulin. JG-03-14 potently

inhibited the binding of [3H]colchicine to tubulin, suggesting
that it bound to tubulin at a site overlapping the colchicine site.
JG-03-14 had antitumor effects in the PC3 xenograft model, in
which it caused greater than 50% reduction in tumor burden
after 14 days of treatment. Molecular modeling studies indi-
cated that the dimethoxyphenyl group of JG-03-14 occupies a
space similar to that of the trimethoxyphenyl group of colchi-
cine. However, the 2,3,5-trisubstituted pyrrole group, which is
connected to the dimethoxyphenyl moiety, interacted with both
� and � tubulin in space not shared with colchicine, suggesting
significant differences compared with colchicine in the mech-
anism of binding to tubulin. Our results suggest that this tetra-
substituted pyrrole represents a new, biologically active che-
motype for the colchicine site on tubulin.

Microtubules are cellular structures that play a central
role in metabolism, intracellular transport, and cell division.
A wide range of chemicals have been identified that interrupt
microtubule function. These compounds can be divided into
microtubule stabilizers and microtubule depolymerizers. Mi-
crotubule stabilizers include paclitaxel, discodermolide, the
epothilones, and the laulimalides. Microtubule stabilizers
cause an increase in the density of cellular microtubules, and

they stimulate the assembly of purified tubulin. In contrast,
microtubule depolymerizers cause a loss of cellular microtu-
bules, and they inhibit the assembly of purified tubulin.
Microtubule depolymerizing compounds can be further sub-
divided into those that bind to tubulin within the colchicine
site and those that bind within the vinca domain. Agents
acting upon the colchicine site include 2ME2, combretastatin
A-4, and podophyllotoxin. The phenotypic effects of microtu-
bule stabilizing and depolymerizing agents are quite dispar-
ate when they are used at high concentrations in cells, but at
their lowest antiproliferative concentrations, both classes of
agents inhibit microtubule dynamics (Jordan and Wilson,
2004). In due course, inhibition of microtubule dynamics is
believed to hinder the normal function of the mitotic spindle,
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leading to mitotic arrest and initiation of apoptosis (Jordan
and Wilson, 2004).

Drugs that target microtubules have an important role in
the treatment of cancer. Paclitaxel and docetaxel are among
the most effective drugs used to treat ovarian, breast, head
and neck, and lung cancers. The vinca alkaloids, vinblastine,
vincristine, and newer generation analogs, such as vinorel-
bine, are used in the treatment of a wide range of childhood
and adult tumors. Several new tubulin binding drugs are
being evaluated in clinical trials, including 2ME2 and com-
bretastatin A-4 phosphate. It is noteworthy that these two
agents seem to bind within the same binding site on tubulin,
the colchicine site, yet they have very different effects on
tumor vasculature. 2ME2 has well-described antiangiogenic
actions (Mooberry, 2003), whereas combretastatin A-4 phos-
phate has antivascular activities that lead to rapid collapse of
tumor vasculature (Griggs et al., 2001). How these differen-
tial effects are mediated is not yet understood, but such
knowledge may lead to the development of newer-generation
colchicine site agents.

Natural products containing pyrrole have diverse and in-
teresting biological activities, and they have proven to be
particularly useful as lead compounds for drug development
(Gupton, 2006). As part of our long-term program to develop
vinylogous iminum salt-based syntheses of natural products
containing the pyrrole group, some early synthetic interme-
diates were evaluated against tumor cell lines (Burnham et
al., 1998). Many of these compounds were highly active
against cancer cells, and some inhibited DNA synthesis with-
out binding directly to DNA (Gupton et al., 1999). Earlier
studies also provided clues to the design of pyrrole analogs
that might have potent antiproliferative activities and the
ability to bind to tubulin. The marine natural product luki-
anol A contains a highly oxygenated 3,4-diphenylpyrrole mo-
tif, and it potently inhibited the growth of the human KB
cancer cell line (Yoshida et al., 1992). Banwell and colleagues
(1997) suggested that lukianol A represented a configura-
tionally stable hybrid of combretastatin A-4 and colchicine.
We have synthesized another class of biologically interesting
pyrroles, which are somewhat related to the pyrrolomycin
natural products by virtue of their halogenated pyrrole back-
bone (Charan et al., 2006). Brominated analogs of previously
synthesized pyrroles were prepared, and they retained the
cytotoxic activity exhibited by the nonbrominated pyrroles
(Gupton et al., 2000). Whereas mechanistic studies indicated
that two of the brominated pyrrole compounds bound directly
to DNA, causing DNA cross-linking, the mechanisms of ac-
tion of other brominated pyrrole analogs remained unknown.
Based on the structural similarity of the compounds to com-
bretastatin A-4 and Banwell’s suggestion that several pyr-
role containing natural products represent stable hybrids of
combretastatin and colchicine, we examined the effects of
these brominated pyrroles on cellular microtubules. Several
of the brominated pyrrole analogs had microtubule-depoly-
merizing effects. The most potent was JG-03-14 (structure
shown in Fig. 1). JG-03-14 is structurally unique among
combretastatin-like compounds. It possesses a single highly
oxygenated phenyl group; other combretastatin analogs al-
ways possess two highly oxygenated phenyl groups. The
mechanisms of action of JG-03-14 were evaluated, and it was
found to be a potent antimitotic agent. Binding studies show
that JG-03-14 binds to tubulin within the colchicine site.

