Scho OE fIB§1§1€ SS University of Richmond
UR Scholarship Repository

Finance Faculty Publications Finance

Spring 2005
An Excel Apﬁhcation for Valuing European
Options with Monte Carlo Analysis

Tom Arnold
University of Richmond, tarnold@richmond.edu

Stephen C. Henry

Follow this and additional works at: http://scholarship.richmond.edu/finance-faculty-publications

b Part of the Finance and Financial Management Commons, and the Mathematics Commons

Recommended Citation

Arnold, Tom, and Stephen C. Henry. "An Excel Application for Valuing European Options with Monte Carlo Analysis." Journal of
Financial Education 31 (Spring 2005): 86-97.

This Article is brought to you for free and open access by the Finance at UR Scholarship Repository. It has been accepted for inclusion in Finance
Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact

scholarshiprepository@richmond.edu.

http://robins.richmond.edu/?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://robins.richmond.edu/?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/finance-faculty-publications?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/finance?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/finance-faculty-publications?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Ffinance-faculty-publications%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

An Excel Application for Valuing European
Options with Monte Carlo Analysis

Tom Arnold and Stephen C. Henry

University of Richmond and Sam Houston State University

By developing the basic intuition of how Monte Carlo simulation works within
an Excel spreadsheet framework, this paper allows the undergraduate student
to use Monte Carlo simulation techniques to price European style options
without additional sophisticated software. Further, the skills and intuition
developed provide the basis for much more complex simulation technigues.

INTRODUCTION

Monte Carlo simulation allows an analyst to generate many scenarios for a given
security’s future price. The frequency with which a particular future price occurs within
a set of simulations becomes a measure of the likelihood that that future price will
actually occur. Essentially, it is equivalent to rolling a pair of dice many times to
determine how frequently certain values occur rather than using a predetermined
probability density function to generate the frequencies of these same values.

With regard to security prices, the most common application of Monte Carlo analysis
is for the pricing of options. Although closed form solutions such as the Black-Scholes
model (1973) exist, these models cannot match the intuition and pedagogic value of
Monte Carlo analysis. In fact, when closed form solutions are not available or need to be
tested, Monte Carlo analysis often becomes the only pricing mechanism available for the
task.

In this paper, we provide the basic structure of Monte Carlo analysis and then apply
it to the pricing of European-style options (i.e. the option can only be exercised at
maturity). Although sophisticated software packages for performing Monte Carlo
simulation exist, Excel and VBA are suitable for the task, and are generally available to
students.

In section one, the basic principles of stochastic processes and risk-neutral pricing
are introduced without relying on stochastic calculus or continuously adjusted hedges.
The second section provides the necessary Excel and VBA commands to produce a Monte
Carlo analysis for a European-style option. Section three concludes the paper.

86 Journal of Financial Education

BASIC PRINCIPLES OF STOCHASTIC PROCESSES

Stochastic processes are probability distribution functions that contain a time
component. More specifically, the mean and variance of the distribution change
depending upon the length of the time-step under consideration. If one makes a
prediction of a particular stock price one minute into the future, the risk or uncertainty
relative to the accuracy of the prediction is probably fairly low. The predicted stock
price is the mean of all of the possible future prices considered and the risk assessment
of the accuracy of the mean (or predicted price) is the variance of the predicted price.
By changing the duration of the prediction time-step from one minute to one year, the
mean and the variance of the predicted future stock price change dramatically. In other
words the probability distribution of the predicted future price is time dependent relative
to its mean and variance. Consequently, a stochastic process is appropriate for assessing
future security price movement.

