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1. Introduction

In this paper, we discuss the nonlinear extremal problem

�( ) := sup
f2H2

kfk=1

����
1

2⇡i

I

@D
 f2 dz

���� (1)

and its relationship to the classical linear extremal problem

⇤( ) := sup
F2H1

kFk1=1

����
1

2⇡i

I

@D
 F dz

���� (2)

and the compression of Toeplitz operators to the model spaces H2  ⇥H2. In the above, D
denotes the open unit disk, @D denotes the unit circle,  is a rational function whose poles do
not lie on @D, Hp is the classical Hardy space [11, 19, 24], and ⇥ is a finite Blaschke product.
We refer to  as the kernel of the extremal problems (1) and (2). Since the focus of this paper
is primarily on H2, we let k·k (with no subscript) denote the norm on H2 while k·k1 denotes
the norm on H1. Despite the nonlinear nature of (1), our investigation will involve the theory
of linear operators, specifically the relatively new field of truncated Toeplitz operators and
complex symmetric operators [17, 18, 39].

The linear extremal problem (2) and its natural generalization to Hp (1  p  1) have a long
and storied history dating back to the early twentieth century [11, 19, 20, 23, 27, 34]. For the
moment, we single out several notable classical results which motivate this paper.

We first mention a theorem of Macintyre and Rogosinski [27, 34] (see also [23, p. 33]) which
asserts that for any given rational kernel  having no poles on @D there exists an Fe in the
unit ball of H1 for which

⇤( ) =
1

2⇡i

I

@D
 Fe dz.

This function Fe is called an extremal function for (2). In general, Fe is not necessarily unique.
Indeed, one need only consider the extremal problem

⇤

✓
1

z2

◆
= sup

F2H1

kFk1=1

|F 0(0)| = 1
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to see that the functions
(z � ↵)(1� ↵z)

1 + |↵|2 , ↵ 2 C, (3)

all serve as extremal functions. (On the other hand, the analogous extremal problem for Hp

with p > 1 always has a unique solution [11, Thm. 8.1]). Nevertheless, for general rational
 we can always choose an extremal function Fe which is the square of an H2 function [23,
p. 33], from which it follows that

⇤( ) = �( ).

Using the theory of truncated Toeplitz operators and the structure of the underlying Jordan
model spaces, we give a new proof of this fact in Proposition 1.

A second result worth mentioning here is due to Fejér [13], who showed that for any complex
numbers c0, c1, . . . , cn one has

⇤
⇣c0
z

+ · · ·+ cn
zn+1

⌘
= kHk ,

where H is the Hankel matrix (blank entries to be treated as zeros)

H =

0

BBBBB@

c0 c1 c2 · · · cn
c1 c2 · · · cn
c2 · · · cn
... . .

.

cn

1

CCCCCA

and kHk denotes the operator norm of H (i.e., the largest singular value of H). In the special
case when c0 = c1 = · · · = cn = 1, Egerváry [12] provided the explicit formula

⇤

✓
1

z
+

1

z2
+ · · ·+ 1

zn+1

◆
=

1

2
sec

(n+ 1)⇡

2n+ 3
(4)

and showed that the polynomial

4

2n+ 3


sin

(n+ 1)⇡

2n+ 3
+ z sin

n⇡

2n+ 3
+ · · ·+ zn sin

⇡

2n+ 3

�2
(5)

is an extremal function (In particular, note that this is the square of an H2 function). Golusin
in [21] finds an extremal function for the original (general) Fejér extremal problem as well as
some others [20]. We refer the reader to [11, 19, 23] for further references.

Fejér’s result can also be phrased in terms of Toeplitz matrices, which turn out to represent the
simplest type of truncated Toeplitz operator – a class of operators which figures prominently in
our approach to (1) (see Subsection 2.4). Indeed, if T is the following lower-triangular Toeplitz
matrix

T =

0

BBBBB@

cn
...

. . .

c2 · · · cn
c1 c2 · · · cn
c0 c1 c2 · · · cn

1

CCCCCA
,

then UT = H, where U is the permutation matrix

U =

0

B@
1

. .
.

1

1

CA ,

and thus kTk = kHk.
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In Theorem 1 and Corollary 2 we extend Fejér’s result and show that ⇤( ) = �( ) is equal
to the norm of a certain truncated Toeplitz operator on a canonically associated model space
K⇥ = H2  ⇥H2, where ⇥ is a certain finite Blaschke product associated with  . To relate
�( ) to the norm of this associated truncated Toeplitz operator, we develop a new variational
characterization of the norm of a complex symmetric operator, something interesting in its
own right.

For a given rational  , the discussion above tells us that there is an extremal function fe 2
ball(H2). In other words, the function fe satisfies

�( ) =
1

2⇡i

I

@D
 f2

e dz.

Using the theory of complex symmetric operators, we will show in Corollary 2 that fe belongs
to a certain model space K⇥ associated with �( ). More importantly, we establish a procedure
to compute fe along with necessary and su�cient conditions, in terms of truncated Toeplitz
operators, which determine when the extremal function fe is unique (up to a sign).

Next, we consider the obvious estimate

⇤( ) = �( )  max
⇣2@D

| (⇣)|.

Using some results from [37], we will show in Corollary 5 that equality holds if and only if
 = �B1

B2
, where � 2 C and B1, B2 are finite Blaschke products with no common zeros and

such that degB1 < degB2. In particular, this demonstrates the utility of relating �( ) to the
norm of a truncated Toeplitz operator.

Let us now suggest another application. Since, for n = 0, 1, 2, . . . and � 2 D,

cn,� = ⇤

✓
n!

(z � �)n+1

◆

is the best constant in the inequality

|F (n)(�)|  cn,� kFk1 , F 2 H1,

we can use operator theoretic techniques to explicitly determine the constants cn,� as well as the
associated extremal functions. Although this problem has been well-studied [12, 20, 26, 27],
we obtain the same results (see Theorem 3) using the new language of truncated Toeplitz
operators.

In Section 9 we briefly explore how our results can be extended to handle certain kernels
 2 L1(@D) which are not necessarily rational.

It should be remarked that (1) is not the first nonlinear extremal problem on the Hardy space
to be explored. The reader is invited to consult [1, 3, 5, 14, 28, 41] for other examples of
nonlinear extremal problems on Hp as well as other spaces of analytic functions. We thank
D. Khavinson for pointing out these papers to us and for several enlightening conversations.
In addition, we thank David Sherman for pointing out the identity in (62).

2. Preliminaries

As mentioned in the introduction, we will relate the extremal problems (1) and (2) to the
emerging study of truncated Toeplitz operators and complex symmetric operators. This section
lays out all of the appropriate definitions and basic results.
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2.1. Model spaces. Given a rational function  whose poles do not lie on @D, consider the
associated finite Blaschke product

⇥(z) =
nY

j=1

z � �j
1� �jz

(6)

whose zeros �1,�2, . . . ,�n, repeated according to multiplicity, are precisely the poles of  
which lie in D. The degree, deg⇥, of the Blaschke product ⇥ in (6) is defined to be n, the
total number of zeros counted according to multiplicity. Note that  might have other poles
which lie outside of the closed unit disk D�. However, these poles are not counted amongst
the �j ’s. We also assume that  has at least one pole in D, since otherwise ⇤( ) = �( ) = 0,
which is of no interest.

With the above ⇥, we form the corresponding model space

K⇥ := H2  ⇥H2.

More precisely, K⇥ is the closed subspace of H2 defined by

H2  ⇥H2 := H2 \ (⇥H2)? (7)

where the implicit inner product is the standard L2 inner product:

hu, vi :=
Z

@D
u(⇣)v(⇣)

|d⇣|
2⇡

, u, v 2 L2 := L2(@D, |d⇣|
2⇡ ). (8)

The term ‘model space’ stems from the important role that K⇥ plays in the model theory
for Hilbert space contractions – see [31, Part C]. Let us briefly recall several important facts
about K⇥. First note that Beurling’s theorem [11, p. 114] asserts that ⇥H2 is a typical proper
invariant subspace of finite codimension (since ⇥ is a finite Blaschke product) for the unilateral
shift operator

[Sf ](z) = zf(z), f 2 H2.

It follows from a standard duality argument that K⇥ is a typical nontrivial, finite-dimensional
invariant subspace for the backward shift operator

[S⇤f ](z) =
f(z)� f(0)

z
, f 2 H2.

For further information on various function-theoretic aspects of the backward shift operator,
we refer the reader to the seminal paper [10] and the recent texts [7, 35].

When the zeros �1,�2, . . . ,�n of ⇥ are distinct, it is easy to verify that K⇥ is spanned by the
Cauchy kernels

1

1� �jz
, j = 1, 2, . . . , n. (9)

Thus each function f in K⇥ can be written uniquely as

f(z) =
p(z)

Qn
j=1(1� �jz)

, (10)

where p(z) is an analytic polynomial of degree at most n� 1. Conversely, by partial fractions,
every such function belongs to K⇥. In particular, each function in K⇥ is analytic in a neigh-
borhood of D�. It is also not hard to see that the preceding discussion is still valid even if the
zeros of ⇥ are not all distinct, so long as the terms in the denominator of (10) are repeated
according to multiplicity and the Cauchy kernels in (9) are replaced by

1

(1� �jz)m
, 1  j  n, 1  m  mj , (11)

where mj denotes the multiplicity of �j as a zero of ⇥.
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From the representation (7) we find that K⇥ carries a natural isometric, conjugate-linear
involution C : K⇥ ! K⇥ defined in terms of boundary functions by

Cf := fz⇥. (12)

Although, at first glance, the expression fz⇥ in (12) does not appear to correspond to the
boundary values of an H2 function, let alone one in K⇥, a short computation using (7) reveals
that hCf,⇥hi and ⌦Cf, zh

↵
both vanish for all h 2 H2 and f 2 K⇥, whence Cf indeed belongs

to K⇥.

