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Many hospitals face the problem of insufficient capacity to meet demand for inpatient beds, especially during demand
surges. This results in quality degradation of patient care due to large delays from admission time to the hospital until
arrival at a floor. In addition, there is loss of revenue because of the inability to provide service to potential patients.
A solution to the problem is to proactively transfer patients between floors in anticipation of a demand surge. Optimal
reallocation poses an extraordinarily complex problem that can be modeled as a finite-horizon Markov decision process.
Based on the optimization model, a decision-support system has been developed and implemented at Windham Hospital
in Willimantic, Connecticut. Projections from an initial trial period indicate very significant financial gains of about 1% of
their total revenue, with no negative impact on any standard quality of care or staffing effectiveness indicators. In addition,
the hospital showed a marked improvement in quality of care because of a resulting decrease of almost 50% in the average
time that an admitted patient has to wait from admission until being transferred to a floor.
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1. Introduction
Over the past 25 years, United States hospitals have been
subjected to significant transformations of the operating
landscape. The large-scale penetration of health mainte-
nance organizations in the early 1980s, the Emergency
Medical Treatment and Labor Act in 1986, and Medicare
reform associated with the Balanced Budget Act of 1997,
have limited the ability of hospitals to turn away patients
that are unable to pay for services, and have placed lim-
its on the amount hospitals are able to collect for the ser-
vices they provide. These changes have forced hospitals to
improve operating efficiency (Krein and Casey 1998). As a
result, hospitals have aggressively reduced inefficiencies by
cutting staff, managing length of stay, and finding innova-
tive ways to reduce incidental costs.
One side effect of these cost-containment efforts has

been a reduction in the number of inpatient beds for which
hospitals maintain staff and to which patients can be admit-

ted. The United States lost a total of 100,000 hospital beds,
including 7,800 intensive care beds between 1990 and 1999
(Kellerman 2001). The loss of inpatient beds has left many
hospitals with minimal surge capacity to handle spikes in
demand. The result is that beds are often in short supply,
and the problem is expected to get worse (Dodge 2001,
Solberg et al. 2003, Wilson 2001).
Emergency department (ED) overcrowding is another

undesirable result of insufficient floor capacity. In a March
2003 report (GAO 2003), the United States General Ac-
counting Office found that the factor most commonly asso-
ciated with crowding was the inability to move emergency
patients to inpatient beds, once a decision had been made
to admit them as hospital patients, rather than to treat and
release them. The impact on ED management is clear. As
the number of “boarding” patients who are waiting for beds
on their assigned floors increases, the resources available
to treat other ED patients are reduced, and eventually the
department ceases to function effectively. Often hospitals
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will then attempt to divert ambulances to other facilities
until some of the boarded patients are transferred out of
the ED, yielding a very significant negative outcome for
patients and the hospital. For patients, the effect of diver-
sion is a longer ambulance ride, which prolongs the delay
in receiving medical treatment. For the hospital, each ambu-
lance that is diverted represents lost revenue. In addition,
when the ED becomes overcrowded, patients with minor
complaints tend to leave the hospital before being seen by
a physician. In these cases, the hospital has missed the
opportunity to provide a service for which payment would
otherwise have been rendered.
An example of a hospital facing the problems delin-

eated above is Windham Community Memorial Hospital
(WCMH), located in Willimantic, Connecticut, and servic-
ing a surrounding community of approximately 100,000
people. Of interest here was that in 2004, when this study
was initiated, WCMH would often begin to experience
capacity-related problems that resulted in patients being
boarded in the ED for the short term, e.g., 4–6 hours, well
before all inpatient beds were utilized. As a result, delays
were incurred when a patient had to be transferred from
a given floor to make room for a new patient that could
only be assigned to that floor. These “last-minute” transfers
are often done under duress during critical “crunch” peri-
ods and are generally undesirable from the standpoints of
patient flow and quality of care.
The “bed manager” (decision maker) determines the ini-

tial assignments of patients to floors. Another task is to
determine when, and if, it is necessary to transfer patients
from one floor to another, even in noncrunch periods. While
it is generally undesirable to transfer patients after admis-
sion, it was determined that there was a critical need at
WCMH for an optimality-based decision-support system
(DSS) for the bed manager that would allow for preemp-
tive (prior to the occurrence of a demand surge) transfers of
patients between floors, and for the assignment of patients
to floors based partially on capacity considerations. For the
former, in-house patients are transferred for the purpose
of capacity reallocation (proactive transfer), as opposed to
as a “last-minute” immediate response to make room for
newly admitted patients (reactive transfer). For the latter,
even when beds are available on the “ideal” (based strictly
on floor specialization) floor, newly admitted patients may
be assigned to feasible “alternate” floors.
We modeled the problem of finding an optimal capacity

utilization strategy based on patient allocation as a mul-
tidimensional, discrete-time, finite-horizon Markov deci-
sion process. The model has been integrated into a DSS
that has been implemented and, based on an initial trial
period, is projected to result in very significant financial
gains of about $600,000 per year, or 1% of total revenue.
No negative impact resulted on any standard quality of
care or staffing effectiveness indicators. In addition, there
was a marked improvement in quality of care because of
a resulting decrease of almost 50% in the average time

that an admitted patient has to wait from admission until
being transferred to a floor. Based on this success, WCMH
decided to create an “operations manager” position, to be
filled by an individual who will work with the system and
will also identify other opportunities to improve patient
flow and hospital efficiency.

1.1. Overview

Many hospitals maintain a myopic strategy of assigning
admitted patients to their “ideal” floors, based on diagno-
sis, as long as there are available beds on those floors.
Although this strategy works well in many cases, when
capacity is limited it can result in patient flow bottlenecks
that have a number of negative quality of care and financial
implications.
In hospital settings, the general overall problem is quite

complex. Departures must be considered as well as arrivals,
and the number of floors and patient categories could be
large. Although techniques have been developed for solving
stochastic sequential decision problems, the basic problem
presented here is challenging for a few reasons:
1. There generally are a large number of different patient

categories and floors, depending on the size of the hospital
and the range of diagnoses it can treat.
2. The number of possible actions/policies to consider is

very large.
3. Random events such as patient arrivals and departures

depend on patient category, type of floor, and the current
state of the hospital, and are often nonhomogenous with
respect to time of day, day of week, and season of the year.
4. The amount of time available to reach a decision is

fairly short, i.e., typically less than five minutes.
In this paper, we develop and implement a solution

methodology that addresses those issues. The remainder
of this paper is organized as follows. First, we define the
main problem under consideration in §2. In §3, we model
the problem as a finite-horizon Markov decision process
(MDP) and study the computational complexity of find-
ing an optimal solution to the MDP and conclude that
traditional approaches are not practical for this problem.
In §3.7, we present an original approximation methodol-
ogy that relies on event aggregation to find an approxi-
mate decision rule solution to the MDP. Section 4 deals
with several issues related to the implementation of our
approximation methodology in general, and we describe the
“rolling-horizon” algorithm used to implement a DSS based
on the MDP model. Section 5 describes our computational
experience, and §6 presents the details of the implementa-
tion of the DSS at WCMH, including anecdotal experience,
managerial insights, and an analysis of the impact on the
hospital.