Modeling studies suggest that JG-03-14 represents a novel
chemotype for the colchicine site. Our studies indicate that
this compound has antitumor effects, and it represents a
promising lead for the generation of new analogs with impor-
tant biological properties.

Materials and Methods
Synthesis of JG-03-14. JG-03-14 was synthesized as described

previously (Gupton et al., 2000).
Cell Culture. MDA-MB-435 cancer cells were obtained from the

Lombardi Cancer Center of Georgetown University (Washington,
DC). The NCI/ADR cell line was obtained from NCI (Frederick, MD).
This cell line was previously called the MCF7/ADR cell line, but the
name was changed when it was determined that the cell line was not
derived from MCF-7 cells (Scudiero et al., 1998). The cancer cell lines
HeLa, PC3, and DU145 and the A-10 embryonic rat vascular smooth
muscle cell line were purchased from the American Type Culture
Collection (Manassas, VA). MDA-MB-435 and DU145 cells were
grown in IMEM Richter’s medium (BioSource International, Cama-
rillo, CA) with 10% FBS (Hyclone, Logan, UT) and 25 �g/ml genta-
micin sulfate. A-10 and HeLa cells were grown in basal medium
Eagle containing Earle’s salts, 50 �g/ml gentamicin sulfate, and 10%
FBS. PC3 and NCI/ADR cells were grown in RPMI 1640 (BioSource
International) containing 50 �g/ml gentamicin sulfate and 10% FBS.

Growth Inhibition Assay. The SRB assay was used to measure
the antiproliferative effects of JG-03-14 (Skehan et al., 1990; Boyd
and Paull, 1995). Cells were placed in 96-well plates at predeter-
mined densities and allowed to attach and grow for 24 h. The test
compounds were then added and allowed to incubate with the cells
for 48 h. IC50 values were calculated as described previously (Tinley
et al., 2003b).

Pgp Efflux Assay. Cell-based functional assays were used to
evaluate the ability of JG-03-14 to inhibit the efflux of the Pgp
substrates R123 or DiOC2(3) from NCI/ADR cells using the protocol
outlined in the Chemicon multidrug resistance direct dye efflux kit
(Chaudhary and Roninson, 1991; Minderman et al., 1996). NCI/ADR
cells (2 � 106 cells/ml) were incubated with 1 �g/ml DiOC2(3) for 15
min or with 10 �g/ml R123 for 30 min in ice-cold RPMI 1640 media
with 1% bovine serum albumin in the dark to load the fluorescent
dye into the cells. Dye efflux dependent on Pgp is temperature-
dependent, so an aliquot kept on ice provided a control for maximal
loading. Another aliquot of cells warmed to 37°C for 15 min without
test compound was used as a positive control for Pgp-mediated dye
efflux. This treatment resulted in a dramatic reduction in intracel-
lular fluorescence as measured by flow cytometry. The inclusion of
2.2 �M vinblastine in an aliquot of cells provided a positive control
for a known Pgp substrate that dramatically inhibited the efflux of
each of the fluorescent substrates. DiOC2(3) and R123 loaded cells
were also incubated with 5, 10, or 20 �M JG-03-14, and dye efflux
was evaluated by flow cytometry. Propidium iodide was used as a
counterstain in all cell aliquots.

Fig. 1. Structure of 3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-
carboxylic acid ethyl ester (JG-03-14).
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Indirect Immunofluorescence. The effects of JG-03-14 on mi-
totic and interphase microtubules and nuclear structures were ex-
amined in A-10 vascular smooth muscle cells and in HeLa cells. The
cells were treated for 18 to 24 h with a range of concentrations of
JG-03-14, and then the cells were fixed and microtubules visualized
using a �-tubulin antibody as described previously (Tinley et al.,
2003b). Centrosomes were visualized using a �-tubulin antibody, and
4�,6-diamidino-2-phenylindole was used to visualize DNA.

Cell Cycle Analysis. The effects of JG-03-14 on cell cycle distri-
bution were evaluated using flow cytometry. MDA-MB-435 cells in
log phase growth were treated with 50 to 75 nM JG-03-14 for 24 h.
The cells were harvested, stained with Krishan’s reagent (Krishan,
1975), and analyzed with a FACScan flow cytometer (BD Bio-
sciences, San Jose, CA). Instrument linearity was checked using
quality control samples. The cell cycle distribution data are pre-
sented as propidium iodide intensity versus the number of events.

Western Blotting. MDA-MB-435 cells in log phase growth were
treated for 24 h with 75 nM JG-03-14. Cells were lysed in cell lysis
buffer (BioSource) with protease inhibitors. Cell lysates containing
equal amounts of protein were separated by polyacrylamide gel
electrophoresis, and protein expression was determined by Western
blotting techniques. The Bcl-2 antibody was obtained from BD Bio-
sciences, and the p85 cleaved PARP antibody was purchased from
Promega (Madison, WI).