An important aspect of the spaces K⇥ involves the reproducing kernels

kw(z) =
1�⇥(w)⇥(z)

1� wz
, z, w 2 D�, (13)

which enjoy the so-called reproducing property

hf, kwi = f(w), w 2 D�, f 2 K⇥. (14)

In light of the fact that ⇥ is a finite Blaschke product, note that kw belongs to K⇥ for all w in
D� and that the analyticity of ⇥ on @D ensures that (13) is well-defined when both z and w
belong to @D. That (14) holds is a straightforward consequence of the Cauchy Integral Formula
and the fact that hf, zn⇥i = 0 for all n � 0. Letting P⇥ denote the orthogonal projection of
L2 onto K⇥, we also observe that

[P⇥f ](w) = hf, kwi , f 2 L2, w 2 D�. (15)

Finally, another short computation reveals that

(Ckw)(z) =
⇥(z)�⇥(w)

z � w
, z, w 2 D�. (16)

2.2. Takenaka-Malmquist-Walsh bases. Suppose that the finite Blaschke product (6) has
n zeros �1,�2, . . . ,�n repeated according to their multiplicity. Although the functions from (11)
form a basis for K⇥, they are not orthonormal. However, there is a well-known orthonormal
basis that can be constructed from these functions. Indeed, for w 2 D we let Bw denote the
disk automorphism

Bw(z) =
z � w

1� wz
and consider the unit vectors

vk(z) :=

8
>>><

>>>:

p
1� |�1|2
1� �1z

if k = 1,

⇣Qk�1
i=1 B�i

⌘ p1� |�k|2
1� �kz

if 2  k  n.

(17)

By (10), vk 2 K⇥ for all 1  k  n. A short computation based on the reproducing property
and the fact that BwBw = 1 on @D shows that for j < k we have

hvk, vji =
*⇣Qk�1

i=j B�i

⌘ p1� |�k|2
1� �kz

,

p
1� |�j |2
1� �jz

+
= 0

(since B�j (�j) = 0) while for j = k we have hvj , vji = 1. Thus {v1, v2, . . . , vn} constitutes an
orthonormal basis for the model space K⇥. A standard text refers to this observation as the
Malmquist-Walsh Lemma [29, V.1] but these functions appeared as early as 1925 in a paper
of Takenaka [40]. In light of this, we shall call {v1, v2, . . . , vn} the Takenaka-Malmquist-Walsh
basis for K⇥.
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We do wish to mention a particular important case that will be used in Section 8. Suppose
that �1 = �2 = · · · = �n = � so that ⇥ = Bn

� . In this case, the functions

vk(z) =

p
1� |�|2

(1� �z)k (z � �)k�1, 1  k  n (18)

form an orthonormal basis for K⇥. Note that these vectors are simply an orthonormalization
of the functions in (11).

2.3. Aleksandrov-Clark bases. It turns out that each model space K⇥ comes equipped
with another natural family of orthonormal bases. Let us briefly describe their construction.
Note that |⇥| = 1 on @D. Also note that |⇥0| > 0 on @D: write

⇥(z) =
nY

j=1

B�j (z)

and use formal logarithmic di↵erentiation and the fact that

B0
�j
(z) =

1� |�j |2
(1� �jz)2

to get the identity

⇥0(z) = ⇥(z)
nX

j=1

1� |�j |2
(1� �jz)(z � �j)

.

When z = ⇣ 2 @D, we get

⇥0(⇣) = ⇥(⇣)⇣
nX

j=1

1� |�j |2
|1� �j⇣|2

.

Since |⇥(⇣)| = 1 on @D, the result follows.

Fix some � 2 @D and note that since |⇥| = 1 and |⇥0| > 0 on @D, the equation ⇥(⇣) = � has
precisely n distinct solutions ⇣1, ⇣2, . . . , ⇣n on @D. Here, as before, n denotes the degree of the
Blaschke product (6).

A short computation now shows that
��k⇣j

�� =
q

|⇥0(⇣j)|, 1  j  n.

Next we define unimodular constants !1,!2, . . . ,!n by

!j := e
i
2 (arg ��arg ⇣j), 1  j  n. (19)

However the arguments of � and ⇣1, ⇣2, . . . , ⇣n are selected, they are to remain consistent
throughout the following. Now consider the functions

vj(z) := !j

k⇣j (z)

kk⇣jk

=
!jp|⇥0(⇣j)|

· 1� �⇥(z)

1� ⇣jz
. (20)

It is readily verified that hvj , vki = �j,k and, moreover, that

Cvj = vj , 1  j  n. (21)

We refer to the basis in (20) as a modified Aleksandrov-Clark basis for K⇥. The terminology
stems from the fact that the vj are the eigenvectors of a certain Aleksandrov-Clark operator
on K⇥ [6, 8, 32, 38]. Such bases are discussed in further detail in [15, Sect. 8.1].

One notable advantage of using Aleksandrov-Clark bases over the Takenaka-Malmquist-Walsh
basis is the fact that all Aleksandrov-Clark bases are C-real in the sense that (21) holds.
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2.4. Truncated Toeplitz operators. As mentioned in the introduction, we will show in
Corollary 2 that the extremum �( ) in the nonlinear problem (1) coincides with the operator
norm of a certain truncated Toeplitz operator on an associated model space. Let us now
consider these operators.

Definition. For ' 2 L1 = L1(@D, |d⇣|
2⇡ ) and an inner function⇥, the operator A' : K⇥ ! K⇥

defined by
A'f = P⇥('f) (22)

is called the truncated Toeplitz operator on K⇥ with symbol '.

Truncated Toeplitz operators are sometimes referred to as compressed Toeplitz operators since
A' is simply the compression of the standard Toeplitz operator T' on H2 to the model space
K⇥. Recall that if P : L2 ! H2 denotes the orthogonal projection from L2 onto H2 (called
the Riesz or Szegö projection), then T'f = P ('f).

The operator norm of a truncated Toeplitz operator A' on K⇥ will be denoted by kA'kK⇥!K⇥

or, when the context is clear, simply by kA'k. It is easy to see from the definition (22) that
A' is a bounded operator on K⇥ satisfying kA'k  k'k1. For further information, we direct
the reader to the recent article [39], which appears destined to become the standard reference
for truncated Toeplitz operators.

Maintaining the same notation as in (6), we observe that if the symbol ' of a truncated
Toeplitz operator A' : K⇥ ! K⇥ belongs to H1, then its eigenvalues are precisely the
numbers '(�1),'(�2), . . . ,'(�n). It is perhaps easier to prove the corresponding statement for
the adjoint A⇤

' = A'. To see this, note that since ⇥(�i) = 0, then k�i(z) = (1 � �iz)�1 and
so, by the Cauchy Integral Formula,

h'f, k�ii = '(�i)f(�i) 8f 2 K⇥.

Thus
hA'k�i , fi = hP⇥('k�i), fi = hk�i ,'fi = '(�i)f(�i) =

D
'(�i)k�i , f

E

holds for all f in K⇥ whence

A'k�i = '(�i)k�i , i = 1, 2, . . . , n. (23)

We approach our nonlinear extremal problem �( ) by considering a related system of “ap-
proximate anti-linear eigenvalue problems” (see Lemma 3) corresponding to certain truncated
Toeplitz operators. This technique, introduced in [16, Thm. 2], can be thought of as a complex
symmetric adaptation of Weyl’s criterion [33, Thm. VII.12].

To make this more precise, we require a brief discussion of complex symmetric operators.
Throughout the following, H will denote a separable complex Hilbert space and �(T ) will
denote the spectrum of a bounded linear operator T : H! H.

Definition. A conjugation on H is a conjugate-linear operator C : H ! H that is both
involutive (i.e., C2 = I) and isometric (i.e., hCx,Cyi = hy, xi for all x, y 2 H).

The canonical example of a conjugation is simply entry-by-entry complex conjugation on a
l2-space. In fact, each conjugation is unitarily equivalent to the canonical conjugation on a
l2-space of the appropriate dimension [17, Lem. 1]. From our perspective, the most pertinent
example is the conjugation (12) on the model space K⇥, which in light of (21), is easily seen to
be entry-by-entry complex conjugation with respect to any of the modified Aleksandrov-Clark
bases {v1, v2, . . . , vn} defined by (20).

Definition. A bounded linear operator T : H! H is C-symmetric if T = CT ⇤C and complex
symmetric if there exists a conjugation C with respect to which T is C-symmetric.
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It turns out that T is a complex symmetric operator if and only if T is unitarily equivalent to
a symmetric matrix with complex entries, regarded as an operator acting on an l2-space of the
appropriate dimension (see [15, Sect. 2.4] or [17, Prop. 2]). In fact, if C denotes the conjugation
(12) on K⇥, then any C-symmetric operator on K⇥ has a symmetric matrix representation
with respect to any modified Aleksandrov-Clark basis. For further details, we refer the reader
to [15, 17, 18].

The connection between complex symmetric operators and our nonlinear extremal problem
�( ) is furnished by Theorem 1 and Corollary 2 below. The proofs will depend on the following
three lemmas.

Lemma 1. For ' 2 L1 and ⇥ inner, the truncated Toeplitz operator A' on K⇥ is C-

symmetric with respect to the conjugation Cf = fz⇥ on K⇥.

The proof, which is a straightforward computation, can be found in [17, Prop. 3] or [15,
Thm. 5.1]. In particular, the preceding remarks ensure that a truncated Toeplitz operator
A' has a complex symmetric (i.e., self-transpose) matrix representation with respect to any
modified Aleksandrov-Clark basis (20). This property of truncated Toeplitz operators will be
apparent when we consider several numerical examples later on. We also mention that the
identity CA'C = A⇤

' along with (23) will show that if ' 2 H1, then

A'Ck�i = '(�i)Ck�i ,

where �i are the zeros of ⇥.

2.5. The norm of a complex symmetric operator. In order to compute the quantity
kA'kK⇥!K⇥

, we require a few words concerning the polar decomposition of a complex sym-
metric operator. Recall that the polar decomposition T = U |T | of a bounded linear operator
T : H! H expresses T = U |T | uniquely as the product of a positive operator |T | = pT ⇤T and
a partial isometry U which satisfies kerU = ker |T | and maps ran |T | (the closure of the range of
|T |) onto ranT [9, p. 248]. If T is a C-symmetric operator, then we can decompose the partial
isometry U as the product of C with a partial conjugation. We say that an conjugate-linear
operator J is a partial conjugation if J restricts to a conjugation on (ker J)? (with values in
the same space). In particular, the linear operator J2 is the orthogonal projection onto the
closed subspace ran J = (ker J)?. The following lemma is [18, Thm. 2].