1.2. Literature Review

The related problems of hospital and ED crowding have
been addressed from clinical and managerial viewpoints
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by health care researchers. Medical researchers have found
that diverting ambulances significantly lessens the availabil-
ity of ambulances for patients in need of medical treatment
(Eckstein and Chan 2004). This diversion of ambulances
has been found to be primarily due to holding admitted
patients in the ED (Schull et al. 2003). The quality of care
and financial impact of holding patients in the ED have
been found to be significant for patients with chest pain
(Bayley et al. 2005) and those in need of thrombolytic ther-
apy (Schull et al. 2004).
Efforts to alleviate the ED crowding problem have

largely focused on reducing the amount of time required
to provide emergency services. Examples include bedside
registration (Parker 2004) and applications of simulation
and queueing theory to identify and eliminate bottle-
necks within the ED (Litvak et al. 2001). Other strate-
gies designed to move admitted patients out of the ED as
quickly as possible include faxing patient condition reports
to the floors (Caissie 2004) and admitting patients to hall-
ways (Derlet and Richards 2000). These efforts, while
achieving some success in ensuring that patients in need
of emergency medical treatment are able to receive it, have
had little effect on the waiting time before moving admitted
patients from the ED to the floors.
The OR/MS literature contains a long history of research

devoted to solving assignment/allocation problems in the
health care and emergency services settings. For a sum-
mary of applications of OR/MS to problems found in the
emergency services setting, see Green and Kolesar (2004).
In addition, a history of the applications of OR tech-
niques to problems in the health care industry can be found
in Flagle (2002). The application of OR techniques to
health care problems also received considerable attention in
Brandeau et al. (2004). Nevertheless, none of these models
can be directly used in our situation due to characteristics
of the problem that are formalized later in the paper.
There has also been a substantial amount of work address-

ing the fundamental problem of assigning different “jobs”
to different “stations” when the number of jobs (patients
in our case) and/or the amount of resources (beds) avail-
able to complete each job is unknown. In general, when the
randomness arises from either the number of jobs or the
amount of resources available, but not both, the problem
is typically modeled as a stochastic generalized assignment
problem (SGAP), e.g., see Albareda and Fernandez (2000)
and Mine et al. (1983). To the best of our knowledge, there
are no known exact results or algorithms for the SGAP.
When both the number of jobs and the amount of

resources available are random, queueing theory is typically
used. Queueing theory has been extensively researched and
applied in health care scenarios such as clinics (Cox et al.
1985), hospital appointment systems (Jackson et al. 1964),
and operating room staffing (Tucker et al. 1999). In these
cases, the stochastic processes and the problem structures
were amenable to established queueing models. Specifi-
cally, the arrival of all patients was assumed to follow a

Poisson process, all patients were treated as identical in
terms of service time, and no distinctions were made in
terms of the clinical requirements of the patients. Recent
work on the scheduling of emergent and elective surgeries
(Gerchak et al. 1996) and emergent and elective radiology
cases (Green et al. 2006) are related to the problem we
address in that multiple classes of demand are considered.
Despite some similarities, our problem incorporates many
other characteristics that render inappropriate the modeling
assumptions made in those references. It is pointed out by
Green and Nguyen (2001) that to understand the impact
on patient service, more sophisticated methodologies are
needed to support decisions that involve bed capacity and
organization. The goal of this paper is to develop a method
to improve the efficiency of capacity allocation.

2. Problem Definition
The number of floors in a hospital is very small compared
to the possible number of characteristics of the patients
that it serves. There exists a standard grouping terminol-
ogy called “diagnostic related group” (DRG) that is based
on diagnosis upon admission. However, there are over 500
possible DRGs, so that using them as the basis for opti-
mization models results in inordinately large problems.
Instead, we partition the set of DRGs into “categories”
according to three parameters: (1) the set of floors that
can treat the patients; (2) the “ideal” (to be expanded on
later in the paper) floor for the DRG; and (3) the expected
lengths of stay of the patients. Then, within a category
DRGs must be identical in the first two parameters, and
very similar in the third. In the WCMH implementation,
we used 12 patient categories because that was the mini-
mum number that satisfied the above criteria. All patients
are considered to have arrived to the system as soon as they
are admitted to the hospital. Once admitted, patients wait
to be assigned and then transported to floors.
In our model, the system state at any point in time is

represented, for each patient category, by the number wait-
ing and the number being cared for on each floor. The
patient interarrival times to the system, and the number of
patient departures during a given time interval from the
hospital, are random and dependent on the patient category,
floor assigned, and the time dimension. The parameters of
the arrival and departure distributions are based on actual
historical data at the hospital rather than following any pre-
determined distributions. Patient interarrival times are inde-
pendent of the number of departures.
The bed manager observes the state of the hospital after

a fixed-length time interval (period), records the number of
patient arrivals and departures during the period, and makes
assignment and transfer decisions. Because of capacity con-
straints, some admitted patients may not be assignable at
that time, and would have to wait until the next period
before assignment to any floor. The problem is to deter-
mine the best patient assignment and transfer decision in
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terms of immediate assignment rewards and transfer costs
incurred from making the decision, and in terms of long
term future expected rewards and costs.

2.1. Staff and Quality of Care

In any hospital, one measure of quality of care is based on
predefined maximum ratios of patients-to-staff and patients-
to-licensed-staff. Staff arrivals and departures exhibit much
less variability than those associated with patients and are
assumed known in advance. Staff members (e.g., registered
nurse, nurse’s aide, etc.) can always be deterministically
assigned so as to satisfy these ratios, which is possible
because the number and type of staff of the hospital are
already set up to correspond to the bed capacity on each
of the floors. In the short term, it is always true that safe
staffing can be met, even if a manager or supervisor must
step in. Furthermore, as a general rule the hiring strategy of
a hospital is to obtain enough staff to run a floor at maxi-
mum capacity if needed. In the case of a long-term inability
to maintain full staffing levels (injuries, vacations, etc.), the
ratios can be satisfied by adjusting the capacities of the
floors. For example, if the bed manager knew that for sev-
eral weeks she would not be able to staff more than four
nurses on a floor where the ratio is one nurse for every two
patients, she could temporarily reduce the capacity of the
floor to eight beds from its present level during that period.
Hence, as long as patients are on the floors, proper care
will be provided and we do not explicitly consider staff
allocation as part of our model.