The most basic stochastic process is a Wiener process. Observations from a Wiener
process are normally distributed with a mean of zero and with a variance equal to an
infinitesimally small time-step, “dr.” The notation for a Wiener process is “dZ” and the
notation for the associated normal probability distribution is “/V{mean, variance/)’ or in
this case, “N(0, dt).” The variance of the Wiener process can be scaled by multiplying dZ
by a value “¢” making gdZdistributed N(0, ¢’dt). Further, the mean ofa Wiener process
can be scaled by simply adding a value, “4,” to dZ making y + dZ distributed Ny, dt).
By combining these two properties and adjusting the g parameter to include a time
component (i.e. multiply 4 by dr), Arithmetic Brownian Motion (ABM) emerges as: pdt
+ gdZ and is distributed N(/_[dt, a’zdr).

Although one may be tempted to use ABM as the appropriate process to describe the
future movement of a stock price, it is inappropriate despite having a mean and variance
that is dependent on time due to the dr parameter. To illustrate the point, consider a
$0.25 increase in price for a stock that had a price of $1.00 ten seconds in the past and
compare it to a $0.25 price increase for a stock that had a price of $80.00 ten seconds in
the past. The returns on the two stocks for an equivalent movement in price are very
different. Because an ABM process acts independently of where it starts or where it is
at any given moment in time, it is very much like the example above in which a $0.25
change in price is equally valid for an $80.00 stock or a $1.00 stock. If one can adjust the
ABM process to make the price movement scaled relative to the most recent security
price, then a potentially appropriate model for stock price movement emerges.

Let “S;” be the stock price at a given moment in time and let “4S” symbolize the
change in price looking forward into the future one time-step of length dt. By adjusting
pdt and g to include S, Geometric Brownian Motion (GBM) is created: ds = uSde +
05,dZ and is distributed N(uSdt, [0S, fdt). Notice, by simply multiplying ydtand g by
S, the new stochastic process has price movements that are scaled by the current stock
price. u isviewed as the expected return for the stock and ¢ is viewed as the volatility
(or standard deviation) of the expected stock return.

The only statistical principles that have been applied thus far are: 1) a probability

Spring 2005 87

distribution with a mean of g and a variance of ﬂz multiplied by a constant, “4,” creates
a new probability distribution with a mean of ({@;)and a variance of Ciﬁf and 2) when
a constant J is added to a probability distribution with a mean of grand a variance of
it creates a new probability distribution with a mean of ({ +¢)and a variance of . The
first principle was applied to scale the variance of a Wiener process and the second
principle was applied to scale the mean of the Wiener process. It is critical to not make
the creation of ABM and GBM from a Wiener process any more complicated than the
above illustration, because the same application of these two statistical principles allows
one to produce a basic Monte Carlo analysis in Excel.

One additional statistical principle is necessary to enable option pricing within a
Monte Carlo analysis: the ability to change probability measure within a probability
distribution. When a stock is priced, the price is the discounted value of all of the future
cash flows associated with the stock. Suppose a given stock has an equal probability of
being $25.00 or $26.50 one year into the future. Thus the expected future price is $25.75
(equals 0.50x$25.00 + 0.50x$26.50). Given a current price of $23.41, an expected future
annual return of 10% is calculated (equals [$25.75 - $23.41] + $23.41). Suppose, for a
reason not yet explained, one wants the future annual return to be 9% instead of 10%,
the probabilities of the two future prices can be changed to allow a 9% return. By making
the probability of the $25.00 future price 65.3% instead of 50% and the associated
probability for the $26.50 future price 34.7% instead of 50%, the 9% expected annual
return is achieved.

This is what is meant by changing the probability measure. Instead of adjusting the
future outcomes of $25.00 and $26.50 to accommodate the 9% expected annual return
(a standard transformation technique in statistics), the probabilities of the future
prices are adjusted instead. GBM and ABM allow for a change in probability measure
to be accomplished very easily. For more details, the interested reader is referred
to Neftci (2000), Arnold and Henry (2003), Johnstone (2002), or Arnold and Crack
(2003).