Tubulin Assembly in Vitro. The ability of JG-03-14 to alter
tubulin assembly was evaluated in a glutamate-based tubulin as-
sembly system. The reactions were conducted with purified bovine
brain tubulin (1.0 mg/ml; 10 �M), 0.8 M monosodium glutamate, pH
6.6, 0.4 mM GTP, and 4% (v/v) DMSO, with and without several
concentrations of JG-03-14, combretastatin A-4, or thiocolchicine.
Reaction mixtures were incubated for 15 min at 30°C without GTP to
allow drug binding. The mixtures were put on ice, GTP was added,
and the reaction mixtures were transferred to cuvettes and held at
0°C to establish baselines. After baselines were established, the
mixtures were warmed to 30°C, and turbidity was monitored at 350
nm as described previously (Hamel, 2003). Combretastatin A-4 was
kindly provided by Dr. G. R. Pettit, Arizona State University, and
thiocolchicine by Dr. A. Brossi, National Institute of Diabetes and
Digestive and Kidney Diseases (Bethesda, MD).

Inhibition of Colchicine Binding. The effects of JG-03-14 on
colchicine binding to purified tubulin were evaluated using a DEAE-
cellulose filtration assay (Borisy, 1972; Verdier-Pinard et al., 1998).
The reaction mixtures contained 1 �M purified bovine brain tubulin,
5% (v/v) DMSO, 5 �M [3H]colchicine, and a range of concentrations
of JG-03-14, combretastatin A-4, or thiocolchicine.

Antitumor Evaluations. The in vivo antitumor effects of JG-
03-14 were evaluated in a murine xenograft model using human
prostate PC3 cells. Six-week-old male nude mice (athymic NCr nu/
nu, homozygous; NCI) were injected unilaterally subcutaneously
in the flank with 1.3 � 106 PC3 cells mixed 50:50 with Matrigel
(Matrigel Basement Membrane Matrix; BD Biosciences) in 100-�l
volumes. The mice were monitored for 8 days after implantation for
tumor development. When tumors reached 0.2 to 0.5 cm3, mice
were randomly divided into control and treatment groups. Mice in
the treatment group were injected intraperitoneally with 200
mg/kg JG-03-14 in a volume of 50 �l. This concentration was
selected based on dose-tolerance testing. Twelve treatments were
given over 18 days, for a total dose of 2400 mg/kg. JG-03-14 was
solubilized in DMSO. Mice in the control group received 50 �l of
DMSO per injection. The trial was terminated on day 19 after
treatment initiation.

Molecular Modeling and Docking Studies. The X-ray crystal
structure of two �,�-tubulin heterodimers complexed with DMA-
colchicine and a stathmin fragment (PDB: 1SA0) was used for the
automated molecular docking of JG-03-14. Inconsistencies be-
tween the PDB format and the tubulin residues library transla-
tion to atomic potential types were corrected manually. Tubulin
was minimized using the DISCOVER (Accelrys, San Diego, CA)

program’s cff91 force field (Maple et al., 2004) with distance-
dependent dielectrics.

Molecular Docking and Minimization. At first, the JG-03-14
ligand was constructed using SYBYL7.0 (Tripos, Inc., St. Louis, MO)
and optimized with MP2/6-31G** basis set using the Gaussian 03
quantum mechanical program (Frisch et al., 2003). Docking experi-
ments were performed with the AutoDock 3.0.5 (Morris et al., 1999)
and FlexX programs (Rarey et al., 1996). In general, standard dock-
ing procedures were used. In the case of AutoDock, the torsion angles
for a protein and ligand were identified for 10 independent runs per
ligand. A grid of 60 � 60 � 60 points on the x, y, and z axes was built,
centered on the center of the mass of the JG-03-14 N atom in the
tubulin active site. A grid spacing of 0.4 Å and a distance-dependent
function of the dielectric constant were used for calculation of the
energetic map. The default settings were used for all other parame-
ters. At the end of the docking simulation, ligands with the most
favorable free energy of binding were selected as the best structures
for the ligand-tubulin complex. In the case of FlexX, all the param-
eters were used as in default settings, except that the number of
solution conformations was set to 90.

The best docked geometry for JG-03-14 was minimized using the
DISCOVER module of Insight II (Accelrys). A consistent valence
force field (cff91) was used. The cutoff for nonbonded interaction
energies was set to infinity (i.e., no cutoff) with the dielectric con-
stant set at 4 to account for the dielectric shielding found in proteins.
Each minimization was carried out in two steps, first using steepest
descent minimization for 200 cycles and then using conjugate gradi-
ent minimization until the average gradient fell below 0.01 kcal/mol.
All atoms within 6.0 Å of the inhibitor were allowed to relax during
the minimization, whereas those atoms beyond 6.0 Å were held rigid.