Lemma 2. If T : H ! H is a bounded C-symmetric operator, then T = CJ |T | where J is a

partial conjugation, supported on ran |T |, which commutes with |T | = pT ⇤T .

Now recall that Weyl’s criterion [33, Thm. VII.12] from the spectral theory of selfadjoint
operators states that if A is a bounded selfadjoint operator, then � belongs to �(A) if and only
if there exists a sequence un of unit vectors so that

lim
n!1

k(A� �I)unk = 0.

The following result [16, Thm. 2] characterizes �(|T |) in terms of what one might call an
approximate anti-linear eigenvalue problem.

Lemma 3. If T is a bounded C-symmetric operator and � 6= 0, then

(i) |�| 2 �(|T |) if and only if there exists a sequence of unit vectors un which satisfy the
approximate anti-linear eigenvalue problem

lim
n!1

k(T � �C)unk = 0. (24)

Moreover, the un can be chosen so that Jun = un for all n.
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(ii) |�| is an eigenvalue of |T | (i.e., a singular value of T ) if and only if the anti-linear
eigenvalue problem Tu = �Cu has a nonzero solution u.

To compute the norm of a truncated Toeplitz operator, and ultimately �( ), we require the
following general formula for the norm of a complex symmetric operator.

Theorem 1. If T : H! H is a bounded C-symmetric operator, then

(i) kTk = supkxk=1 | hTx,Cxi |.
(ii) If kxk = 1, then kTk = | hTx,Cxi | if and only if Tx = !kTkCx for some unimodular

constant !.

(iii) If T is compact, then the equation Tx = kTkCx has a unit vector solution. Furthermore,
this unit vector solution is unique, up to a sign, if and only if the kernel of the operator
|T |� kTkI is one-dimensional.

Proof. To prove (i) observe that since | hTx,Cxi |  kTxk kCxk  kTk whenever kxk  1, it
su�ces to prove that kTk  supkxk=1 | hTx,Cxi |. Let � := kTk (which belongs to �(|T |)) and
note that by Lemma 3, there exists a sequence un of unit vectors such that Jun = un for all
n and such that limn!1 kTun � �Cunk = 0. Thus we have

kTk = � hun, uni (kunk = 1)

= h|T |un, uni � h|T |un � �un, uni
= h|T |Jun, uni � h|T |Jun � �un, uni (Jun = un)

= hJ |T |un, uni � hJ |T |un � �un, uni (J |T | = |T |J , Lemma 2)

 | hJ |T |un, uni |+ | hJ |T |un � �un, uni |
= | hCJ |T |un, Cuni |+ | hCJ |T |un � �Cun, Cuni | (C is isometric, � � 0)

= | hTun, Cuni |+ | hTun � �Cun, Cuni | (CJ |T | = T , Lemma 2)

 sup
kxk=1

| hTx,Cxi |+ kTun � �Cunk (kCunk = kunk = 1).

Since the second term in the previous line tends to zero as n ! 1, the desired inequality
follows. This proves (i).

Let us now consider (ii). First observe that the (() implication is obvious. For the ())
implication, suppose that kxk = 1 and kTk = | hTx,Cxi |. By the CSB inequality we have

kTk = | hTx,Cxi |  kTxkkCxk  kTkkCxk  kTkkxk = kTk
whence | hTx,Cxi | = kTxkkCxk. By the condition for equality in the CSB inequality, we find
that Tx = hTx,CxiCx. In other words, Tx = !kTkCx for some |!| = 1, concluding the proof
of (ii).

For (iii), first note that T is compact and thus kTk is an eigenvalue of |T | whence, in light of
Lemma 3, the equation Tx = kTkCx has a unit vector solution. We now show that this solution
is unique, up to sign, if and only if the kernel of the operator |T | � kTkI is one-dimensional.
For one direction, we employ the following representation of compact C-symmetric operators
from [18, Thm. 3]:

T =
X

n�0

�n

dnX

k=1

Cun,k ⌦ un,k,

where �n are the distinct eigenvalues of the selfadjoint operator |T | (which, since T is compact,
form a countable set whose only possible limit point is zero) and {un,1, . . . , un,dn} is a certain
orthonormal basis for the eigenspace of |T | corresponding to �n which also satisfies the auxiliary
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condition Tun,k = �nCun,k. Thus if the unit vector solution to Tx = kTkCx is unique up to
sign, then the kernel of |T |� kTkI is one-dimensional.

On the other hand, if Tx = kTkCx, then

Tx = kTkCx ) CTx = kTkx (kTk 2 R, C2 = I)

) CTCTx = kTk2 x
) T ⇤Tx = kTk2 x (CTC = T ⇤)

) |T |x = kTkx
since |T | =

p
T ⇤T . Suppose now that x, y are two unit vectors such that Tx = kTkCx,

Ty = kTkCy, and x 6= ±y. In this case, the conjugate-linearity of C, along with the facts that
kxk = kyk = 1 and x 6= ±y, ensures that x and y are not scalar multiples of each other. In
particular, x and y are linearly independent and satisfy |T |x = kTkx and |T |y = kTk y. This
implies that the kernel of the operator |T |� kTkI has dimension at least two, as claimed.

3. A reduction

As before, let ⇥ denote the finite Blaschke product (6) whose zeros, repeated according to
multiplicity, are precisely the poles of the rational function  which lie in D. Writing f as
f = P⇥f +⇥h where h 2 H2, one can show that our original nonlinear extremal problem �( )
in (1) can be reduced to the new problem

sup
f2K⇥
kfk=1

����
1

2⇡i

I

@D
 f2 dz

���� (25)

posed on the model space K⇥. Indeed, for f 2 H2 we have

1

2⇡i

I

@D
 f2 dz =

1

2⇡i

I

@D

�
 (P⇥f)

2 + 2 (P⇥f)⇥h+  ⇥2h2
�
dz

=
1

2⇡i

I

@D
 (P⇥f)

2 dz. (26)

We obtain (26) by noting that the function  ⇥ belongs to H1 whence the second and third
terms in the preceding line vanish by Cauchy’s Theorem.

We gather from this reduction two important observations. The first is that an extremal
function for the problem �( ) exists since the nonlinear functional

f 7!
����
1

2⇡i

I

@D
 f2 dz

����

is a continuous map and the supremum in (25) is over the (compact) unit ball of the finite
dimensional space K⇥. The second is that an extremal function for �( ) lies in K⇥ and thus
from the representation (10) has the form

f(z) =
p(z)

Qn
j=1(1� �jz)

,

where p(z) is an analytic polynomial of degree at most n� 1.

Putting together the material we have developed so far, we obtain the following corollary
to Theorem 1, which, in terms of computing the norms of truncated Toeplitz operators, is
interesting in its own right.

Corollary 1. Let ⇥ be a nonconstant inner function.
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(i) If ' 2 L1, then

kA'kK⇥!K⇥
= sup

f2K⇥
kfk=1

����
1

2⇡i

I

@D

'f2

⇥
dz

���� . (27)

(ii) If ' 2 H1, then

kA'kK⇥!K⇥
= sup

f2H2

kfk=1

����
1

2⇡i

I

@D

'f2

⇥
dz

���� . (28)

Proof. Lemma 1 asserts that the operator A' : K⇥ ! K⇥ is C-symmetric with respect to
the conjugation Cf = fz⇥ on K⇥. Next we note that

hA'f, Cfi = hP⇥('f), Cfi = h'f, Cfi = ⌦'f, fz⇥↵ = ⌦'f2z,⇥
↵

holds for any f in K⇥. Using the identity dz = iz|dz| to write the expression
⌦
'f2z,⇥

↵
as a

contour integral on @D and noting that ⇥ = 1/⇥ a.e. on @D, yields (upon an application of
Theorem 1) the desired formula (27). This establishes (i).

Let us now prove (ii). It follows from assertion (i) and the reduction discussed in (26) that

1

2⇡i

I

@D

'f2

⇥
dz =

1

2⇡i

I

@D

'(P⇥f)2

⇥
dz, f 2 H2.

In other words, if the function ' belongs to H1, then the supremum in (27) can be taken over
ball(H2). This yields (ii).

The following corollary to Theorem 1 and Corollary 1 provides the fundamental connection
between truncated Toeplitz operators and the nonlinear extremal problem �( ).

Corollary 2. Suppose that  is a rational function having no poles on @D and poles �1,�2, . . . ,�n
lying in D, counted according to multiplicity. Let ⇥ denote the associated Blaschke product (6)
whose zeros are precisely �1,�2, . . . ,�n and note that ' =  ⇥ belongs to H1. We then have
the following:

(i) The nonlinear extremal problems �( ) from (1) and (25) are equal. Moreover, both are
equal to kA'kK⇥!K⇥

.

(ii) There is a unit vector f 2 K⇥ satisfying

A'f = kA'kCf (29)

and any such f is an extremal function for �( ). In other words,

1

2⇡i

I

@D
 f2 dz = kA'kK⇥!K⇥

.

(iii) Every extremal function f for �( ) belongs to K⇥ and satisfies

A'f = kA'kCf.

(iv) An extremal function for �( ) is unique, up to a sign, if and only if the kernel of the
operator |A'|� kA'kI is one-dimensional.

Proof. Use Theorem 1, Corollary 1, the reduction in (26), along with the fact that K⇥ is
finite dimensional so that the C-symmetric operator T = A ⇥ is compact.
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4. Equality of the linear and nonlinear extrema

For a rational function  having no poles on @D, it turns out that the classical linear extremal
problem ⇤( ) given by (2) and our nonlinear extremal problem �( ) given by (1) yield the
same answer. We begin with the observation that for any f 2 H2 with kfk = 1, we have
f2 2 H1 and

��f2
��
1
= 1. Therefore

{f2 : f 2 H2, kfk  1} ✓ {F : F 2 H1, kFk1  1},
which implies that

�( )  ⇤( ). (30)

Recall from the introduction that Egerváry, in the special case where

 (z) =
1

z
+

1

z2
+ · · ·+ 1

zn+1
,

showed (see (5)) that an extremal function for the linear extremal problem ⇤( ) is the square
of an H2 function whence �( ) = ⇤( ). As a somewhat easier example, we remind the reader
of the family of functions (3) which all serve as extremal functions for the linear extremal
problem ⇤(1/z2). In particular, the extremal function

✓
z + 1p

2

◆2

is the square of an H2 function and we again have �( ) = ⇤( ). As it turns out, the preceding
examples are not peculiar in this regard. Indeed, S. Ya. Khavinson [23] showed, in greater
generality beyond rational  , that one of the extremal functions for ⇤( ) can be taken to be
a function F with no zeros in D. Thus f :=

p
F will be (up to a unimodular constant) an

extremal function for �( ). Here is a new proof of the identity �( ) = ⇤( ) in the language
of truncated Toeplitz operators.