When pricing options, one knows the current price of the underlying security and
can model the future prices (using a GBM process) of that underlying security associated
with the expiration of the option. For ease of exposition, assume the option can only be
exercised at expiration (i.e. a European-style option). Tofind the option price, one values
the option based on its payoffs relative to the possible underlying security prices at the
time of expiration. An expectation of the option payoffs is calculated and discounted to
find the option price. Although one may use the underlying security’s expected return
to determine the possible future prices of the underlying security (and generate
associated probabilities for these same future prices), the discount rate for the option is
different than the expected return for the underlying security. The option is much
riskier and any transformation from the underlying security’s rate of return is subject to
the accuracy of having selected the correct rate of return for the underlying security.
Consequently, the task of determining the option’s discount rate is not simple and
fortunately not necessary.

By changing the probability measure of the stochastic process (i.e. a GBM process)

88 Journal of Financial Education

modeling the underlying security’s future price, the discount rate for the underlying
security can be made equivalent to the discount rate for the associated option. By
adjusting the underlying security return to be the risk-free rate, the new probability
distribution of the stochastic process for the underlying security is risk-neutral because
the underlying security’s return now has a zero risk premium. Given this risk-neutral
future price distribution for the underlying security price, the associated probabilities for
the option payoffs are also risk-neutral, meaning, the expected future option payoff can
be discounted at the risk-free rate as well. Because risk-free rates are easy to obtain, the
use of risk-neutral pricing for options is very pragmatic in addition to being a simplifying
probability transformation.

Note that the ability to change the probability measure isa property of GBM and not
reliant on the ability to create a risk-neutral hedge nor on the assumption that
participants are risk-neutral. These latter conditions are sufficient for risk-neutral pricing
but not necessary. Although a formal proof of the ability to change probability measure
is not given here (it is an application of Girsinov’s Theorem), the reader is referred again
to Neftci (2000).

MONTE CARLO ANALYSIS IN EXCEL

Monte Carlo analysis uses a stochastic process to model future security prices. By
simulating prices using a given stochastic process, a probability distribution of the future
security price is generated by determining the frequency of particular future prices over
many simulation trials. The frequency with which a certain price appears throughout
the simulation trials becomes the probability of that particular price occurring in the
future. The probability equals the number of simulation trials in which the price appears
divided by the total number of simulation trials.

For example, ten simulations of a future stock price produce: $15.00, $16.50, $17.00,
$14.75, $15.00, $15.00, $14.75, $16.50. $15.00, and $16.50. $15.00 appears four times out
of the ten trials yielding a probability of 40% (i.e. 4 occurrences + 10 trials).
Correspondingly, the probabilities of $14.75, $16.50, and $17.00 are 20%, 30%, and 10%.
The expected future price of the security is calculated either by taking the average of all
of the simulated prices or by taking the mean based on the final prices with associated
probabilities. Generally, the former calculation of the expected future price is preferred
over the latter calculation.

To apply a stochastic process to a Monte Carlo analysis in Excel, a random number
generator from a normal distribution is necessary. The Excel command =RAND()
produces a uniformly distributed random number between zero and one. The Excel
command =NORMINV(a, 5, ¢) produces a value from a normal distribution that has the
cumulative probability associated with the value 2 (0 < 2 < 1), given a normal
distribution with mean & and variance c”. By combining the two commands,
=NORMINV(RAND(), b, ¢), a random number from a normal distribution with mean &
and a variance of ¢ is generated.

Similarly, a random draw from a Wiener process can be generated by the formula

Spring 2005 89

=NORMINV(RAND(), 0, SQRT(d?)), where SQRT() indicates the square root of the
value dr. The Wiener process can then be adjusted to produce random draws from ABM
and GBM processes by adjusting the mean and variance. Recall that ABM is normally
distributed Nud, o’dt) from the specification ydt + gdZ. The associated random
number generator in Excel is=sNORMINV(RAND(), i “dt, g "SQRT(dr)). GBM is normally
distributed MuSdt, [0S, Jdt) from the specification dS = uSdt + 0S,dZ, where S, is the
most recent security price. The associated random number generator in Excel is
=NORMINV(RAND(), y°S,"ds, g*S,*SQRT(d)).