Molecular Dynamics Simulations. The minimized complex
was subjected to molecular dynamics simulations using the DIS-
COVER module of Insight II (Accelrys Inc.). Molecular dynamics
simulations performed in the NVE ensemble consisted of an initial
equilibration of 25 ps followed by a production run of 300 ps dynam-
ics at 300 K. The final complex structure at the end of the molecular
dynamics simulation was subjected to 2000 steps of steepest descent
energy minimization followed by conjugate gradient energy minimi-
zation. A distance-dependent dielectric constant and nonbonded dis-
tance cutoff of 12 Å were used. Molecular dynamics simulations were
also performed using the AMBER 8 package (Case, 2004) with the
general amber force field (Wang et al., 2004) and RMSD charge
models (Bayly et al., 1993).

Results and Discussion
A series of tetrasubstituted brominated pyrroles were syn-

thesized as part of a strategy for the preparation of haloge-
nated pyrroles based on natural products including the luki-
anols, lamellarins, ningalins, polycitones, and pyrrolomycins.
These compounds were evaluated for microtubule disrupting
effects, and JG-03-14 was found to have potent microtubule
depolymerizing activity. Earlier studies showed that JG-
03-14 had potent antiproliferative effects against mouse and
human leukemia cell lines (Gupton et al., 2000).

JG-03-14 Inhibits the Growth of Cancer Cell Lines
and Evades P-Glycoprotein-Mediated Drug Resis-
tance. The antiproliferative effects of JG-03-14 were evalu-
ated in several cancer cell lines, including a multidrug resis-
tant cell line, NCI/ADR, that has a high level of expression of
Pgp. Representative dose-response curves for the MDA-MB-
435 cell line, which has negligible levels of Pgp, and the
NCI/ADR line are shown in Fig. 2. The results show that both
cell lines were very sensitive to the antiproliferative and
cytotoxic effects of JG-03-14. Average IC50 values of 35.5 and
59.3 nM were obtained for JG-03-14 in the MDA-MB-435 and
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NCI/ADR cell lines, respectively (Table 1). A RR value of 1.7
was calculated by dividing the IC50 value of the multidrug
resistant cell line NCI/ADR by the IC50 value of the MDA-
MB-435 cell line. The 1.7 RR value indicates that JG-03-14 is
a poor substrate for transport by Pgp. Paclitaxel (Taxol), a
well-known substrate for Pgp, has an RR value in these cell
lines of 827 to 4050 (Tinley et al., 2003b; Weiderhold et al.,
2006). Further studies to evaluate the ability of JG-03-14 to
be a substrate for Pgp-mediated transport were conducted
using the NCI/ADR cell line. A flow cytometry-based assay
was used to evaluate the ability of JG-03-14 to inhibit the
efflux of two Pgp substrates, R123 and DiOC2(3). In contrast
to vinblastine, a known Pgp substrate, 5 to 20 �M JG-03-14
did not inhibit the efflux of either fluorescence Pgp substrate.
These data, together with the proliferation results in the
NCI/ADR cells, offer convincing evidence that JG-03-14 is a
poor substrate for transport by Pgp.

The antiproliferative effects of JG-03-14 were evaluated in
three other cancer lines, and the IC50 values are shown in
Table 1. The data indicate that JG-03-14 had potent antipro-
liferative activity against a range of tumor types, including
prostate cancer cell lines. JG-03-14 was also evaluated in the
NCI 60 cell line panel, and these studies showed that JG-
03-14 had broad antiproliferative and cytotoxic activities
against a wide range of cancer cell types. Non–small-cell lung
cancer cell lines and renal cancer cell lines were some of the
most sensitive in the NCI evaluation (data not shown).
JG-03-14 is a structurally novel pyrrole-derivative that
has potent antiproliferative actions against a wide range of
cancer cell lines, and it has advantages over other tubulin-
binding drugs in its ability to circumvent Pgp-mediated
drug resistance.

Effects of JG-03-14 on Interphase and Mitotic Micro-
tubules. The effects of JG-03-14 on cellular microtubules
were evaluated in cell-based phenotypic assays. JG-03-14
caused loss of interphase microtubules in A-10 cells and the
formation of structurally aberrant mitotic spindle structures.
The effects of JG-03-14 on interphase microtubules are
shown in Fig. 3. A-10 cells were used to investigate the effects
of antimitotic drugs on interphase microtubule structures
because, unlike cancer cells, vascular smooth muscle cells
largely arrest in the G1 stage of the cell cycle after treatment
with tubulin-binding antimitotic agents (Blagosklonny et al.,
2004). Vehicle-treated cells exhibited a normal array of in-

terphase microtubules that nucleate from the microtubule
organizing centers in the vicinity of the nucleus (Fig. 3A).
Treatment of the cells with JG-03-14 caused a concentration-
dependent loss of interphase microtubules. Microtubule loss
was first noted at the cell periphery in cells treated with 250
nM JG-03-14 (Fig. 3B). In cells treated with 500 nM JG-03-
14, there was a much greater loss of interphase microtubules.
At this concentration, a few short microtubule remnants
remained at the periphery of the cell, with more microtubules
in the region surrounding the nucleus (Fig. 3C). A 1 �M
concentration of JG-03-14 caused essentially total loss of
cellular microtubules, and yet the cell size was unchanged, as
occurs with other microtubule depolymerizers (Fig. 3D). A
second common characteristic observed with compounds that
bind to tubulin is their ability to induce micronucleation.
This also occurred with JG-03-14 treatment. Examples of
such cells are shown in Fig. 3, B and C, in which the outline
of the normal rounded nuclei or abnormal segmented micro-
nuclei can be seen.