Proposition 1. If  is a rational function with no poles on @D, then ⇤( ) = �( ). In other
words,

sup
F2H1

kFk1=1

����
1

2⇡i

I

@D
 F dz

���� = sup
f2H2

kfk=1

����
1

2⇡i

I

@D
 f2 dz

���� .

Proof. Since every F 2 H1 can be written as F = fg, where f, g 2 H2 and kFk1 = kfk kgk
(see [19, Ex. 1, Ch. 2] or [11, Thm. 3.15]), it follows that

sup
f,g2H2

kfk=kgk=1

����
1

2⇡i

I

@D
 fg dz

���� = sup
F2H1

kFk1=1

����
1

2⇡i

I

@D
 F dz

���� . (31)

As usual, let ⇥ be the corresponding Blaschke product from (6). Writing f, g in the preceding
as f = f1 +⇥h1 and g = g1 +⇥h2, where f1, g1 2 K⇥ and h1, h2 2 H2, we obtain

1

2⇡i

I

@D
 fg dz =

1

2⇡

I

@D
 (f1 +⇥h1)(g1 +⇥h2)dz =

1

2⇡

I

@D
 f1g1dz. (32)

In particular, observe that all but one of the terms in the product integrate to zero since the
function ' =  ⇥ belongs to H1.

Putting this all together we find that

sup
F2H1

kFk1=1

����
1

2⇡i

I

@D
 F dz

���� = sup
f,g2H2

kfk=kgk=1

����
1

2⇡i

I

@D
 fg dz

���� (by (31))
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= sup
f,g2K⇥

kfk=kgk=1

����
1

2⇡i

I

@D
 fg dz

���� (by (32))

= sup
f,g2K⇥

kfk=kgk=1

| h⇥ f, zg⇥i |

= sup
f,g2K⇥

kfk=kgk=1

| h'f, Cgi | (' =  ⇥)

= sup
f,g2K⇥

kfk=kgk=1

| h'f, gi | (C2 = I)

= sup
f,g2K⇥

kfk=kgk=1

| hP⇥('f), gi |

= sup
f,g2K⇥

kfk=kgk=1

| hA'f, gi |

= kA'kK⇥!K⇥

= sup
f2H2

kfk=1

����
1

2⇡i

I

@D
 f2 dz

���� (Corollary 2).

Thus ⇤( ) = �( ) as claimed.

5. Computing the supremum

Recall that Corollary 2 ensures that

�( ) = kA'kK⇥!K⇥

where ' denotes the H1 function  ⇥. We propose two simple and practical procedures for
computing kA'k. Both methods involve computing matrix representations for the operator A'.
In practice, these matrices are explicitly computable and hence their norms can be determined
algebraically (for n = dimK⇥ small) or numerically via Mathematica or any other comparable
piece of software.

5.1. Using the Takenaka-Malmquist-Walsh basis. Our first approach involves represent-
ing the truncated Toeplitz operator A' : K⇥ ! K⇥ as an n ⇥ n matrix with respect to the
Takenaka-Malmquist-Walsh basis (17) for K⇥.

(i) Let ' :=  ⇥ and note that ' 2 H1 since the poles of  lying in D cancel with the zeros
of ⇥.

(ii) The jk-th entry [MA' ]jk of the matrix representation MA' of A' with respect to the
Takenaka-Malmquist-Walsh basis {v1, v2, . . . , vn} is hA'vk, vji. The resulting matrix
MA' is lower triangular (see [29, Lect. V] and below).

(iii) The largest singular value of the matrix MA' is the desired quantity kA'k = �( ).

A straightforward computation confirms that the matrix representationMA' of A' with respect
to the Takenaka-Malmquist-Walsh basis is lower triangular. Indeed, for j < k we have

[MA' ]jk = hA'vk, vji = hP⇥('vk), vji

=

*
'

 
k�1Y

i=1

B�i

! p
1� |�k|2
1� �kz

,

 
j�1Y

i=1

B�i

! p
1� |�j |2
1� �jz

+
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=
q
1� |�j |2

*
'

0

@
k�1Y

i=j

B�i

1

A
p
1� |�k|2
1� �kz

| {z }
2H1

,
1

1� �jz

+
= 0 (33)

since B�j (�j) = 0 and thus the matrix is lower triangular.

The diagonal entries of our matrix are also relatively easy to compute:

[MA' ]kk = '(�k), 1  k  n.

SinceMA' is a lower triangular matrix this is to be expected since the eigenvalues '(�1),'(�2), . . . ,'(�n)
of the operator A' must appear along the main diagonal.

For j > k the computations are more involved:

[MA' ]jk =

*
'

 
k�1Y

i=1

B�i

! p
1� |�k|2
1� �kz

,

 
j�1Y

i=1

B�i

! p
1� |�j |2
1� �jz

+

=

*
'

p
1� |�k|2
1� �kz

,

 
j�1Y

i=k

B�i

! p
1� |�j |2
1� �jz

+

= (1� |�j |2) 1
2 (1� |�k|2) 1

2
1

2⇡i

I

@D

'(z) dz⇣Qj�1
i=k B�i

⌘
(1� �kz)(z � �j)

. (34)

Although the preceding can be evaluated explicitly using the residue calculus, the resulting
expression is somewhat unwieldy and we choose not to write it here. We will see the matrix
representation of a truncated Toeplitz operator with respect to the Takenaka-Malmquist-Walsh
basis again in Section 8.

5.2. Using modified Aleksandrov-Clark bases. A similar approach using the Aleksandrov-
Clark bases can also be formulated.

(i) Let ' :=  ⇥ and note that ' 2 H1 since the poles of  lying in D cancel with the zeros
of ⇥.

(ii) Fix some � on @D and let v1, v2, . . . , vn be the corresponding modified Aleksandrov-
Clark basis from (20). In particular, compute the unimodular constants ⇣1, ⇣2, . . . , ⇣n
and !1,!2, . . . ,!n from (19).

(iii) The jk-th entry [MA' ]jk of the matrix representation MA' of A' with respect to the
Aleksandrov-Clark basis {v1, v2, . . . , vn} is hA'vk, vji. The resulting matrix MA' is
complex symmetric (i.e., self-transpose).

(iv) The largest singular value of the matrix MA' is the desired quantity kA'k = �( ).

Let us derive a general formula for MA' in the simple case where the zeros �1,�2, . . . ,�n are
distinct (One can make adjustments for the general case where the zeros �1,�2, . . . ,�n are
not necessarily distinct). Using the fact that the functions ', vj , and vk are analytic in a
neighborhood of the closed unit disk D�, it follows from the residue calculus that

hA'vk, vji = h'vk, vji

=
!kp|⇥0(⇣k)|

!jp|⇥0(⇣j)|
I

|z|=1

'(z)
1� �⇥(z)

1� ⇣kz
1� �⇥(z)

1� ⇣jz
dz

2⇡iz

=
!kp|⇥0(⇣k)|

!jp|⇥0(⇣j)|
I

|z|=1

'(z)
1� �⇥(z)

1� ⇣kz
⇥(z)� �

⇥(z)(z � ⇣j)
dz

2⇡i
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=
!kp|⇥0(⇣k)|

�!jp|⇥0(⇣j)|
nX

i=1

'(�i)

⇥0(�i)(1� ⇣k�i)(⇣j � �i)

=
!kp|⇥0(⇣k)|

�⇣j!jp|⇥0(⇣j)|
nX

i=1

'(�i)

⇥0(�i)(1� ⇣k�i)(1� ⇣j�i)
(35)

=
!kp|⇥0(⇣k)|

!jp|⇥0(⇣j)|
nX

i=1

'(�i)

⇥0(�i)(1� ⇣k�i)(1� ⇣j�i)
. (36)

Observe that we employed the identity �⇣j!j = !j when passing from (35) to (36). Notice
also from (36) that the n⇥ n matrix MA' = (hA'vk, vji)nj,k=1 is indeed complex symmetric as
previously claimed. It follows from the preceding calculations and the fact that v1, v2, . . . , vn
is an orthonormal basis for K⇥ that kA'kK⇥!K⇥

is equal to
������

 
!kp|⇥0(⇣k)|

!jp|⇥0(⇣j)|
nX

i=1

'(�i)

⇥0(�i)(1� ⇣k�i)(1� ⇣j�i)

!n

j,k=1

������
. (37)

Example 1. Let c1, c2, . . . , cn be n arbitrary complex numbers and let �1,�2, . . . ,�n be n
distinct points in D. Now form the rational function

 (z) =
nX

i=1

ci
z � �i .

Using the residue calculus and Corollary 2, we obtain

�( ) = kA'kK⇥!K⇥

where ' =  ⇥ and ⇥ denotes the usual finite Blaschke product (6). Observe that

'(z) =  (z)⇥(z) =
nX

i=1

ci
⇥(z)

z � �i .

Employing the identity
'(�i) = ci⇥

0(�i), 1  i  n

in (36) yields

�( ) =

������

 
!kp|⇥0(⇣k)|

!jp|⇥0(⇣j)|
nX

s=1

cs

(1� ⇣k�s)(1� ⇣j�s)

!n

j,k=1

������
.