To generate a simulation, one must decide at what point in the future a security price
should be evaluated and how many time intervals there should be prior to reaching that
final point of time in the future. In fact, what is being asked is: just how small of a time
increment does dfneed to be. In the equations, dtis infinitesimally small, but in reality
the length of dr must be specified by the modeler. Suppose it is decided that the
appropriate point in the future (say, the option’s expiration date) is three months from
today and that there will be five time intervals within the three month period.
Consequently, three months is 0.25 years, which is further divided by five to make each
time interval 0.05 years. Thus, dris 0.05 years in length. For each simulation of the three
month future price, five consecutive draws from normal distributions with a dt
specification of 0.05 years are necessary.

The question often arises: why not just make dr 0.25 years and not be concerned
about the intervals in between? There are two reasons. First, the simulation increases
in accuracy as dr becomes smaller, making dt resemble more closely the infinitesimally
small value that it represents in theory. The second reason applies to GBM processes.
Because the most recent security price, S, is part of the mean and variance specification,
S, should be updated as often as possible (i.e. at every interval of df).

To price European-style options, the appropriate simulation length is the time until
expiration of the option. The modeler determines the number of time intervals within
a simulation and the number of repetitions of the simulation. Again, increasing the
number of time intervals within a simulation makes drsmaller and increases accuracy.
Increasing the number repetitions of the simulation also improves the accuracy of the
model. The only other parameters to consider are: the current price of the underlying
security, the annual risk-free rate (this is used instead of the expected return on the
underlying security to generate risk neutral prices), the annual volatility of the
underlying security’s return (volatility is the standard deviation, i.e. the square root of
the variance, and is the traditional input for Monte Carlo simulation), and the option
contract specifications. The inputs are displayed in Figure 1.

The call option and put option prices in cells C12 and C13 respectively in Figure 1
still must be calculated using a Monte Carlo simulation. Cells C2 through C8 provide the
necessary inputs for the analysis and can be changed to repeat the analysis under
different scenarios.

Obtaining a meaningful expected ending price requires a large number of
observations;

90 Journal of Financial Education

Figure 1. Spreadsheet Layout for Monte Carlo Analysis

ik - MU V. i g I e S R . 8
'l e Sl o
=1 Spot price 60| | 2
& Exercise price 45.00 £
Expiration (days) an |

Volatility 30% [M

Risk-free rate 6%| | | &=
7| |Mumber of intervals 100 ; | J
8 Number or repetitions 500 | 1=
N ! |
10| , { ‘
Sl | S
. 3 . o . X oimemmren o e —— T

| __ ,' i "

Note: For simplicity, the option is European-style and the underlying stock does not pay
dividends.

thus, some sort of automation is necessary to conduct useful simulations. Excel provides
us with a tool that is ideally suited to the task: the Visual Basic for Applications (VBA)
programming language.

Visual Basic for Applications is an adaptation of Microsoft’s general-purpose
programming language Visual Basic. Originally released in 1993, VBA was chosen by
Microsoft to replace the Excel macro facility, and later to provide a consistent interface
for programming and automation across the Microsoft Office suite of applications. Like
the macro facility it replaced, VBA allows users to record and play back sequences of
operations to automate tedious or repetitive tasks. Unlike the macro facility, though,
VBA includes many elements of a general-purpose programming language (such as loops,
branching, and conditional execution) that enable users to develop sophisticated
applications for data retrieval and worksheet manipulation.

The repetitive task of generating Monte Carlo observations certainly requires some
sort of automation. The process is conceptually simple: our program needs to (1) generate
a new set of random disturbances (price changes) (2) compute the ending price (by
adding the random price changes to the starting price), (3) calculate the payoff to the
option holder (and store it for further analysis), and (4) repeat the process a large number

Spring 2005 91

of times. Although the procedure is straightforward, it requires more programming
sophistication than a keystroke-macro facility can provide. VBA is an ideal tool for this
exercise.