3. Model Formulation and Notation
We model the allocation problem as a finite-horizon, dis-
crete-time, stationary MDP. Time is split into fixed-length
intervals (periods). The state of the process is observed at
the beginning of a period, and a decision is chosen from
a finite set of possible decisions. An immediate cost is
incurred depending on the state and decision, which deter-
mine the transition probabilities for the next state. That
state is realized at the end of the period, the process state
is updated, and the procedure repeats.

3.1. Notation Summary

We give the essential notation for various sections of the
paper:

Parameters
cj : maximum capacity of floor j;
F : index set of floors;
Q: index set of patient categories;
Fi: index set of feasible floors for patients of category i

(Fi ⊂ F );
aij : reward from assigning a category i patient to floor j;
bijk: cost of a category i patient transfer from floor j to

floor k.

State Space
m: number of time periods in the process;

M : index set of the time periods (M = �1�    �m�);
t: time period index (t ∈M);

xij : number of category i patients on floor j;
xi0: number of category i admitted patients not yet on any

floor;
X: matrix of xij values;
S: state of the process (S �= �X� t�).

Random Variables
git: number of category i patient arrivals during period t;
dijt: number of category i patient departures from floor j

during period t;
G: matrix of git variables;
D: array of dijt variables.

Decision Variables
yi0j : number of category i nonassigned patients to be

assigned to floor j;
yijk: number of category i patients to be transferred

from floor j to floor k;
Y : array of decision variables;

��S�: set of feasible decisions for a given state S;
C�Y �: total cost associated with decision Y .

Objective Values
Vn�S�: minimum expected n-stage cost in state S;
�Vn�S�: approximation based on simulation;
�Vn�S�: approximation based on simulation and simplified

state space.

3.2. Process State

We consider a decision process with a finite time horizon
divided into m time periods of constant length. The tran-
sition probabilities of the embedded Markov chain might
vary from time period to time period, but they cycle with
respect to m. That is, the transition probability from state A
to state B is the same during periods t� t + m� t + 2m�
etc. Hence, we have a stationary MDP where the period
index t is part of the state definition. To capture the intra-
day, intraweek, and seasonal fluctuations in patient arrival
and departure rates, we must allow for this m-period time
frame to be very large, perhaps spanning an entire year.
The state of the process then depends on the number of
patients on the floors, the number of patients admitted but
not yet on any floor, and the time. Thus, the state of the
process is S �= �X� t�.

3.3. Constraints on Decision Variables

As indicated earlier, there will generally be restrictions on
the floors to which different categories of patients can be
assigned. Among feasible floors it is generally more desir-
able to assign a patient of a given category to one floor
than another. The preference ranking of multiple feasible
floors for a given patient category is achieved by setting
assignment costs, a topic that is discussed in §3.4. All floors
other than the unique lowest cost (“ideal”) floor are called
“alternate.”
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For a state S = �X� t�, decision variables in Y must
satisfy:
• Patients Waiting:∑

j∈F
yi0j � xi0� i ∈Q (1)

• Floor Capacity:
∑
i∈Q

(
xik + yi0k +

∑
j∈F

yijk −
∑
j∈F

yikj

)
� ck� k ∈ F  (2)

• Nonnegativity:
yi0k � 0� yijk � 0� i ∈Q� j� k ∈ F  (3)

• Patient Restrictions:
yi0k = 0� yijk = 0� i ∈Q� j ∈ F � k ∈ F \Fi (4)

The set of decision rules, formalized in §4.3, satisfying
(1)–(4) for a state S, are called “feasible,” and are denoted
by ��S�.

3.4. Stage Cost

Once a feasible decision Y has been made at the beginning
of a period, there are a number of resulting expected costs
and rewards. First, there is an expected positive reward aij
to the hospital of assigning a category i patient to floor j .
For this work, aij is the expected financial gain from treat-
ing a patient of category i scaled to reflect the desirability
of floor j . The nonnegative parameter bijk represents the
intrinsic undesirability of the transfer of a category i patient
from floor j to floor k. Then, the stage cost associated
with Y is

C�Y � �=∑
i∈Q

∑
k∈F

(
−aikyi0k +

∑
j∈F

bijkyijk

)
 (5)

3.5. Transition Probabilities

For every patient category, there are two possible random
events—new arrivals and departures from floors. Both event
types depend on the time period. It is natural to assume
that entries of G �= �git� are statistically independent of
each other. Similarly, the entries of D �= �dijt� are assumed
statistically independent of each other and of the entries
of G, but are clearly dependent on the state matrix X.
Let S �= �X� t� be the current state, Y ∈��S� the chosen

decision array, and �S �= � �X� t̂� the state after arrivals and
departures occur. State �S is updated as follows:

x̂i0 = xi0 + git −
∑
k∈F

yi0k� i ∈Q� t ∈M� (6)

x̂ij = xij −dijt + yi0j +
∑
k∈F

�yikj − yijk��

i ∈Q� j ∈ F � t ∈M� (7)

t̂ =


1 if t =m�

t+ 1 if t <m
(8)

The transition probability from S to �S, given deci-
sion Y , is

PS �S�Y �=
∏
i∈Q

�

{
git = x̂i0 − xi0 +

∑
k∈F

yi0k

}

·∏
i∈Q

∏
j∈F

�

{
dijt =−x̂ij + xij + yi0j +

∑
k∈F

�yikj − yijk�

}


(9)

Here the values of git and dijt in (9) are the possible
numbers of arrivals and departures that respectively must
have occurred to permit the transition from the state S to
the state �S� given that the decision Y has been made.