Example 2. To better demonstrate the procedure outlined above, let us work through a
specific numerical example in detail. Consider the nonlinear extremal problem

sup
f2H2

kfk=1

��f2(0) + f2( 12 )
�� = �( ) = kA'kK⇥!K⇥

where

⇥(z) = z
z � 1

2

1� 1
2z

,  =
1

z
+

1

z � 1
2

,

and ' =  ⇥ as usual. Letting � = 1 we find that the equation ⇥(⇣) = 1 has the solutions

⇣1 = 1, ⇣2 = �1.
From the preceding, we find that the desired unimodular constants !1 and !2 are given by

!1 = 1, !2 = �i.
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For a 2⇥ 2 matrix A we have the identity

kAk = 1

2

⇣p
tr(A⇤A) + 2| det(A)|+

p
tr(A⇤A)� 2| det(A)|

⌘
. (38)

This formula follows from the polar decomposition A = U |A| where U is unitary and |A| =p
A⇤A is nonnegative. If �1,�2 � 0 denote the eigenvalues of |A| (i.e., the singular values of

A), note that tr(A⇤A) = �21 + �22 and | detA| = �1�2 since U is unitary.

Plugging this data into (36) and using (38) we find that

kA'kK⇥!K⇥ =

�����

 
5
4 � 7i

4
p
3

� 7i
4
p
3

� 13
12

!����� =
1

6
(7 +

p
37) ⇡ 2.1805.

In light of Proposition 1, we also have

sup
F2H1

kFk1=1

��F (0) + F ( 12 )
�� = 1

6
(7 +

p
37).

Example 3. One could generalize the above example to

sup
f2H2

kfk=1

��c1f2(a1) + c2f
2(a2)

�� = �( ) = kA'kK⇥!K⇥
,

where a1, a2 2 D (a1 6= a2), c1, c2 2 C \ {0}. In this case we have

⇥(z) =
(z � a1)(z � a2)

(1� a1z)(1� a2z)
,  (z) =

c1
z � a1

+
c2

z � a2
, ' =  ⇥.

We now represent our truncated Toeplitz operator with respect to the Takenaka-Malmquist-
Walsh basis

v1(z) =

p
1� |a1|2
1� a1z

, v2(z) =
z � a1
1� a1z

p
1� |a2|2
1� a2z

.

We then use (33) and (34) to get

�( ) =

������

0

@
c1(a1�a2)

(1�|a1|2)(1�a1a2)
0

c1
p

1�|a2|2p
1�|a1|2(1�a1a2)

+
c2
p

1�|a1|2p
1�|a2|2(1�a2a1)

c2(a2�a1)
(1�|a2|2)(1�a2a1)

1

A

������
. (39)

Example 4. Plugging a1 =
p
2
4 + i

p
2
4 , a2 = 1

3 , c1 = 1, c2 = � 1
2 , into (39) and using

Mathematica reveals that

sup
F2H1

kFk1=1

���F (
p
2
4 + i

p
2
4 )� 1

2F ( 13 )
���

= 1
48

r
3966841�1644636

p
2+
p

15343011060049�9085021064952
p
2

2882�888
p
2

⇡ 0.927119.

Example 5. For another class of examples, suppose c0, c1, . . . , cn are complex numbers and
consider the rational function

 (z) =
c0
z

+
c1
z2

+ · · ·+ cn
zn+1

.

The corresponding Blaschke product (6) is therefore ⇥(z) = zn+1 and hence by Corollary 2 we
see that

�( ) = kA zn+1kKzn+1!Kzn+1

= kAcn+cn�1z+···+c0znkKzn+1!Kzn+1 .
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The matrix representation of A zn+1 with respect to the monomial basis {1, z, . . . , zn} for
Kzn+1 is the lower triangular (n+ 1)⇥ (n+ 1) Toeplitz matrix

T =

0

BBBBB@

cn
...

. . .

c2 · · · cn
c1 c2 · · · cn
c0 c1 c2 · · · cn

1

CCCCCA
. (40)

By Corollary 2 we therefore obtain

sup
f2H2

kfk=1

����
1

2⇡i

I

@D

⇣c0
z

+ · · ·+ cn
zn+1

⌘
f2dz

���� = kTk . (41)

Notice how this reproves the Fejér-Egerváry results mentioned in the introduction.

Example 6. By the above calculation,

�

✓
1

z
+

1

z2

◆
= kA1+zkKz2!Kz2

=

����

✓
1 0
1 1

◆����

=
1 +

p
5

2
⇡ 1.618.

In particular, notice that this answer agrees with Egerváry’s example (4) discussed in the
introduction.

Example 7. This example generalizes the results of Example 6 and demonstrates the use
of antilinear eigenvalue problems to calculate the norm of a complex symmetric operator.
Consider the nonlinear extremal problem

�
⇣a0
z2

+
a1
z

⌘
= sup

f2K⇥
kfk=1

|2a0f(0)f 0(0) + a1f(0)| (42)

where a0 and a1 are fixed. To ensure that the problem (42) is nontrivial, we make the additional
assumption that a0 6= 0. By the discussion in Example 5, it follows that

�
⇣a0
z2

+
a1
z

⌘
= kAa0+a1zkKz2!Kz2

=

����

✓
a0 0
a1 a0

◆���� .

Although the norm of the above matrix can be computed explicitly using standard methods
or the explicit formula (38), let us now illustrate our anti-linear eigenvalue technique.

The conjugation C on Kz2 is given by Cf = fzz2 = fz. In other words,

C(c0 + c1z) = c1 + c0z, c0, c1 2 C.
With respect to the monomial basis {1, z} forKz2 we see that the anti-linear eigenvalue problem
Aa0+a1zu = �Cu (which has a unit vector solution) is equivalent to the following R-linear
problem: ✓

a0 0
a1 a0

◆✓
u1

u2

◆
=

✓
�u2

�u1

◆
. (43)

The norm of the associated Toeplitz matrix coincides with the largest � � 0 for which the
preceding system is consistent.
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In light of the assumption that a0 6= 0, it follows that u2 6= 0 else u1 = u2 = 0. Solving the
first equation in (43) for u1 and substituting the result in the second yields

a1u2 =

✓
�� |a0|2

�

◆
u2. (44)

Since the function � 7! � � |a0|2
� is increasing for � > 0, it follows from (44) that the largest

positive number � satisfying (43) must satisfy

|a1| = �� |a0|2
�

.

This in turn means that � satisfies the quadratic equation

�2 � |a1|�� |a0|2 = 0.

Solving this yields the explicit answer

�
⇣a0
z2

+
a1
z

⌘
=

|a1|+
p|a1|2 + 4|a0|2

2
, (45)

which agrees with (38). On the other hand, a direct attack on the problem would involve
computing the eigenvalues of the matrix

✓
a0 a1
0 a0

◆✓
a0 0
a1 a0

◆
=

✓|a0|2 a0a1
a0a1 |a0|2 + |a1|2

◆

and then explicitly computing their square roots. This involves considerably more symbolic
computation. For instance, Mathematica yields the seemingly more complicated answer

r
|a0|2 + 1

2

⇣
|a1|2 � |a1|

p
|a1|2 + 4|a0|2

⌘
,

which is, of course, equal to (45).

6. Computing an extremal function

By Corollary 2 we have

�( ) = kA ⇥kK⇥!K⇥ = hA ⇥u,Cui ,
where u 2 K⇥ is a unit vector solution to the anti-linear eigenvalue problem

A ⇥u = kA ⇥kCu

(such a vector exists). Here is a procedure which, at least in principle, can be used to compute
an extremal function u for �( ).

As before, let MA ⇥ denote the matrix representation of the truncated Toeplitz operator A ⇥
with respect to the modified Aleksandrov-Clark basis {v1, v2, . . . , vn} in (20). In particular,
recall that Cvj = vj for all 1  j  n by (21). If u 2 K⇥ is a unit vector, then

u = c1v1 + c2v2 + · · ·+ cnvn, |c1|2 + |c2|2 + · · ·+ |cn|2 = 1.

If, in addition, u is a solution to
A ⇥u = kA ⇥kCu,

then the coe�cients c1, c2, . . . , cn satisfy the equation

MA ⇥

0

B@
c1
...
cn

1

CA = kMA ⇥k

0

B@
c1
...
cn

1

CA (46)
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where MA ⇥ is a complex symmetric matrix. If we write cj = xj + iyj where xj , yj 2 R, the
above equation can be written as a linear system in 2n real variables and then solved using
linear algebra (then normalizing so that |c1|2 + · · ·+ |cn|2 = 1).

Remark 1. If one only wishes to find the extremal function up to a unimodular constant,
then one can avoid the conjugation C as follows: If {v1, . . . , vn} is any orthonormal basis for
K⇥ and M is the matrix representation of A ⇥ : K⇥ ! K⇥ with respect to {v1, . . . , vn}, it
follows from the proof of part (iii) of Theorem 1 that if (c1, . . . , cn) 2 Cn is a unit vector and

M⇤M

0

B@
c1
...
cn

1

CA = kMk2
0

B@
c1
...
cn

1

CA ,

then, for some unimodular constant ⇣,

u = ⇣(c1v1 + · · ·+ cnvn)

is an extremal function for �( ).

Example 8. Let us return to the data of Example 2. In particular, recall that we have
�( ) = kA ⇥kK⇥!K⇥ ⇡ 2.1805, where

⇥ = z
z � 1/2

1� z/2
,  =

1

z
+

1

z � 1/2
.

Moreover, we found that the desired supremum is equal to
�����

 
5
4 � 7i

4
p
3

� 7i
4
p
3

� 13
12

!����� =
1

6
(7 +

p
37) ⇡ 2.1805.

With � = 1 and ⇣1 = 1, ⇣2 = �1,!1 = 1,!2 = �i, we can use (20) to compute the modified
Aleksandrov-Clark basis

v1(z) = �1� 3

z � 2
, v2(z) = �i

p
3� i

p
3

z � 2

for the model space K⇥. An extremal function u is any unit vector solution to

A ⇥u = kA ⇥kCu.

To compute u = c1v1+c2v2, we need to find a unit vector solution to the anti-linear eigenvalue
problem  

5
4 � 7i

4
p
3

� 7i
4
p
3

� 13
12

!✓
c1
c2

◆
=

1

6
(7 +

p
37)

✓
c1
c2

◆
.

A computation with Mathematica yields the coe�cients

c1 =
1

2

s

2 +
1p
37

, c2 =
1

2
i

s

2� 1p
37

.