We begin the process of creating a VBA program by opening the Visual Basic editor,
either through the [Tools]->[Macro] menu, or by pressing <Alt>-<F11>. This is the
window in which VBA code can be developed and executed. At the left of this window
is the Project Explorer, showing the structure of all workbooks and other collections of
objects currently open in Excel. Ifthe Project Explorer window is missing, open it using
the [View] menu. One should be aware that format and default settings will vary
between computers, however, the information contained in the different VBA windows
will beequivalent. Consequently, the figures containing screen images in this article may
not match the reader’s computer screen exactly.

While a detailed discussion of Excel’s object hierarchy is beyond the scope of this
paper’, it is important to note that an Excel workbook is essentially a collection of objects
of various types: most commonly, worksheets, charts, and code modules. In order to
execute properly, VBA programs must be contained in standard code modules. In
particular, when a user-defined function is invoked from the worksheet, Excel searches
for the appropriate code only in standard code modules. Functions stored inside other
types of modules will not be found.

By default, a newly created workbook contains sheer code modules associated with
the three initial worksheets (“Sheetl” —~ “Sheet3”). In fact, when the Project Explorer
window first appears, “Sheet 1” is generally highlighted. While VBA code can be stored
here, sheet code modules are not suitable for storing user-defined functions, because
Excel will be unable to locate them®. The first step, then, is to create a module object (a
standard code module) to hold our program. This is accomplished by selecting the name
of the current workbook in the Project Explorer window (“monte.xls” in the example)
and activating the menu sequence: [Insert] -> [Module]. Additional modules can be
inserted in the same manner. The result should be, as in Figure 2, a new, blank standard
code module “Modulel” inside the current workbook.

With a blank module in place, we can begin developing the code to automate our
simulation. The next step is to declare the name of our program and indicate what
parameters it will receive. The statement “Function SimCall(S, X, T, sigma, rf, intervals,
reps)” tells the VBA interpreter that we are creating a user-defined function called
“SimCall” that requires seven parameter inputs. When the line is typed into the VBA
editor, a corresponding “End Function” entry is generated automatically, defining the
beginning and end of our program.

The VBA language allows programs to be declared either as functions or as
subroutines. Setting aside issues of “good programming style” for the moment, the
primary difference between the two types of programming is in the manner in which
they are invoked. VBA programs written as subroutines must be executed from the
[Tools] -> [Macro] menu, or from within the VBA editor itself. Programs that perform
a sequence of operations without requiring any input are well suited to be written as
subroutines, For example, recorded macros are declared as VBA subroutines.

92 Journal of Financial Education

Figure 2. VBA Editor

al sual Basic - Monte.als - [Modite (C _ = X

|
ER 2
8 x

;‘m.w:tm :HMI _!_{

Hodule1 Module =y

IR i P e LN

Mphaoetic jCaleg l & I

Modulz1 i s

Il I
o 2
! -
| b = {l Y 3 I :l

Alternatively, functions are programs that accept input in the form of arguments,
perform some computations, and return the results. In Excel, VBA functions can be
invoked directly from within the worksheet, just like the built-in functions (e.g.
=RAND()). That is, once our program is complete, we will be able to run the simulation
simply by typing the formula =SimCall(...) into a cell. Functions are commonly used to
extend the capabilities of Excel by performing calculations not originally implemented
by its designers.

Example code for conducting a Monte Carlo simulation is shown in Figure 3. The
seven arguments to the SimCall() function are variable names chosen to represent the
usual five parameters defining the option value, as well as the desired number of intervals
and iterations for the simulation. By listing these variables as inputs for the function,
they can be assumed to exist inside the program, and can be referred to by name when
performing calculations. A similar function for a put option will be created in a second
module (simply perform the [Insert] -> [Module] sequence a second time).