In addition to disrupting interphase microtubules, micro-
tubule-depolymerizing agents cause the formation of abnor-
mal mitotic spindles (Tinley et al., 2003a; Weiderhold et al.,
2006). The effects of JG-03-14 on mitotic spindles were eval-
uated in HeLa cells. These cells arrest in the G2/M phase of
the cell cycle in response to tubulin-targeting antimitotic
agents. HeLa cells were treated for 18 h with a range of
concentrations of JG-03-14, and microtubules, centrosomes,
and DNA were visualized (Fig. 4). In vehicle-treated cells,
normal bipolar spindles radiating from centrosomes contain-
ing �-tubulin were observed (Fig. 4A). In JG-03-14-treated
cells, a variety of abnormal mitotic spindle structures was
seen, including cells with multipolar mitotic spindles (Fig.
4B). Among other aberrant mitotic spindles were circular
spindles (Fig. 4C) that typically occurred in pairs within
single cells. Abnormal mitotic spindles were also observed
in A-10 cells (data not shown). Such abnormal spindles
indicate that JG-03-14 probably interferes with normal
mitotic progression.

JG-03-14 Causes Accumulation of Cells in G2/M,
Phosphorylation of Bcl-2, and PARP Cleavage. A com-
mon effect of microtubule depolymerizing agents is their
ability to cause mitotic arrest by interrupting mitosis at the
metaphase to anaphase transition. The visualization of
highly aberrant mitotic spindles and the accumulation of
cells in metaphase suggested that JG-03-14 inhibited mitotic
progression. This was confirmed by measuring the effects of
JG-03-14 on cell cycle distribution. MDA-MB-435 cells were
treated with a range of concentrations of JG-03-14 for 24 h.

Fig. 2. Antiproliferative effects of JG-03-14 in cell lines with negligible
and high levels of Pgp. The antiproliferative effects of JG-03-14 were
measured using the SRB assay. The data represent the means of three
experiments � S.E.

TABLE 1
Antiproliferative effects of JG-03-14 as determined by the SRB assay
The IC50 values were calculated from the linear portions of the log dose response
curve for each of three experiments conducted, and the average values obtained are
presented � S.D. The relative resistance value was calculated by dividing the IC50
value of the drug-resistant cell line, NDI/ADR, by the IC50 value of the drug-sensitive
cell line, MDA-MB-435.

Cell Type IC50

nM

MDA-MB-435 35.5 � 0.16
NCI/ADR 59.3 � 3.2
HeLa 54.7 � 4.7
PC3 79.6 � 0.68
DU145 76.6 � 2.2
Relative resistance value 1.67
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The DNA content of vehicle-treated cells is shown in the top
left of Fig. 5A. G2/M accumulation was apparent in cells
treated with 50 nM JG-03-14, and a dose-dependent increase
in G2/M accumulation occurred with 60 and 75 nM concen-
trations. An abnormal, wide G1 peak was observed in cells
treated with 50 and 60 nM JG-03-14. This peak has been
referred to as an aneuploid G1 peak, and it occurs in cells
treated with low concentrations of microtubule stabilizers
(Chen and Horwitz, 2002) and some microtubule-depoly-
merizing agents (Weiderhold et al., 2006). At slightly
higher concentrations, there was no evidence of any G1

peak, and most of the cells were in the G2/M phase of the
cell cycle. These data confirm that JG-03-14 inhibits mi-
totic progression.

In addition to causing mitotic arrest, microtubule-interact-
ing agents initiate the phosphorylation of the antiapoptotic
protein Bcl-2 (Haldar et al., 1997). The ability of JG-03-14 to
cause Bcl-2 phosphorylation was studied. Treatment of cells
with 75 nM JG-03-14 caused the appearance of increasing
amounts of slower-migrating forms of Bcl-2, consistent with
its phosphorylation. The ability of JG-03-14 to initiate apo-

ptosis was evaluated by the appearance of the p85-cleaved
form of PARP. Full-length PARP is cleaved by activated
caspase 3 to form the p85 protein fragment. A 24-h incuba-
tion of MDA-MB-435 cells with 75 nM JG-03-14 caused a
large increase in the density of cleaved p85 PARP, consistent
with early activation of caspase 3 apoptosis pathways. The
ability of compounds to cause Bcl-2 phosphorylation and
initiation of caspase-dependent apoptosis are hallmarks of
tubulin-binding antimitotic compounds. The ability of JG-
03-14 to cause microtubule depolymerization, mitotic arrest,
Bcl-2 phosphorylation, and initiation of apoptosis are consis-
tent with a tubulin-binding antimitotic mechanism of action.