Therefore, the desired unit vector u = c1v1 + c2v2 equals

z
q

2� 11p
37

z � 2
�
q
2 + 10p

37

z � 2

Another computation with Mathematica will show that A ⇥ has two distinct singular values
and hence the kernel of |A ⇥|�kA ⇥kI is one-dimensional. By Corollary 2 it follows that this
extremal solution u for �( ) is unique up to a sign.
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When examining the extremal problem

�
⇣c0
z

+
c1
z2

+ · · ·+ cn
zn+1

⌘
,

we saw from our previous discussion that this supremum is equal to the norm of the lower
triangular Toeplitz matrix T from (40), which is simply the matrix representation of A zn+1 :
Kzn+1 ! Kzn+1 , where

 (z) =
c0
z

+ · · ·+ cn
zn+1

,

with respect to the orthonormal basis {1, z, . . . , zn} for Kzn+1 . Observing that

C(a0 + a1z + · · ·+ anz
n) = an + an�1z + · · ·+ a0z

n,

we see that in order to find a unit vector solution u to

A zn+1u = kA zn+1kCu,

we need to find a unit vector solution (a0, a1, . . . , an) to
0

BBBBB@

cn
...

. . .

c2 · · · cn
c1 c2 · · · cn
c0 c1 c2 · · · cn

1

CCCCCA

0

BBBBB@

a0
a1
...

an�1

an

1

CCCCCA
= kA zn+1k

0

BBBBB@

an
an�1

...
a1
a0

1

CCCCCA
. (47)

As before, writing aj = xj + iyj , xj , yj 2 R, this can be solved for a0, a1, . . . , an using linear
algebra (and then normalizing so that |a0|2 + |a1|2 + · · ·+ |an|2 = 1).

Example 9. We saw from Example 6 that

�

✓
1

z
+

1

z2

◆
= kA1+zkKz2!Kz2

=

����

✓
1 0
1 1

◆���� =
1 +

p
5

2
⇡ 1.618.

To find an extremal function u = a0 + a1z 2 Kz2 , we need to find a unit vector solution to
✓
1 0
1 1

◆✓
a0
a1

◆
=

1 +
p
5

2

✓
a1
a0

◆

A short computation yields the extremal function

u(z) =
2z +

p
5 + 1q

2
�
5 +

p
5
� .

Recalling that

�

✓
1

z
+

1

z2

◆
= ⇤

✓
1

z
+

1

z2

◆
,

observe that u is the square root of the H1 extremal function from Egerváry’s example (5).

Another computation with Mathematica shows that A1+z has two distinct singular values and
so the kernel of |A1+z| � kA1+zkI is one dimensional. By Corollary 2, we conclude that the
extremal solution u for �( ) is unique up to a sign.

Example 10. Consider the rational kernel  = 1/z2, which yields the nonlinear extremal
problem

�( ) = sup
f2K⇥
kfk=1

����
1

2⇡i

I

@D

f2(z)

z2
dz

���� = 2 sup
f2K⇥
kfk=1

|f(0)f 0(0)|.
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According to our recipe, the corresponding Blaschke product is ⇥ = z2. We therefore have
' =  ⇥ = 1 whence A' = I and

�

✓
1

z2

◆
=

����

✓
1 0
0 1

◆���� = 1.

In this case,

f1 =
1p
2
(1 + z), f2 =

1p
2
(�1 + z) (48)

are linearly independent extremal functions for �( ). Despite the fact that the corresponding
model space Kz2 =

W{1, z} is two-dimensional, this does not imply that every function f(z) =
a0 + a1z satisfying |a0|2 + |a1|2 = 1 is extremal. Indeed, simply consider the functions 1 or z.
This behavior is not unexpected, since the underlying extremal problem is nonlinear.

Example 11. Recall the nonlinear extremal problem

�
⇣a0
z2

+
a1
z

⌘
=

|a1|+
p|a1|2 + 4|a0|2

2
from Example 7. With � denoting the above extremum, a computation with Mathematica
shows that a solution to the corresponding antilinear eigenvalue problem (43) is given by

u1 = i
|a0|
a0

��2 � �a1 + a20q
|�2 � a1�+ a20|2 + |�2 + �a1 � a20|2

,

u2 =
|a0|
a0

��2 + a1�� a20q
|�2 � a1�+ a20|2 + |�2 + �a1 � a20|2

.

This means that an extremal function is f = u1 + u2z. One can check that the singular values
of ✓

a0 0
a1 a0

◆

are distinct if and only if a1 = 0. Therefore f is the unique extremal function, up to sign, for
(42) if and only if a1 = 0. When a1 = 0, the supremum is equal to |a0| and one can check by
direct computation that (48) are two linearly independent solutions to (42).

7. Norm attaining symbols

Since the truncated Toeplitz operator A' : K⇥ ! K⇥ is a multiplication operator followed by
an orthogonal projection, it follows immediately that

kA'kK⇥!K⇥
 k'k1 , ' 2 H1. (49)

For a rational function  having no poles on @D, we have shown that the nonlinear extremal
problem �( ) given by (1) yields the supremum �( ) = kA'kK⇥!K⇥

where ⇥ is the corre-
sponding Blaschke product (6) and ' =  ⇥. In particular, it follows that

�( ) = sup
f2H2

kfk=1

����
1

2⇡i

I

@D
 f2dz

���� = kA'kK⇥!K⇥
 k'k1 . (50)

We now investigate conditions under which equality holds in (49) and (50).

We say that a unit vector x is a maximal vector for a bounded linear operator T : H ! H
if kTxk = kTk. It is clear that maximal vectors exist for any compact operator and thus for
any operator on a finite-dimensional space. From our perspective, the importance of maximal
vectors stems from the following important lemma [37, Prop. 5.1]:



22 Stephan Ramon Garcia and William T. Ross CMFT

Lemma 4 (Sarason). Let ⇥ be any inner function and T : K⇥ ! K⇥ be a linear operator
of unit norm that commutes with Az : K⇥ ! K⇥. If T has a maximal vector, then there is
a unique function ' 2 H1 such that k'k1 = 1 and A' = T . Moreover, ' is both an inner
function and the quotient of two functions from K⇥.

We say that a symbol ' 2 L1 for a truncated Toeplitz operator A' on K⇥ is norm-attaining
if kA'k = k'k1. It is important to note that this definition depends upon the particular inner
function ⇥ corresponding to the model space K⇥ upon which A' acts. For ⇥ a finite Blaschke
product, the next result says exactly when we have equality in (49):

Theorem 2. Let ⇥ be a finite Blaschke product. A symbol ' in H1 is norm-attaining with
respect to K⇥ if and only if ' is a scalar multiple of the inner factor of a function from K⇥.

Proof. ()) Without loss of generality, we assume that kA'k = k'k1 = 1. Since ⇥ is a
finite Blaschke product, it follows that K⇥ is finite-dimensional whence the truncated Toeplitz
operator A' : K⇥ ! K⇥ has a maximal vector. Now recall the well-known fact [37, Thm. 1]
that the commutant of Az : K⇥ ! K⇥ is

{A' : K⇥ ! K⇥ : ' 2 H1}
whence A' commutes with Az. By Lemma 4, it follows immediately that ' is an inner function
and ' = f/g, for some f, g 2 K⇥. Thus f = 'g = 'IgFg, where Ig is the inner factor of g and
Fg is the outer factor. A short argument now reveals that

AIg
f = P⇥(Ig'IgFg) = P⇥('Fg) = 'Fg (51)

since the function 'Fg belongs to H2 and is orthogonal to ⇥H2. Indeed, since f belongs to
K⇥ we have, for any h 2 H2,

h'Fg,⇥hi = h'IgFg,⇥(Igh)i = hf,⇥(Igh)i = 0.

We conclude from (51) that ' is indeed the inner factor of a function from K⇥.

(() Conversely, let ' be the inner factor of a function from K⇥. In other words, suppose that
there exists an outer function F of unit norm such that 'F belongs to K⇥. This implies that

kA'Fk = kP⇥('F )k = k'Fk = kFk = 1

whence kA'k = 1. Thus ' is a norm-attaining symbol with respect to ⇥.

Let us make a few important remarks concerning possible generalizations of the preceding
theorem. First observe that the (() implication of Theorem 2 remains true for any inner
function ⇥. Furthermore, the ()) implication of the theorem remains true for general inner
⇥ and ' 2 H1 as long as the operator A' : K⇥ ! K⇥ has a maximal vector. This occurs, for
instance, if A' is compact.

Corollary 3. Let ⇥ be a finite Blaschke product. If ' 2 H1 is not a scalar multiple of a
Blaschke product, then kA'k < k'k1.

Corollary 4. If ⇥ is an inner function and ' is a finite Blaschke product of degree < dimK⇥,
then ' is a norm attaining symbol for K⇥.

Proof. Let �1,�2, . . . ,�n denote the zeros of ' and note that n < dimK⇥. Consequently
there exists a nonzero function f 2 K⇥ such that f is orthogonal to the n kernel functions
k�1 , k�2 , . . . , k�n . In other words, there exists a nonzero function f 2 K⇥ which vanishes at
each �1,�2, . . . ,�n. Since inner factors of functions in K⇥ can be removed without leaving K⇥,
we may assume that the inner factor of f is precisely '. By the remarks preceding Corollary
3, it follows that ' is a norm-attaining symbol for K⇥.
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Example 12. If ⇥ is a singular inner function, then there exists a Blaschke product ' having
simple zeros such that ' is a norm-attaining symbol for K⇥. Indeed, an argument using
Frostman’s Theorem [30, Thm. 3.10.2] (see also [15, Sec. 3.3]) produces many such Blaschke
products which occur as inner factors of functions in K⇥. Now employ the observations made
prior to Corollary 3.

The following corollary of Theorem 2 (along with Corollary 2) tells us when we have equality
in (50).

Corollary 5. For a rational function  having no poles in @D, the following are equivalent:

(i) ⇤( ) = �( ) = max⇣2@D | (⇣)|,
(ii) There exist a c 2 C and finite Blaschke products B1 and B2 having no common zeros

and satisfying degB1 < degB2 so that

 = c
B1

B2
.

Proof. If we assume (i), then, adopting the notation from Corollary 2, we see that the symbol
' =  ⇥ is norm-attaining with respect to K⇥. Thus by Theorem 2 it follows that  ⇥ = cB
where c 2 C and B is the inner factor of some function f 2 K⇥. Using the representation (10)
we find that

f(z) =
p(z)

Qn
j=1(1� �jz)

, (52)

where p(z) is a polynomial with deg p < n = deg⇥. It follows that B is a finite Blaschke
product with degB < n. The fact that ⇥ and B have no common zeros follows from the
definition of ⇥ from (6).