The program for the SimCall() function begins by calculating the value of di, the
length of each interval. Then a For/Next loop is established to repeat the simulation the
number of times specified by the argument reps. The beginning stock price S'is copied
to the temporary variable spot, and a second loop simulates the stock price process by

Spring 2005 93

Figure 3, Function Code for Monte Carlo Analysis

*!& ’ﬂ Wew M ?_m ﬁ"ﬁ?_w% 6‘!&!”_ it \ L’." 5 \'- Taa'r:'.l::_\:.”\mfrl‘ﬂis fr,‘-;l;‘i
EEeE L L e e _-1'8@'&* R ey 2 SR U AU T T
Project - VBAProlect ‘!1‘ -_’l d_—_ﬁﬁ—
3 L
_E’@ } g s Puncticn Simfall (5, X, T, sigma, =f, intecsvals, raps) _?
VBAProject (Monte.xis)]
= 8§ Moosof: Excel Objests 1l 4 = |T / 360) / imzesvals
W] Steet1 Shear 1) b o
&) Sheet (Sheet2) b= | For L = 1 Tc zeps
Sheetd (Sheetl) -
Thiswarkhoak | Aandomize
- S Mocdes spot = £
2 Moduel
ol Module: - Fer 3 = 1 Ts iztervals
ds = Applicatica.torminv(Red(), spet = £t = dr, _
aigma * apot * 3gz{dc))
spat = spot + da
Hext 3
froperiss | Hoduled .:..M - If spon > X Then Lec payoff = paycff = (=pot - X)
[Fodule 1 Mod e =]
= S . Bext =
L i 5 SimCall = (payoff / zeps) / Expiz® = I / 360)
vy End Functice
| <
| b

adding random price changes (d5) to the starting price. At the end of each simulation,
the resulting call option payoffis calculated and averaged. The resulting expected payoff
is assigned to a variable having the same name as the function itself, which is passed back
to the worksheet cell when the program ends.

With the basic simulation framework in place, pricing different types of options
becomes a matter of adjusting the payoff calculation. For example, one can implement
a =SimPut() function for pricing a European-style put option in the second module by
simply making a copy of SimCall() function: highlight the program text, copy the text
from the first module to the second module, adjust the text relative to the name of the
new function, and change the payoff calculation to read:

If spot < X Then Let payoff = payoff + (X - spot)
instead of
If spot > X Then Let payoff = payoff + (spot - X) .

Again, VBA functions are invoked either from within a worksheet or by another
VBA routine. In this case, we want to estimate the option value based on parameters
already entered into worksheet cells. This can be accomplished simply by typing the

94 Journal of Financial Education

Figure 4. Simulation Result

Results

l ump e e R T e W T |
"FH;A 8 T/ i ' P EYE v,] i -I;-; - ‘.gc- v 2 _cn . .,-- l ' E ,:Ia- . ,F 'r'“' -\1 :A., |[|
2 Spot price 50.00 | ! Al
{3 __ |Exercise price 450 | . |
| = Expiration (days) 90 el
s Volatility 30% | ol
- ~ |Risk-free rate 6% 5 1l
| Number of intervals 100 | i |
{L__gc____ ol Nurr_l_berorrawuhons ggy-— - = __-—1:1

formula =simcall(C2,C3,C4,C5,C6,C7,C8) into a worksheet cell. Figure 4 illustrates the
results of one such simulation.

As noted previously, increasing the number of simulations and time intervals within
a simulation increases the accuracy of the Monte Carlo analysis. However, it is not
uncommon for the simulated option price to be $0.20 or more above or below the
theoretical Black-Scholes option price unless many simulations and successively smaller
time intervals are used. This can lead to greatly increased execution time and can cause
Excel to “crash”. Further, when the reader performs the Monte Carlo simulation, it is
very unlikely that results identical to the result displayed in Figure 4 will emerge (due
to the nature of random numbers). In fact, the reader should not be surprised by the
varying results that emerge from successive implementations of the Monte Carlo analysis.
Consequently, some improvements to the simulation are necessary (see chapter 18.6 of
Hull (2003) for a more extensive discussion).