3.6. Objective Function

Our objective is to find a decision rule that minimizes the
sum of the immediate cost and the subsequent expected
costs that result from the future evolution of the process.
Let Vn�S� be the minimum expected cost for an n-stage
problem (evolving for n time periods) that starts in state S.
We have

V1�S�= min
Y∈��S�

C�Y �� (10)

Vn�S�= min
Y∈��S�

{
C�Y �+∑

�S
PS �S�Y �Vn−1� �S�

}
� n>1 (11)

With respect to the complexity of solving Vn�S� for a
given state S = �X� t�, note that for n = 1 the computa-
tion of V1�S� reduces to solving a single-commodity mini-
mum cost flow problem without directed cycles of negative
cost and can be readily solved in polynomial time on the
sizes of Q and F as a linear program subject to con-
straints (1)–(4). On the other hand, the complexity of com-
puting Vn�S� for n> 1 depends on the size of the decision
space ��S� and the number of states �S in (11) which in
some cases can be infinite or finite but with exponential
growth in the size of Q and the number of stages. Hence, as
n grows, the exact computation of Vn�S� becomes impracti-
cal for traditional methods such as dynamic programming.
In the online supplement, we elaborate on the complex-
ity issues. An electronic companion to this paper is avail-
able as part of the online version that can be found at
http://or.journal.informs.org/.

3.7. Approximation Methodology

To approximate Vn�S�, we use random sampling to estimate
the expectation term∑
�S
PS �S�Y �Vn−1� �S�

Concretely, let �G1�D1��    � �G$�D$� be a sample of i.i.d.
random variables for a given state S. Then, we approximate
Vn�S� using �Vn�S�, where
�V1�S� �= min

Y∈��S�
C�Y �= V1�S�� (12)

�Vn�S� �= min
Y∈��S�

{
C�Y �+ 1

$

$∑
i=1

�Vn−1� �Si�
}
� n > 1� (13)

and �S1�    � �S$ are the corresponding updated states.
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Before we study the convergence of �Vn�S�, we intro-
duce some additional notation. Consider the following
definitions:

Ai �=max
j∈F

�aij�� i ∈Q� (14)

ĝit �=E�git�� i ∈Q� t ∈M� (15)

'it �=E�max�git� ĝit��� i ∈Q� t ∈M� (16)

(2
it �=Var�max�git� ĝit��� i ∈Q� t ∈M (17)

Let

s�t� �= 1+ �t− 1�modm for all t ∈M

denote the successor function modulo m. Let s0�t� �= t,
t ∈M , denote the identity function on M . For * > 0, we
introduce the notation

s*�t�= s�s*−1�t��

Using this notation, we state the following bounds on
Vn�S�. (Proofs are found in the online supplement.)

Proposition 1. The following bounds hold for all states
S = �X� t� and n� 1�

−∑
i∈Q

Aixi0 −
∑
i∈Q

n−2∑
*=0

Aiĝis* �t� � Vn�S�� 0

A similar argument to the proof of Proposition 1 can be
used to show analogous bounds for �Vn�S� in the following
proposition.

Proposition 2. The following bounds hold for all states
S = �X� t� and n� 1�

−∑
i∈Q

Aixi0 −
∑
i∈Q

n−2∑
*=0

$∑
l=1

1
$*+1

Aig
l
is* �t� �

�Vn�S�� 0�

where glis* �t�, l= 1�    � $, are the realizations of the $ ran-
dom variables in each of the samples corresponding to each
period t� s�t��    � sn−2�t�, and each category i ∈Q.

Using Proposition 1, we establish the following result
concerning the convergence of �Vn�S� to Vn�S� as the sam-
ple size $ increases.

Proposition 3. Let , > 0, 0<-< 1, and S = �X� t� be a
given state. Then,

���Vn�S�− �Vn�S��< ,�� 1−- (18)

for all

$ �
1
-,2

((∑
i∈Q

Aixi0 +
∑
i∈Q

n−1∑
*=1

Aiĝis* �t� +
∑
i∈Q

Ai'it

)2

+∑
i∈Q

A2
i (

2
it

)
 (19)

One important implication of Proposition 3 is that the
sample size needed to achieve good approximations is inde-
pendent of the decisions that are made. The result also
implies that �Vn�S� converges in probability to Vn�S� as
$ → � and so, �Vn�S� is a consistent estimator of Vn�S�.
On the other hand, the term 1/- in the bound (19) that
originates from using Chebyshev’s inequality in the proof
of Proposition 3 yields very large values of the sample size
$ to obtain reasonable approximations. The bound can be
improved by using the central limit theorem because for
large $ we can easily modify the proof of the proposition
to obtain an approximate bound

$�
z2-/2

,2

((∑
i∈Q

Aixi0+
∑
i∈Q

n−1∑
*=1

Aiĝis* �t�+
∑
i∈Q

Ai'it

)2

+∑
i∈Q

A2
i (

2
it

)
�

where z-/2 satisfies the equation 0�z� = 1 − -/2 and
0 is the distribution function of a standard normal random
variable.

4. DSS Specification
We provide details about how the solution algorithm
described above was incorporated into a DSS. In particu-
lar, we indicate how to simplify the decision space under
the conditions of a typical hospital, how to implement a
“rolling-horizon” algorithm to provide timely recommenda-
tions to the bed manager, and provide details on the compu-
tation of probabilities for the random variables considered
in the hospital model.

4.1. Probability Computation

The number git of category i patient arrivals for a given
state S = �X� t� is assumed to have an aggregated Poisson
distribution with parameter 1it . Note that 1it is the average
number of category i patients who arrive during the time
interval between periods t and s�t�, where as before s�t�=
1+ �t−1�modm. To compute 1it , we partition the interval
between periods t and s�t� into 2 subintervals. We assume
that the arrivals during each subinterval follow a Poisson
distribution with rate 1�j�

it for j = 1�    �2. Hence,

1it =
2∑

k=1
1
�j�
it 

The use of such an aggregated Poisson distribution for
patient arrivals fits the observed behavior at WCMH very
well.
For departure variables dijt given state S, we assume that

each variable follows a binomial distribution with param-
eter pair �pijt� xij �. The parameter pijt denotes the proba-
bility of a category i patient departure from floor j during
period t. To compute the parameter pijt , we use a method
similar to that used for the arrivals. We partition the interval
between periods t and s�t� into 2 subintervals. We denote
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by p�k�
ijt the probability of one departure during the kth sub-

interval, and then we set

pijt �= 1−
2∏

k=1
�1−p

�k�
ijt �

All of the parameters are readily estimated from histori-
cal data and/or forecasting methods. Moreover, note that in
this case

ĝit = 1it�

'it � 21it�

(2
it � 1it�31it + 1��

for all i ∈Q and t ∈M . Hence, based on bound (19) from
Proposition 3, we obtain the following corollary.