JG-03-14 Inhibits the Assembly of Purified Tubulin
and [3H]Colchicine Binding to Tubulin. To test the hy-
pothesis that JG-03-14 binds to tubulin, the effects of JG-
03-14 on purified tubulin polymerization were studied in an
in vitro tubulin assembly system. JG-03-14 caused a concen-
tration-dependent inhibition of tubulin assembly, with an
IC50 value for inhibiting tubulin assembly of 1.5 �M (Table
2). These data show that JG-03-14 at substoichiometric con-
centrations is a potent inhibitor of tubulin polymerization.

Fig. 3. JG-03-14 causes interphase
microtubule loss. The effects of JG-
03-14 on cellular microtubules were
evaluated using indirect immunofluo-
rescence techniques in A-10 cells
treated with DMSO (A), or JG-03-14
at 250 nM (B), 500 nM, (C) or 1 �M
(D).

Fig. 4. Effects of JG-03-14 on mitotic
spindles. HeLa cells were treated with
a range of concentrations of JG-03-14
for 18 h, and microtubules were visu-
alized with a �-tubulin antibody, cen-
trosomal structures were visualized
with a �-tubulin antibody and DNA
with 4�,6-diamidino-2-phenylindole.
Cells were treated with vehicle (A) or
10 nM JG-03-14 (B and C).
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The potency of JG-03-14 for inhibition of tubulin assembly
was comparable with that observed with two well-known
microtubule-depolymerizing agents, combretastatin A-4 and
thiocolchicine. These data confirm the conclusion from the
cellular studies that the antimitotic activity of JG-03-14 re-
sults from a direct interaction of the compound with tubulin
and that JG-03-14 acts as a microtubule-depolymerizing
agent.

The binding site of JG-03-14 on tubulin was investigated
by demonstrating that JG-03-14 potently inhibited the bind-
ing of [3H]colchicine to tubulin. As shown in Table 2, JG-
03-14 was somewhat more potent than thiocolchicine and
somewhat less potent than combretastatin A-4 as an inhibi-
tor of colchicine binding. Previous studies have shown that
both combretastatin A-4 and thiocolchicine bind to the col-
chicine site on tubulin (Lin et al., 1989). These data suggest
that JG-03-14 binds to tubulin within a site that overlaps the
colchicine binding site. The compound has activity as an
inhibitor of assembly and of colchicine binding comparable
with that of the highly potent agents combretastatin A-4 and
thiocolchicine.

In Vivo Antitumor Activity of JG-03-14. JG-03-14 was
a potent and effective inhibitor of cancer cell proliferation in
vitro. Therefore, studies were initiated to determine whether
it had antitumor effects. A human PC3 xenograft model was
used, in part because this cell line was sensitive to the anti-
proliferative effects of JG-03-14. Tumor cells were implanted
in a mixture of Matrigel, and, when the tumors were large
enough to be palpable, the mice were randomized into control
and treatment groups. Mice in the treatment group were

treated 12 times over a period of 18 days for a total dose of
JG-03-14 of 2400 mg/kg. Mice in the control group received
vehicle. The results demonstrate that systemic treatment of
the mice with JG-03-14 caused a marked reduction in the size
of the tumors measured at 14 days compared with the vehi-
cle-treated group (Fig. 6). These results show that JG-03-14
has antitumor effects and that it should be further evaluated
for antitumor actions.

JG-03-14 represents a new pharmacophore that can be
further explored to improve upon its biological properties and
to probe the colchicine-binding site. New compounds will be
designed to optimize tubulin binding and to improve aqueous
solubility. Better aqueous solubility will provide for more
flexibility for in vivo administration and testing.

Molecular Modeling of the Binding Mode of JG-03-14
to Tubulin. Molecular modeling studies, with automated
docking simulations, were conduced to further explore the
interaction between tubulin and JG-03-14. These studies pro-
duced several potential binding conformations of JG-03-14.
We compared all low-energy conformations of JG-03-14 gen-
erated in our studies with the bound conformation of DMA-
colchicine from the crystal structure (PDB: 1SA0). One mo-
lecular conformation of JG-03-14 was notably closer to the
DMA-colchicine conformation within the binding site (Fig. 7;
JG-03-14 carbons are depicted in white, and DMA-colchicine
carbons in green). It is interesting that in this model, the
three-dimensional arrangement of the dimethoxyphenyl
group of JG-03-14 occupies a space similar to that of the
trimethoxyphenyl group of the bound DMA-colchicine. This
overlapping ensemble was buried in the �,�-tubulin struc-