Conversely, if we assume (ii), then  = cB⇥ , where B and ⇥ are finite Blaschke products with
degB < deg⇥. If �1,�2, . . . ,�n are the zeros of ⇥ (repeated according to multiplicity), then
every f 2 K⇥ takes the form (52). If we take p(z) to be a polynomial whose zeros are precisely
those of B, which is possible since degB < n, then B will be the inner factor of a function
from K⇥. By Theorem 2 it then follows that the symbol  ⇥ is norm attaining with respect to
K⇥. To conclude the proof, simply appeal to Corollary 2.

Example 13. In Example 6 we showed that

�

✓
1

z
+

1

z2

◆
=

1 +
p
5

2
⇡ 1.618.

Observe that with  (z) = 1/z + 1/z2, we have

max
⇣2@D

| (⇣)| = 2 > �( ).

This strict inequality is expected since the rational function

 (z) =
z + 1

z2

cannot be written as B1/B2 where degB1 < degB2. Indeed,  is the quotient of the noncon-
stant outer function z + 1 and the finite Blaschke product z2.

Example 14. In a very similar way, we know from Example 2 that

�

✓
1

z
+

1

z � 1/2

◆
=

1

6
(7 +

p
37) ⇡ 2.1805.
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With  (z) = 1/z + 1/(z � 1
2 ), a brief calculation shows that

max
⇣2@D

| (⇣)| = 3 > �( ).

As in the preceding example, the strict inequality is to be expected since

 (z) = 2
z � 1

4

z(z � 1
2 )

cannot be written in the form B1/B2 where degB1 < degB2.

Example 15. Let '(z) = z and

⇥(z) = z

✓
z � 1

2

1� 1
2z

◆
. (53)

Since kAzk  kzk1 = 1 and

kAz(1)k = kP⇥(z1)k = kzk = 1,

it follows immediately that kAzk = 1. That z is a norm-attaining symbol for K⇥ is to be
expected, since z is indeed the inner factor of a function from K⇥.

This can also be verified by a direct computation. Using � = 1 in our recipe, we find that
⇣1 = 1 and ⇣2 = �1 whence !1 = 1 and !2 = �i. Putting this all together yields the modified
Aleksandrov-Clark basis

v1(z) =
1

2

1�⇥(z)

1� z
, v2(z) = �i

p
3

2

1�⇥(z)

1 + z

with respect to which Az has the matrix representation

MAz =

 
3
4 � i

p
3

4

� i
p
3

4 � 1
4

!

which, via (38), has norm 1, as expected.

Example 16. Let '(z) = 1�z
2 and let ⇥ as in (53). Using the data from the previous example,

we see that

MA' =

 
1
8

i
p
3

8
i
p
3

8
5
8

!
,

which has norm equal to

1

4
(1 +

p
3) ⇡ 0.683013 < 1 = k'k1 .

This is to be expected since ' is outer.

8. Best constants

As an application of the identity

⇤( ) = �( ) = kA ⇥kK⇥!K⇥
,

we can obtain the best constant in various pointwise estimates of the derivatives of H1 func-
tions. Such estimates have been studied before [12, 20, 26, 27] (The papers [2, 4, 25, 36] contain
related results). using di↵erent methods and function theoretic language. Our discussion uses
operator theoretic language. To begin, first observe that the Cauchy integral formula [11, p. 40]
says that

F (n)(�) =
n!

2⇡i

I

@D

F (z)

(z � �)n+1
dz, F 2 H1, � 2 D. (54)
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This yields, via the inequality |z � �| � 1� |�| for |z| = 1, the pointwise estimate

|F (n)(�)|  n!

(1� |�|)n+1
kFk1 . (55)

This is not the best that we can do, however. Going back to (54) we see that the best (sharpest)
constant cn,� in the pointwise inequality

|F (n)(�)|  cn,� kFk1 , F 2 H1, (56)

is

cn,� = ⇤

✓
n!

(z � �)n+1

◆
= �

✓
n!

(z � �)n+1

◆
.

By Corollary 1, this constant is the operator norm of the truncated Toeplitz operator

A n!
(1��z)n+1

: K⇥ ! K⇥

where

⇥(z) =

✓
z � �
1� �z

◆n+1

. (57)

Putting this all together, we obtain the following theorem:

Theorem 3. For n = 0, 1, 2, . . . and � 2 D, we have

cn,� =
n!

(1� |�|2)n+1
kTk,

where T is the (n+ 1)⇥ (n+ 1) lower triangular Toeplitz matrix whose entries are

[T ]ij =

(
|�|i�j

�
n+1
i�j

�
if i � j,

0 if i < j.
(58)

Furthermore, an extremal function for ⇤( n!
(z��)n+1 ), when � = r 2 (0, 1), is of the form

F (z) = ⇣
1� r2

(1� rz)2


↵0 + ↵1

z � r

1� rz
+ · · ·+ ↵n

✓
z � r

1� rz

◆n�2
, (59)

where ⇣ is a certain unimodular constant and (↵0, . . . ,↵n) 2 Cn+1 is a unit vector solution to

T ⇤T

0

BBBBB@

↵0

↵1

...
↵n�1

↵n

1

CCCCCA
= kTk2

0

BBBBB@

↵0

↵1

...
↵n�1

↵n

1

CCCCCA
. (60)

Before proceeding with the proof of Theorem 3, let us make a few remarks.

(i) Once the unit vector solution (↵0,↵1, . . . ,↵n) to (60) is fixed, the unimodular constant
⇣ in (59) is determined by the condition

1

2⇡i

I

@D

n!

(z � r)n+1
F (z)dz > 0.

(ii) Since the matrix (58) in the formula from Theorem 3 is a real Toeplitz matrix, its norm
can be computed by considering the corresponding selfadjoint Hankel matrix obtained
by reversing the order of its rows.

(iii) The theorem above was first proved by Golusin [20] using a function-theoretic approach.



26 Stephan Ramon Garcia and William T. Ross CMFT

Proof. To prove (58) we may, by radial symmetry, assume that � = r 2 (0, 1). Let ⇥ denote
the finite Blaschke product (57) and note that dimK⇥ = n+ 1. Next, define  = n!

(z�r)n+1 so
that

' =  ⇥ =
n!

(1� rz)n+1
.

Recall now that the corresponding Takenaka-Malmquist-Walsh basis

{v1, v2, . . . , vn+1}
for K⇥ from (18) is given by

vk(z) =

p
1� r2

(1� rz)k
(z � r)k�1, 1  k  n+ 1,

whence the ijth entry [M ]ij of the matrix representation M = MA' of the truncated Toeplitz
operator A' : K⇥ ! K⇥ is

[M ]ij = hA'vj , vii .
As we have seen, the matrix M is lower-triangular (see Subsection 5.1) so that [M ]ij = 0
whenever i < j. Let us compute [M ]ij for i � j:

[M ]ij = hA'vj , vii = h'vj , vii

= (1� r2)
n!

2⇡i

I

@D

1

(1� rz)n+1

(z � r)j�1

(1� rz)j
(z � r)

i�1

(1� rz)
i

dz

z

= (1� r2)
n!

2⇡i

I

@D

1

(1� rz)n+1

(z � r)j�1

(1� rz)j
(z � r)i�1

(1� rz)i
zi�1

zi
dz

= (1� r2)
n!

2⇡i

I

@D

(z � r)j�1

(1� rz)n+j+1

(1� rz)i�1

(z � r)i
dz

= (1� r2)
n!

2⇡i

I

@D

1

(1� rz)n+j�i+2

1

(z � r)i�j+1
dz. (61)

For p, q = 0, 1, 2, . . ., an application of the Cauchy integral formula shows that

1

2⇡i

I

@D

1

(1� rz)p
1

(z � r)q+1
dz =

(p+ q � 1)!

q!(p� 1)!

rq

(1� r2)p+q
.

Applying this identity with p = n + j � i + 2 and q = i � j and continuing from (61) we find
that

[M ]ij = n!(1� r2)
(n+ 1)!

(i� j)!(n+ j � i+ 1)!

ri�j

(1� r2)n+2

=
n!

(1� r2)n+1

✓
n+ 1

i� j

◆
ri�j

for i � j. This yields the desired formula (58).

The second part of the theorem follows from Remark 1 and the fact that if f is an extremal
function for �( n!

(z�r)n+1 ), then F = f2 is an extremal function for ⇤( n!
(z�r)n+1 ).

Remark 2. The coe�cients ↵0, . . . ,↵n from (60) can also be computed by solving the R-linear
system

T

0

BBBBB@

↵0

↵1

...
↵n�1

↵n

1

CCCCCA
= kTk

0

BBBBB@

↵n

↵n�1

...
↵1

↵0

1

CCCCCA
.
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To see this, notice that T is the matrix representation, with respect to the monomial basis
{1, z, z2, . . . , zn�1}, for the truncated Toeplitz operator A' : Kzn ! Kzn , where

'(z) =
n�1X

k=0

✓
n

k

◆
rkzk.

The isomorphism U : Kzn ! K⇥, Uzj = vj+1, where vj+1 is one of the Takenaka-Malmquist-
Walsh basis elements, shows that A' : Kzn ! Kzn is unitarily equivalent to A n!

(1�rz)n+1
: K⇥ !

K⇥. Moreover, the extremal vectors for each of these truncated Toeplitz operators get mapped
to each other via U . The extremal vector for A' on Kzn can be solved by (47).

Example 17. Consider the simple case n = 0. Let

'(z) =
1

1� rz
, ⇥(z) =

z � r

1� rz

so that  (z) = 1/(z � r). Using the fact that the model space K⇥ is precisely the span of the
single function 1/(1� rz), it follows from the Cauchy integral formula that

c0,r = ⇤

✓
1

z � r

◆
= �

✓
1

z � r

◆

=
1

2⇡i

I

@D

1/(1� rz)2

z � r
dz

=
1

1� r2
.

Replacing r with |�|, where � 2 D, we obtain the sharp estimate

|F (�)|  1

1� |�|2 kFk1 , F 2 H1.