Corollary 4. Let , > 0, 0 < - < 1, and S = �X� t� be a
given state. Then,

���Vn�S�− �Vn�S��< ,�� 1−- (20)

for all

$ �
1
-,2

((∑
i∈Q

Aixi0 +
∑
i∈Q

n−1∑
*=1

Ai1is* �t� + 2
∑
i∈Q

Ai1it

)2

+∑
i∈Q

A2
i 1it�31it + 1�

)
 (21)

Bound (21) can be easily computed from the data and
problem parameters corresponding to the WCMH case. As
remarked before, bound (21) can be improved to

$ �
z2-/2

,2

((∑
iQ

Aixi0 +
∑
i∈Q

n−1∑
*=1

Ai1is* �t� + 2
∑
i∈Q

Ai1it

)2

+∑
i∈Q

A2
i 1it�31it + 1�

)

for large $. For example, using this bound with the
data provided by WCMH, we can show that the rela-
tive error between V2�S� and �V2�S� is no more than 34%
with approximately 99% probability for a sample size of
$ = 500. Also, for the same sample size, the relative error
between V2�S� and �V2�S� is no more than 17% with
approximately 80% probability.

4.2. Real-Time DSS

The real-time DSS operates by solving the approximation
�V2�S� to the dynamic programming formulation (10)–(11)
on a “rolling-horizon” basis, according to the following
algorithm. Given state S and sample size $ � 1, we generate
a random sample �G1�D1��    � �G$�D$�. Then, we choose
any Y ∗ such that

Y ∗ ∈ argmin
Y∈��S�

{
C�Y �+ 1

$

$∑
i=1

�V1� �Si�
}


The decision is applied in real time to the current state S.
Next, the decision maker waits for an interval of time dur-
ing which realizations of G and D are observed. At the end
of the interval, the state is further updated by adding the
changes that occurred corresponding to �G�D� to yield a
new state �S. Then, the algorithm is reapplied to the updated
state �S.
In our computations, the interval between periods t and

s�t� is eight hours long. In computing the distributions for
G and D, we partition the eight-hour interval into 2= 32
subintervals of 15 minutes each. Using our real-time algo-
rithm every 15 minutes, a decision Y is computed and
applied. Time intervals of 15 minutes were chosen to strike
a balance between providing the DSS enough time to arrive
at a “good” recommendation, while avoiding long periods
of computational time that would introduce another bottle-
neck to the patient flow process. In addition, eight hours is
a sufficiently long planning horizon to allow for a reason-
able probability of random events occurring, while short
enough to keep the process under control.

4.3. Further Simplification Using Decision Rules

In using �Vn�S� to approximate Vn�S�, one advantage is that
the term
$∑

j=1
�Vn−1� �Sj�

is easier to compute when the number of scenarios �Sj is
not very large. However, the computational complexity of
the algorithm will depend on the size of the decision space
��S�. Using (1), there are at least

∏
i∈Q

(
xi0 + �F \Fi�

�F \Fi�

)

feasible solutions to consider, which could be large even
for small xi0.
In a typical hospital like WCMH, the following can be

assumed to be true:
1. If floor j∗ ∈ Fi is ideal for category i patients, then aij∗

is significantly larger than alj∗ for any category l patient
for which floor j∗ is alternate.
2. Under the same conditions, aij∗ is also significantly

larger than the cost blj∗k of transferring out a category l
patient for which floor j∗ is alternate.
Under those assumptions, for each i ∈ Q there exists a

unique index ji ∈ Fi such that

Ai = aiji �

where Ai is as defined in (14). Floor ji is the ideal floor
for category i patients. In addition, we can partition the
set of categories into subsets Qj for all j ∈ F . Each subset
Qj corresponds to the categories for which floor j is ideal;
that is,

Qj �= �i ∈Q� ji = j� (22)

Using this partition, we are able to prove the following
statement.
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Proposition 5. Let - be such that 0<-< 1 and

4j �= �1− �1−-�1/�$�F ���−1 max
t∈M

{∑
i∈Qj

ĝit

}

for all j ∈ F . If state S = �X� t� is such that

cj −
∑
i∈Q

xij −
∑
i∈Qj

xi0 � �n− 1�4j (23)

for all j ∈ F , then with probability at least

�1−-��$
n−1−1�/�$−1�

the approximation �Vn�S� achieves its lower bound from
Proposition 2 and the greedy solution Y given by yi0ji �=
xi0, yi0j = 0 for j �= ji, and yijk = 0 is optimal for �Vn�S�.
In other words, if all the floors have enough excess

capacity for a given state S (condition (23)), then it is opti-
mal to assign all patients currently waiting to their ideal
floors. The factor �1− �1−-�1/�$�F ���−1 in the definition of
4j grows fast as - approaches zero. To improve the result,
note that in the DSS the variable

∑
i∈Qj

ĝit has Poisson
distributions with parameter

∑
i∈Qj

1it . When the Poisson
parameter is large (like in the WCMH case), the central
limit theorem can be used to approximate the Poisson dis-
tribution with a Normal distribution with mean and vari-
ance equal to the Poisson parameter. Hence, we can obtain
a similar result to Proposition 5 by using

4j =max
t∈M

{∑
i∈Qj

ĝit + z5/2

(∑
i∈Qj

ĝit

)1/2}
� (24)

where 5 = 1 − �1 − -�1/�$�F ��. For example, for the case
n= 2, 1−-= 099, and using a sample size of $ = 500 we
have z5/2 ≈ 4. Hence, if the residual capacity of floor j is
greater than the corresponding 4j for all j ∈ F , the greedy
solution is optimal for �V2�S� with probability at least 0.99.
Note that the numbers 4j do not depend on the state S.

For a given floor, we use the term “primary” patients to
refer to those patients for whom the floor is ideal, while
all other patients for whom the floor is feasible are labeled
“secondary.” Hospital regulations establish that a number of
beds on each floor should be reserved for primary patients
(so-called “crash beds”).
Therefore, the decision space can be reduced to only

those decisions in ��S� that obey the above rules. More
precisely, we define a decision rule as a function f assign-
ing one and only one decision f �R� �= Y ∈ ��S� for a
given rule-parameter R, where R �= �rjl� is an �F � × 3
matrix such that rj1 � rj2 � rj3 for all j ∈ F . Ideally, we
would choose the rj3 values to be the 4j values from Propo-
sition 5 or from (24), but in practice those values are too
large or imprecise. Hence, we let the rj3 vary as part of a
decision rule. The process of assigning a decision Y for a

given matrix R is done in three consecutive steps: proactive
transfer; primary assignment; and secondary assignment.
In proactive transfer, we transfer secondary patients from

a floor j in which there are fewer than rj2 beds available to
another floor in which there are more than rj3 beds avail-
able. When there is more than one transfer floor option, the
floor with the lowest transferring cost is chosen. The objec-
tive is to increase the capacity in each floor for potential
or currently waiting primary patients. In primary assign-
ment, patients currently waiting are assigned to their cor-
responding ideal floors as long as floor capacities permit.
If there are floor conflicts among primary patients, those
with the highest assignment reward have priority. Finally,
in secondary assignment, all remaining waiting patients
are assigned to floors with at least rj1 beds of remaining
capacity, where we again resolve floor-conflict assignments
according to the highest assignment reward. The details of
the assignment algorithms for each of the three steps are
given in the online supplement.
When rj2 = 0, no proactive transfers occur out of floor j .