Fig. 5. JG-03-14 causes mitotic accu-
mulation, Bcl-2 phosphorylation, and
PARP cleavage. MDA-MB-435 cells in
log phase growth were treated with
vehicle or 50 to 75 nM JG-03-14 for
24 h, and the cell cycle distribution of
the cells was measured using flow cy-
tometry (A). The flow cytometry data
are presented as propidium iodide in-
tensity versus number of events. For
Western blots, MDA-MB-435 cells
were treated for 24 h with 75 nM JG-
03-14 and cell lysates made. Equal
amounts of protein were separated by
polyacrylimide gel electrophoresis
and transferred onto Immobilon P
membranes. The membranes were
probed with specific antibodies, as in-
dicated, for Bcl-2 (B) and cleaved
PARP (C).
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ture near the Cys-�241 residue (Fig. 8). The docking proce-
dure was validated by comparing the binding mode obtained
by docking known tubulin polymerization inhibitors, includ-
ing DMA-colchicine, podophyllotoxin, and combretastatin
A-4. The results were quantified in terms of both lowest
estimated energy of binding and RMSD between the binding
conformation predicted by our model and others reported
previously (Uppuluri et al., 1993; Bai et al., 1996; Nogales et
al., 1998; Ravelli et al., 2004; Kong et al., 2005; Lawrence and
McGown, 2005). In our docking simulations using AutoDock
and FlexX, we found that the dimethoxyphenyl moiety of
JB-03-14 was positioned similarly to that of the trimethoxy-
phenyl group of DMA-colchicine with an RMSD deviation of
0.35 and 0.66 Å, respectively. Finally, we selected the binding
mode predicted by AutoDock that was within 0.35 Å of the
trimethoxyphenyl group of DMA-colchicine.

Docking putative inhibitors in a rigid protein binding site
derived from a complex with another ligand may not predict
the correct binding mode. Furthermore, ligand binding can
cause a wide range of induced conformational changes in the
amino acid side chains of the protein. Thus, we further re-
fined the binding mode of JG-03-14 using MD simulations. At
first, the tubulin-JG-03-14 complex was subjected to energy
minimization to relieve any unfavorable interactions. The
minimized structure was then used as the initial input for a

MD simulation run of 300 ps, performed in the NVE ensem-
ble. Because the �,�-tubulin heterodimer is large, during the
simulation, residues within 20 Å of the ligand were allowed
to move, whereas all other residues were fixed. Low-energy
minimum structures were collected every 10 ps, giving a total
of 30 structures that were energy-minimized, and these were
further analyzed. To evaluate the readjustment of the active
site residues in the calculated tubulin-JG-03-14 complexes,
the RMSD between the atoms of the original tubulin-JG-
03-14 complex and the corresponding atoms of each calcu-
lated tubulin-JG-03-14 complex was determined. In the case
of backbone atoms’ superimposition, the RMSD was lower
than 0.5 Å, whereas for side chains, the maximum RMSD

TABLE 2
JG-03-14 inhibits tubulin assembly and �3H�colchicine binding to
tubulin
The effects of JG-03-14, combretastatin A-4, and thiocolchicine on tubulin assembly
were studied. IC50 values for inhibition were determined and are presented � S.D.
The effects of these compounds on �3H�colchicine binding were determined using 5
�M �3H�colchicine and 1 �M tubulin. Percentage of inhibition � S.D. is presented.
Combretastatin A-4 and thiocolchicine represent positive controls for both assays. At
least two experiments were performed in both assays with each compound.

Inhibition of
Tubulin Assembly
(10 �M Tubulin)

Inhibition of
�3H�Colchicine Binding

1 �M 5 �M

�M %

JG-03-14 1.5 � 0.2 49 � 3 84 � 0.6
Combretastatin A-4 1.3 � 0.08 83 � 2 97 � 2
Thiocolchicine 1.0 � 0.1 N.D. 67 � 0.07

N.D., not determined.

Fig. 6. Antitumor effects of JG-03-14 in a PC3 xenograft model. The
efficacy of JG-03-14 in a human prostate tumor was evaluated in a
human xenograft model. PC3 cells were mixed with Matrigel and then
implanted unilaterally into the flank of male nude mice. After tumors had
developed, the mice were randomly assigned to treatment and control
groups. Each mouse in the treatment group (n � 14) received a total dose
of 2400 mg/kg JG-03-14 over 18 days. The compound was administered
via intraperitoneal injections. Twelve treatments were given. Control
mice (n � 11) were treated with the vehicle.

Fig. 7. Root mean square fit of JG-03-14 (carbon atoms colored white)
with DMA- colchicine (carbon atoms colored green) inside the colchicine
binding site. �,�-Tubulin is represented by the electrostatic potential
surface (red atoms for negatively charged amino acids and blue atoms for
positively charged amino acids; yellow represents sulfur). In the two
ligands, oxygen atoms are shown in red, nitrogen in blue, sulfur in yellow,
and the bromine atoms of JG-03-14 in green.

Fig. 8. JG-03-14 bound to �,�-tubulin. The image shows a binding model
of JG-03-14 with both �-tubulin (colored brown) and �-tubulin (colored
yellow). The polypeptide backbones are rendered as ribbons. Interactive
residue side chains at the colchicine site (Cys-�241, Lys-�254, and Asn-
�101) and JG-03-14 are shown in stick rendering, with the carbon atoms
of tubulin colored green and the carbon atoms of the JG-03-14 colored
white. The yellow broken lines indicate potential intermolecular hydro-
gen bonds. Oxygen atoms are shown in red, bromine in magenta, nitrogen
in blue, and sulfur in yellow.
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found was approximately 1.1 Å. These data show that ligand-
induced conformational changes were small and more pro-
nounced for side chains than for the polypeptide backbone.
Finally, the global energy minimum of the 30 collected struc-
tures was selected as the preferred binding model.