In particular, this is a substantial improvement over the naive estimate (55). Moreover, the
preceding reproduces (using entirely di↵erent techniques) a result of Egerváry [12] (see also
[26, 27]). An extremal function for the linear extremal problem ⇤( 1

z�� ) is simply

F (z) =
1� |�|2
(1� �z)2 .

Notice how this is the square of the H2 function

f(z) =

p
1� |�|2
1� �z

which is a unimodular scalar multiple of an extremal function for the corresponding nonlinear
problem �( 1

z�� ).

Example 18. We now consider the slightly more complicated case n = 1. Using Theorem 3
we get

c1,r =
1

(1� r2)2

����

✓
1 0
2r 1

◆���� .

Using (38), we find that the norm of the 2⇥ 2 Toeplitz matrix

T =

✓
1 0
2r 1

◆

is given by the formula ����

✓
1 0
2r 1

◆���� = r +
p
1 + r2
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whence

c1,r =
r +

p
1 + r2

(1� r2)2
.

Replacing r by |�| and going back to (56) we establish the following sharp estimate:

|F 0(�)|  |�|+p1 + |�|2
(1� |�|2)2 kFk1 , F 2 H1,

This estimate was originally proved by Macintyre and Rogosinski in [26] using entirely di↵erent
methods.

An extremal function f for �( 1
(z�r)2 ) must be of the form

f = ⇣(a1v1 + a2v2),

where |⇣| = 1, |a1|2 + |a2|2 = 1, {v1, v2} is the Takenaka-Malmquist-Walsh basis

v1(z) =

p
1� r2

1� rz
, v2(z) =

p
1� r2

(1� rz)2
(z � r),

for

H2  
✓

z � r

1� rz

◆2

H2,

and (a1, a2) satisfy
✓

1 2r
0 1

◆✓
1 0
2r 1

◆✓
a1
a2

◆
=

����

✓
1 0
2r 1

◆����
2✓

a1
a2

◆
.

A Mathematica computation shows that

a1 =
r +

p
r2 + 1q�

r +
p
r2 + 1

�2
+ 1

, a2 =
1q�

r +
p
r2 + 1

�2
+ 1

.

Thus an extremal function for ⇤( 1
(z�r)2 ) is F = f2.

Example 19. Macintyre and Rogosinski [27, Sec. 11] note several qualitative properties of
c2,r, although they do not compute it explicitly. Using our techniques, we can compute c2,r
explicitly. When n = 2, we apply Theorem 3 to get

c2,r =
2!

(1� r2)3

������

0

@
1 0 0
3r 1 0
3r2 3r 1

1

A

������
=

2!

(1� r2)3

������

0

@
3r2 3r 1
3r 1 0
1 0 0

1

A

������
.

Using Mathematica to symbolically compute the norm of the preceding 3⇥3 selfadjoint Hankel
matrix, we find that c2,r is 2!

(1�r2)3 times the quantity

r2 +

2

3

p
9r4 + 24r2 + 4 cos

✓
1

3

arg

✓
9r

✓
6r5 + 24r3 + 11r + i

q
3

�
36

�
r2 + 4

�
r2 + 109

�
r2 + 96

◆
� 16

◆◆
+

1

3

.

As in the previous example, an extremal function f for �( 2!
(z�r)3 ) is

f(z) = ⇣(a1v1(z) + a2v2(z) + a3v3(z)),

where ⇣ is a certain unimodular constant,

v1(z) =

p
1� r2

1� rz
, v2(z) =

p
1� r2

(1� rz)2
(z � r), v3(z) =

p
1� r2

(1� rz)3
(z � r)2,
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and (a1, a2, a3) is a unit vector solution to
0

@
1 0 0
3r 1 0
3r2 3r 1

1

A

0

@
1 3r 3r2

0 1 3r
0 0 1

1

A

0

@
a1
a2
a3

1

A =

������

0

@
1 0 0
3r 1 0
3r2 3r 1

1

A

������

20

@
a1
a2
a3

1

A

or equivalently 0

@
1 0 0
3r 1 0
3r2 3r 1

1

A

0

@
a1
a2
a3

1

A =

������

0

@
1 0 0
3r 1 0
3r2 3r 1

1

A

������

0

@
a3
a2
a1

1

A .

Once the unit vector solution (a1, a2, a3) to the above system is fixed, the unimodular constant
⇣ is determined by the condition that

1

2⇡i

I

@D

2!

(z � r)3
f(z)2dz > 0.

Example 20. In a similar fashion we obtain

c3,r =
3!

(1� r2)4

��������

0

BB@

1 0 0 0
4r 1 0 0
6r2 4r 1 0
4r3 6r2 4r 1

1

CCA

��������
,

c4,r =
4!

(1� r2)5

����������

0

BBBB@

1 0 0 0 0
5r 1 0 0 0
10r2 5r 1 0 0
10r3 10r2 5r 1 0
5r4 10r3 10r2 5r 1

1

CCCCA

����������

,

c5,r =
5!

(1� r2)6

������������

0

BBBBBB@

1 0 0 0 0 0
6r 1 0 0 0 0
15r2 6r 1 0 0 0
20r3 15r2 6r 1 0 0
15r4 20r3 15r2 6r 1 0
6r5 15r4 20r3 15r2 6r 1

1

CCCCCCA

������������

.

Unfortunately, evaluating these expressions explicitly in terms of r is prohibitive (if not impos-
sible). However, it is clear that these quantities can be computed numerically, for a specified
value of r, to arbitrarily high precision since this involves nothing more than computing the
eigenvalues of a selfadjoint Hankel matrix.

We also remark that if V is the (n+ 1)⇥ (n+ 1) matrix

V =

0

BBBB@

0
1 0

1
. . .
. . . 0

1 0

1

CCCCA
,

then

T = (I + rV )n+1. (62)

If ⌧n,r is the norm of the Toeplitz matrix from (58) with |�| = r (so that cn,r = n!
(1�r2)n+1 ⌧n,r),

Golusin [20] (see also [23]) proved that for fixed n the function

r 7! ⌧n,r
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is an increasing function on (0, 1) and

lim
r!1�

⌧n,r  2n+1.

For an N ⇥N matrix A, let

kAkF :=

0

@
NX

i,j=1

|Ai,j |2
1

A
1/2

denote the Frobenius norm (also known as the Hilbert-Schmidt norm) of A and note that

1p
N
kAkF  kAk  kAkF

(see [22, p. 314] for further details). Using this inequality and the definition of ⌧n,r, we get a
small improvement of Golusin’s estimate, namely

 
1

n+ 1

nX

k=0

(n+ 1� k)

✓
n+ 1

k

◆2

r2k

!1/2

 ⌧n,r 
 

nX

k=0

(n+ 1� k)

✓
n+ 1

k

◆2

r2k

!1/2

.

Going back to the simplistic estimate in (55), Corollary 5 implies that

cn,r <
n!

(1� r)n+1
= sup
⇣2@D

����
n!

(1� r⇣)n+1

���� . (63)

9. Final comments

If  belongs to L1(@D) but is not necessarily rational, one can still consider the extremal
problems ⇤( ) and �( ). At this level of generality, several technical problems arise. To begin
with, there are functions  2 L1 for which the linear extremal problem ⇤( ) given by (2)
does not have an extremal function [11, p. 134]. In addition, we do not know if ⇤( ) is equal
to �( ) nor do we know if it is possible for an extremal function to exist for ⇤( ) but not for
�( ). On the other hand, we still obtain the inequality �( )  ⇤( ) from (30).

When  is continuous on @D, it is known [23, p. 33] that an extremal function F for ⇤( )
exists and that F can be chosen so that |F | > 0 on D. It follows, by noting that f :=

p
F is

an extremal function for �( ) (see Section 4 above), that ⇤( ) = �( ).

If  2 L1(@D) such that there is an inner ⇥ (not necessarily a finite Blaschke product) for
which  ⇥ 2 H1, then one can show that the proofs of Theorem 1 (i), Corollary 2 (i), and
Proposition 1 are still valid. In particular, this implies that

⇤( ) = �( ) = kA ⇥kK⇥!K⇥
.

Using the remarks preceding Corollary 3, we can also show that if  = �
If
⇥ , where � 2 C and

If is the inner factor of a function f from K⇥, then

⇤( ) = �( ) = k k1 .

Unfortunately, any potential statements from our results concerning the existence and possible
uniqueness of extremal functions for �( ) must require di↵erent proofs since it is not clear
whether or not A ⇥ : K⇥ ! K⇥ has a maximal vector. Additionally, one does not necessarily
have a practical matrix representation for A ⇥ with which to compute the norm.

We end with some results which begin to extend our work beyond rational  .

Lemma 5. If ' 2 H1 and ⇥ is an interpolating Blaschke product with zeros �1,�2, . . . (nec-
essarily distinct) then A' : K⇥ ! K⇥ is compact if and only if limn!1 '(�n) = 0.
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Proof. By Carleson’s Interpolation Theorem, it follows that the kernels k�n form a Riesz basis
for K⇥ [29, p. 132-135] whence there exists a bounded invertible operator Q : l2(N) ! K⇥

such that Qen = k�n for n 2 N. Here en denotes the n-th standard basis vector for l2(N).
Since A⇤

'k�n = '(�n)k�n (see (23)) for all n, it follows that Q�1A⇤
'Qen = '(�n)en for all n.

Thus A⇤
' is similar to the diagonal operator diag('(�1),'(�2), . . .) on l2(N) which is compact

if and only if limn!1 '(�n) = 0.

Observe that if the associated truncated Toeplitz operator A' : K⇥ ! K⇥ is compact, then
A' has a maximal vector and thus most of our proofs can proceed as before. In particular, we
get the following:

Corollary 6. If  = '
⇥ , where ' 2 H1, ⇥ is an interpolating Blaschke product with zeros

�1,�2, . . ., and limn!1 '(�n) = 0, then ⇤( ) = �( ) and there exists an extremal function
for �( ) and hence for ⇤( ).

Corollary 7. If  = '
⇥ , where ' 2 H1, ⇥ is an interpolating Blaschke product with zeros

�1,�2, . . ., and limn!1 '(�n) = 0, then ⇤( ) = �( ) = k k1 if and only if  = � I
⇥ , where

� 2 C and I is the inner factor of a function from K⇥.
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