Further, when rj1 = 0, no bed reservation occurs for pri-
mary patients on floor j . The current decision rule used at
WCMH corresponds to R = 0, that is, it includes neither
proactive transfers nor bed reservations.
In practice, we only consider a finite set ��S� of rule-

parameter matrices and the following approximation:

�V2�S� �= min
R∈��S�

{
C�f �R��+ 1

$

$∑
j=1

V1� �Sj�
}


It is not difficult to show that Proposition 3 still holds if
we replace �V by �V .
Accordingly, we obtain the following revised real-time

algorithm.

Algorithm 1. Given state S and sample size $, execute
the following sequence:
min←�,
Generate a random sample �G1�D1��    � �G$�D$�,
for all R ∈��S� do
s← 0,
for j = 1�    � $ do
Update S using f �R� and �Gj�Dj� to yield �Sj ,
s← s+V1� �Sj�,

end for,
if C�f �R��+ s/$ <min then
min←C�f �R��+ s/$,
�R←R,

end if,
end for,
return �R.

4.4. Approximation Algorithm Performance

To compare the performance of the solutions obtained
from our approximation algorithm to the optimal solutions,
we designed a simulation in a simplified hospital setting.
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Because obtaining optimal solutions for problem instances
of a realistic size is very time-consuming, we were restricted
to exploring relatively small problem instances. In this case,
we consider a hospital defined by the following parameters:
F = �1�2�3�; Q = �1�2�3�; F1 = �1�2�3�; F2 = �1�2�3�;
F3 = �3�; cj = 3� j ∈ F ; bijk = 200� i ∈Q� k ∈ Fi. We set the
assignment rewards to

�aij �=



1�000 900 900

900 1�000 900

— — 1�000


 

We assumed arrival rates of three, two, and one patients
per day for the Poisson processes associated with each
of the three categories of patients, respectively. Hence,
because a 24-hour day has 96 15-minute intervals, we use
11t = 3/96, 12t = 2/96, and 13t = 1/96 for all t. Finally,
we assumed that the length-of-stay for all patient categories
has a Poisson distribution with average of one day per
patient. Therefore, pijt = 1− exp�−1/96� for all i� j� t.
We randomly generated 30 initial states and 46 decision

rule matrices R with various degrees of proactivity lev-
els. The details of these decision rules are provided in the
online supplement. For each initial state S, we computed
optimal values V2�S��V3�S�, and V4�S� and correspond-
ing optimal decision rules by using dynamic program-
ming. We also computed �V2�S�� �V3�S�� and �V4�S� and
corresponding decision rules using our heuristic. Table 1
shows the average relative error between Vn�S� and �Vn�S�,
as well as the percentage of times that the rule chosen by
the heuristic coincided with the optimal decision rule for
n= 2�3�4. In addition, we compared the performance of
the prior rule used by the hospital to the optimal solution
for each of the states in our sample. We found that the
approximation method significantly outperforms the prior
WCMH rule as the number of stages increases. Note that
for two stages, the prior WCMH rule was always optimal
because it involved only one decision period, so a myopic
approach is optimal by definition. It is also interesting to
note that the heuristic performs better as n increases. This
pattern is due to the fact that for relatively low values
of n, the predictive ability of the heuristic is very robust.
We expect that at some value of n that trend will not persist.
However, because the exponential growth of the state space
makes computing optimal solutions prohibitive for n � 5,

Table 1. Comparing performance.

Relative Worst-case
error (%) error (%) Optimal (%)

Number of Prior Prior Prior
stages (n) Heuristic rule Heuristic rule Heuristic rule

2 5.5 00 349 00 533 1000
3 1.1 100 136 269 867 533
4 0.6 142 104 401 900 400

it is not possible to determine that cutoff point. For exam-
ple, solving for the optimal policy took 30 minutes for the
four-stage problem but it took 74 hours to analyze a single
decision rule for the five-stage problem. That extrapolates
into 370 days of simulation time to evaluate the five-stage
problem. By contrast, our heuristic is able to determine a
recommended action for problems of this size in less than
five seconds and for realistic problems in less than two
minutes.

5. Computational Experiments
We conducted several computational experiments to fine-
tune some of the parameters eventually used in the imple-
mentation of the DSS at WCMH.

5.1. Tractable Decision Rule Space Determination

Because the number of potential decision rules is very
large, we conducted more computational experiments to
identify a tractable number of decision rules to be used in
the WCMH DSS. The challenge was to identify a small
set of decision rules that yield good performance results.
A total of 46 decision rule matrices R were considered, and
each simulation depicted a hypothetical one-month period
for WCMH (=96 × 30 = 2�880 time periods). Based on
historical data on arrival rates for patients of each category,
we simulated a total of 455 patient arrivals. We computed
14 simulation runs, all starting from the same initial state.
Details of the simulation design are provided in the online
supplement.

5.1.1. Simulation Results. For each simulation run,
we used the rolling-horizon Algorithm 1, computing
�V2�880�S� in each iteration, and updating states according
to the decision rule �R returned by the algorithm and the
simulated arrivals and departures of patients.
The following variables were recorded:
1. number of transfers;
2. number of “last-minute” transfers (reactive transfers);
3. number of patients assigned to their ideal floor;
4. number of patients assigned to an alternate floor;
5. number of times each decision rule was invoked;
6. number of periods waiting before assignment.
The objective of this analysis was to successively add

decision rules and identify a “point of diminishing returns”
beyond which the addition of decision rules resulted in little
or no improvement in results.
Table 2 shows that the initial addition of decision rules

makes a dramatic difference in reducing the number of
reactive transfers. However, beyond four decision rules, the
incremental improvements diminish. In other words, a rel-
atively small set of decision rules can achieve performance
similar to that of a larger set. By studying the most fre-
quently used decision rules, we learned that as long as a
varied set was used, we obtain good results.
Figure 1 shows the average delay before making a

bed assignment for different levels of capacity utilization.
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Table 2. Simulation results.