Analyses of the 30 lowest-energy minima of JG-03-14
docked in the crystal structure revealed a potential H-bond
formed with Cys-�241 (residue numbering as in Ravelli et al.,
2004) and the dimethoxyphenyl moiety of the ligand. There is
also an H-bond in the starting complex structure between the
carbonyl group of JG-03-14 and Asn-�101. During the course
of the MD simulations, a resonating form representing a
bifurcated H-bond with two amino hydrogens of Asn-�101
was revealed. Furthermore, in the initial docking model, the
dimethoxyphenyl group of JG-03-14 did not form a H-bond
with Lys-�254. However after MD a H-bond was observed
between Lys-�254 and the oxygen atom of the dimethoxyphe-
nyl group of JG-03-14. This suggests that, although ligand-
induced conformational changes are small, such changes can
be critical to the protein active site side chains during ligand
binding. In the final model shown in Fig. 8, the hydrogen
bonds between JG-03-14 and tubulin are as follows: 1) the
dimethoxyphenyl group is hydrogen-bonded to the thiol
group of Cys-�241; 2) the carbonyl oxygen is hydrogen
bonded to the terminal NH of Lys-�254; and 3) the JG-03-14
side chain ethoxy oxygen forms a bifurcated H-bond interac-
tion with the NH2 of Asn-�101. We noticed that the molecu-
lar elements of the ligand connected to dimethoxyphenyl
group of JG-03-14 were positioned in a slightly different
location in the binding site than the molecular elements of
DMA-colchicine relative to the trimethoxyphenyl group. This
is due to the planar nature of the JG-03-14 compound; the
differing positions in the binding site were also the result of
the specific groups attached to the dimethoxyphenyl moiety.
We also observed that dimethoxyphenyl moiety was buried
well inside the hydrophobic pocket containing Val238,
Cys241, Leu242, Leu248, Ala250, Leu255, Ala317, Val318,
and Ala354 of �-tubulin. As shown in Fig. 8, the 4-methoxy
oxygen of the dimethoxyphenyl group engages in hydrogen
bonding to the Cys-�241 SH group. The methyl groups of the
dimethoxyphenyl moiety are oriented so that favorable hy-
drophobic interactions occur with the side chains of �-tubulin
residues Val238, Leu242, Leu248, Ala250, Leu255, Ala317,
Val318, and Ala354 located above and below the plane of the
phenyl ring. These interactions of the dimethoxyphenyl
group of JG-03-14 are similar to the interactions with tubulin
of the trimethoxyphenyl moiety of DMA-colchicine. This pro-
vides a reasonable explanation for the similarities between
the antimicrotubule activity of JG-03-14 in comparison with
that of thiocolchicine. However, the disubstituted pyrrole of
JG-03-14 attached to the dimethoxyphenyl moiety interacts
differently with tubulin than do rings B and C and the C-7
side chain of DMA-colchicine, and these structural elements
interact with both the � and � polypeptide chains. Further-
more, JG-03-14 is a planar compound, and its dimethoxyphe-
nyl moiety has a slight tilt of 13° relative to the trimethoxy-
phenyl moiety of DMA-colchicine. The existence of small
empty pockets on tubulin closer to the disubstituted pyrrole
moiety of JG-03-14 than to DMA-colchicine might allow for
an improvement in the interactions between pyrrole deriva-
tives and vacant regions of the binding site (Fig. 7), depend-
ing on specific substituents. The volume and topography of

these empty pockets in the colchicine site shown in Fig. 7
provide an opportunity to modify and optimize the substitu-
ent groups of the pyrrole for shape, size, and polarity to
maximize the interaction of ligands with the molecular sur-
face of tubulin. These molecular models will therefore be
used to design new analogs of JG-03-14 to optimize interac-
tions with tubulin.

Detailed docking and in silico modeling studies indicate
that the interaction of JG-03-14 with tubulin has unique
features, and this provides a novel view of how small mole-
cule inhibitors can interact within the colchicine site on tu-
bulin. The JG-03-14 binding model identifies new portions of
the tubulin heterodimer that may interact with small mole-
cules to disrupt microtubule actions. JG-03-14 represents a
new scaffold to use for the design and synthesis of compounds
that might have promising biological activities. Use of ana-
logs with slightly different binding properties might also help
decipher differences in the biological activities of various
colchicine site agents. In particular, studies with JG-03-14
and related compounds might provide important answers as
to the nature of the differences that colchicine site agents
show in their antimitotic, antiangiogenic, and antivascular
effects. Perhaps nuances in binding mechanisms initiate
varying downstream effects that culminate in different cel-
lular responses.
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