Simulation Decision Total Reactive Assigned to Assigned to
run rules transfers transfers ideal an alternate

1 1 73 73 402 53
2 2 80 51 382 73
3 4 33 12 363 92
4 6 33 12 363 92
5 10 34 12 364 91
6 14 32 11 367 88
7 18 31 11 367 88
8 22 30 11 367 88
9 26 30 10 367 88
10 30 31 10 369 86
11 34 29 9 369 86
12 38 29 10 370 85
13 42 28 9 371 84
14 46 28 8 371 84

In Figure 1, we compare simulation runs 1, 2, 3, and 14
with a “passive” strategy in which no assigned patient is
transferred between floors to make room for newly arrived
patients. Simulation runs 4–13 were omitted because the
similarity in performance resulted in a very cluttered graph.
Figure 1 shows that the reactive decision rule used by
WCMH results in significantly better performance than the
passive decision rule. However, the large number of last-
minute transfers, most of which occur at higher levels of
capacity utilization, result in prolonged waiting times dur-
ing critical “crunch” periods. This is illustrated in Table 2,
which shows that all 73 of the transfers were reactive
transfers. By contrast, the inclusion of additional decision
rules in runs 2–14 shows an important pattern in reduced
delays prior to making a bed assignment and in the num-
ber of reactive transfers. In both cases, there is a dramatic
improvement in performance that quickly levels off. The
last significant performance improvement is found at Run 3,
where four decision rules are included. For Run 3, the time
delay before a bed assignment can be made remains stable

Figure 1. Waiting time as a function of occupancy.
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Table 3. Patient categories at WCMH.

Avg. length
Category Description of stay ai ($)

1 Short stay general medicine 251 7�464
2 Long stay general medicine 486 11�616
3 Short stay general surgery 254 11�075
4 Long stay general surgery 842 27�653
5 Pediatrics 224 4�396
6 Short stay telemetry 194 8�268
7 Long stay telemetry 471 14�095
8 Clean general surgery 381 24�381
9 Short stay critical care 447 12�716
10 Long stay critical care 1629 61�323
11 Surgical gynecology 305 11�894
12 Obstetrics/special gynecology 242 4�639

and low, even when capacity utilization is high. In addi-
tion, the number of reactive transfers is dramatically less
than the number incurred using the hospital’s prior rule
(12 compared to 73). Run 14, not surprisingly, yields the
best results in terms of time to floor assignment and number
of reactive transfers. However, the incremental improve-
ment is small and, more significantly, the amount of time
needed to analyze all 46 decision rules is prohibitively long.

6. DSS at WCMH
Based on the simulation conducted in §5, the DSS was
encoded with the decision rules depicted in simulation
Run 3 (see the online supplement). Table 3 shows the
patient categories that were identified at WCMH based on
floor assignment and length of stay for the different patient
populations the hospital serves. Table 3 also shows the
expected reimbursement for each category, again based on
historical averages.
Prior to implementing the DSS, hospital administrators

were asked to participate in an exercise to determine the
appropriate values of the aij and bijk. The values for the aij
were initially set to the expected reimbursement of a patient
of category i depicted in Table 3, and then scaled down to
reflect the desirability of assigning a patient of that category
to the different floors. For example, a1�1 = 7�464 because
Floor 1 is the floor that specializes in cardiology and gen-
eral medicine. Floor 2 specializes in general surgery and
pediatrics (although the staff are still capable of providing
health care service for a general medical patient) and was
therefore considered an “alternate” floor with a1�2 = 7�164.
Determining the values of the bijk was also done interac-

tively. Because determining the values of the bijk does not
require iterating through multiple time periods, it was pos-
sible to represent one instance of (10)–(11) in a Microsoft
Excel spreadsheet which was then solved using the stan-
dard Excel Solver engine. The initial values of all bijk were
set to 100. Then, a baseline hypothetical state was created
that was similar to an “average day” in terms of census,
staffing, and patient mix at WCMH. Nursing administrators
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were then asked to evaluate the patient assignment/transfer
decisions that were obtained by solving the patient allo-
cation problem in response to different events. The values
of the bijk were modified, based on feedback from nurs-
ing administrators, until decisions consistent with hospi-
tal strategy were obtained. The process of determining the
appropriate values for the bijk took approximately one hour
and involved evaluating 100 different events and associated
responses. Microsoft Excel proved to be a valuable tool
because the graphical layout improved the ability of the
nursing administrators to understand and critique the events
and associated responses. A sensitivity analysis regarding
the impact of cost parameters on DSS recommendations is
presented in the online supplement.
The DSS was programmed using version 1.4.2 of the

Java 2 Platform, Standard Edition (J2SE) and all optimiza-
tion problems were solved using lp_solve v5.1. The appli-
cation was run on a desktop PC with a 3 GHz Pentium 4
processor and 512 MB of RAM.
The 18-day trial period began January 17, 2005. The

DSS included the decision rule set identified in the simu-
lation described in §5. During the trial period, a total of
292 patients were admitted, an average of 16.22 admis-
sions per day, which is roughly 10% higher than the
14.79 admissions per day average obtained from histori-
cal data. This increase in the number of admissions per
day was associated with a greater than average number of
medical patients, and is consistent with expected seasonal
fluctuations.
In total, 83% of the actions recommended by the DSS

(269 out of 324) were followed. The DSS allowed the
user to enter the reason why a given recommendation was
not taken. This information was provided for 47 of the 55
recommendations that were not taken. A total of 20 rec-
ommendations were not followed because, based on some
preliminary information on patients currently being evalu-
ated in the ED, the bed manager was concerned that fol-
lowing the recommendation would complicate the ability
of the hospital to take an admission that was “imminent”
but not “official” in the sense that no admission orders
had been written. Concerns related to future staffing were
the cause of rejecting 11 recommendations and represented
cases where the bed manager was hesitant to bring a floor
to full capacity, when the ability to staff the floor properly
16–24 hours in the future was in question. The remain-
ing 16 instances were related to: gender compatibility (4);
“staff too busy” (6); and a range of clinical concerns (6).
We measured the impact on the number of last-minute

transfers using the DSS, and also the actual time needed
to transfer each patient admitted from the ED to the floor.
To determine the impact on last-minute transfers, a real-
time simulation was conducted using the hospital’s pre-
vious, reactive assignment decision rule, and the status
updates obtained during the trial period. This enabled us
to compare the number of last-minute transfers and pre-
emptive transfers occurring during the trial period to the

Table 4. Impact on patient transfers.

Type of transfer DSS Prior rule

Preemptive 21 0
Last minute 7 69

Total 28 69

number that would have resulted during the trial period had
the hospital used its prior decision rule. Table 4 shows the
results (note that under the prior decision rule, all in-house
transfers were last-minute transfers).
Overall, the total number of in-house transfers was less

using the DSS (28 versus 69 using the prior rule), and the
reduction in the number of last-minute transfers was even
more pronounced (7 versus 69 using the prior rule). The
significant reduction in the number of last-minute transfers
came at a cost. The number of patients assigned to alternate
floors by the DSS was higher than under the hospital’s prior
assignment rule.
In terms of the number of patients assigned to alternate

floors during the trial period, a total of 105 of this type
of assignments were made using the DSS, as opposed to
only 56 using the prior rule. These results together with
the results from Table 4 show that ensuring that beds were
available when needed was achieved primarily through
the assignment of patients to alternate floors as opposed
to transfers. This is a significant positive finding because
in-house transfers, even if done preemptively, are time-
consuming and disrupt the continuity of care for the patient
that is transferred.
Baseline data was obtained from the hospital to deter-

mine whether the reduction in last-minute transfers was
associated with the expected reduction in the average wait-
ing time before transferring patients from the ED to the
floors. The hospital provided data on waiting time in the
ED collected at different times over the last half of 2004.
The baseline data only contained observations made when
beds were available in the hospital. The important implica-
tion is that these patients were not being delayed because
no beds were available in the hospital (which does hap-
pen), but because the available beds were not on the floors
to which these patients could be assigned. This baseline
data showed very little monthly fluctuation. The Anderson-
Darling test (Stephens 1974) was performed on the baseline
transfer time data provided by the hospital. The results,
with test statistic A2 = 031, did not refute the null hypoth-
esis that the data come from a lognormal distribution. The
observed decrease in transfer time during the trial period,
depicted in Figure 2, was significant at -= 0001.
The impact of the number of available beds on wait-

ing times was also studied. The reason for this analysis is
that presumably when each floor has several beds avail-
able, achieving short waits should not be difficult. How-
ever, as the number of available beds decreases, following
decision rules that ensure that remaining beds are allocated
in a manner that reflects expected arrival and discharge
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Figure 2. Impact on transfer time.
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patterns, should result in shorter waiting times than fol-
lowing decision rules that do not. The results depicted in
Figure 2 show that aggressive assignment and reallocation
strategies, represented by some of the rules in the decision
rule set, enable the hospital to achieve short waiting times
even when the number of available beds is low. In addition,
inspection of the daily census from each day in the data set
that provided the baseline waiting time of two hours and
17 minutes shows that the total number of available beds
was at least seven.
Figure 3 plots the average and median waiting times

based on the number of available beds at the time admis-
sion orders were written. The trend line shows that, on
average, the waiting time is slightly over one hour. When
the number of available beds decreases to less than four,
the waiting times begin to increase. This suggests that the
approach developed here is effective, even when remaining
capacity is low.

Figure 3. Wait time and bed availability.
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6.1. Impact on the Hospital

The reduction in waiting time, almost one hour per patient
on average, has significant quality of care and financial
repercussions. The impact on quality of care is obvious.
Admitted patients are moved more quickly to a floor, and
the process of carrying out the admission orders begins
in a more timely fashion. For patients waiting to be seen
by a physician in the ED, the fact that admitted patients
are vacating more quickly means they will have shorter
waits. For WCMH, which averages 280 ED admissions per
month, a one-hour reduction for each of these admissions
translates into a gain of approximately 3,360 additional
bed-hours in the ED per year. Each bed in the ED averages
$258/hour in charges, so if these additional hours are used
to see additional patients, the expected benefit to WCMH
is $866,880 per year. During the trial implementation, the
additional bed-hours in the ED were used to see additional
patients, and according to James Papadakos, Chief Finan-
cial Officer at WCMH, the anticipated increase in the num-
ber of patients treated and in revenues were observed.
Assigning patients based on the recommendations pro-

vided by the DSS also improved capacity utilization.
Although not as dramatic as the reduction in waiting time,
the resulting improvement has significant quality of care
and financial implications. During the 18-day study, by fol-
lowing the recommendations provided by the DSS, WCMH
was able to accept four patients totaling 11 bed-days that
otherwise would have been diverted to a different hospi-
tal. This means the hospital was able to provide services
to more patients in the community as a result of divert-
ing fewer ambulances. This is an important accomplish-
ment because diverting ambulances results in a delay in
the provision of emergency care which is clearly undesir-
able. From a financial standpoint, based on WCMH data,
the hospital expects to generate $3,043 in charges per
bed-day. An increase of 11 bed-days corresponds to an
expected increase of $33,473 in charges and translates into
an annualized increase of $678,758 in charges. Because
WCMH only collects, on average, 39% of the amount
billed, the total expected increase in charges of $1,545,638
corresponds to an expected increase of $602,798 in actual
revenue. This reflects a 1% increase in revenue from oper-
ations, which is not trivial in the not-for-profit health care
setting where operating margins of 1%–2% are considered
a success. Furthermore, this increase in revenue is achieved
using existing physical and staff resources, so that very lit-
tle additional cost is incurred. As a result, a large portion
of the $602,798 in additional revenue is retained.
Finally, WCMH, like all hospitals, routinely tracks

patient safety and staffing effectiveness indicators. One of
these indicators, the amount of time needed to transfer a
patient from the ED to the floor, has been the primary focus
of this paper. The other indicators include fall rates, med-
ication errors, hospital-acquired infection rates, restraint
usage, length-of-stay, and patient satisfaction surveys that
are sent to patients postdischarge. A very important finding
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of a key metric for WCMH was that there was no sta-
tistically significant change in any of these other indica-
tors. This offers further confirmation that quality of care
for admitted patients is not being compromised by taking
the actions recommended by the DSS. The DSS implemen-
tation was considered a success by WCMH and the hos-
pital has opted to continue using the system as a tool to
aid in patient assignment decisions. The hospital has also
decided to create an “operations manager” position, an indi-
vidual who will work with the DSS and work to identify
other opportunities to improve patient flow and hospital
efficiency. WCMH has continued to use the DSS to aid in
patient allocation decisions. Furthermore, the effectiveness
of optimality-based resource utilization tools has prompted
WCMH to initiate work with us on tools to improve the
utilization of their cardiac diagnostic facilities.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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