One improvement is to increment the price based on simulating the risk-free return
process for the underlying security. The return process is simply the natural logarithm
of the price process. The (risk-neutralized) price process is GBM, N(R:Sdt, [oS,[dt),
where R, is the risk-free rate. By applying Ito’s lemma, the risk-free return process is
ABM, N(/R,~0.5¢° Jdt, o°d)(see Arnold and Henry (2003) for a discussion of Ito’s lemma
and this particular transformation). To illustrate how the simulation works, suppose the
initial risk-free rate is 5% annually with drequal to 0.25 years and an initial underlying
security price of $50.00. Moving forward one time step of dt, the risk-free rate increases

Spring 2005 95

hypothetically by an increment of 0.1% annually (or 0.025% relative to the time step)
making the new risk-freerate 5.1% annually. The new underlying security price becomes
$50.00 x exp(5.1% x 0.25) = $50.64, where exp()is the exponential function. Although
it is the risk-free rate process that is simulated, a corresponding simulation is generated
for the underlying security price. The greater precision of using the risk-free return
process simulation relative to the previous GBM simulations (as measured against the
Black-Scholes option price) is impressive. As to why the risk-free return process
simulation works much better, the interested reader is again referred to Hull (2003).

Making the change to the VBA code is straightforward. Rather than simulating
changes in the stock price (denoted dsin SimCall()), we want to simulate the rate of
return process (to be denoted by dr). We simply edit the SimCall() function, replacing
the lines:

ds = Application.NormInv(Rnd(), spot * rf * dt, sigma *spot * Sqr(dt))
spot = spot + ds

With the following code:

dr = Application.NormInv(Rnd(), (rf - (0.5 * sigma * 2)) * dt, sigma * Sqr(dt))
spot = spot * Exp(dr)

Where the original program generated simulated observations of changes in the
stock price (normally distributed with mean S, x Ry x drand standard deviation g x St x
\/dt), the revised version simulates dr, which has a mean of [R;- (0%2)]dt, and a standard
deviation of Vdt). The spot price of the stock at any point in time is calculated as the
previous period’s price multiplied by e

Because there is no optimal rule for setting the number of “intervals” and
“repetitions” within a Monte Carlo analysis, experimentation by the modeler is
encouraged. In the current case, an analysis with 30 intervals within 5000 repetitions
(using the revised function) generally produces accurate option prices when compared
to the Black-Scholes value. However, the simulation will not be perfect every time and
one must consider the value of computer time when increasing intervals and/or
repetitions relative to the value of pricing accuracy. As computer technology improves,
this issue becomes less important.

CONCLUSION

Monte Carlo analysis is an intuitive method for estimating the probability of future
events. When coupled with risk-neutral pricing, it can make the pricing of optionsa rela-
tively simple exercise, but at the same time it emphasizes how much of the analysis is
under the modeler’s control. In this paper, determining the appropriate number of
repetitions of a simulation and the number of intervals within a simulation is
emphasized. However, making a decision between the use of GBM or ABM process

96 Journal of Financial Education

cannot be overlooked, nor can determining the parameters used within the given
stochastic process be taken lightly.

Combined with a basic understanding of stochastic processes, the rudimentary
programming techniques introduced in the previous section can enable students to
conduct much more comprehensive Monte Carlo analysis in Excel. For example, even
continuing with the option pricing examples from this paper, one can introduce the
payment of dividends or investigate alternative volatility specifications for the underlying
stock. The models can be relatively simple like the model of Arnold and Henry (2003)
or more complex like the models of Johnson and Shanno (1987) and Das and Sundaram
(1999). Ultimately, the goal is to enable the student to understand and become
comfortable with Monte Carlo analysis and basic stochastic processes. By using Excel, the
student and teacher can accomplish this goal without the need for expensive additional

sofrware.
ENDNOTES

' Note that literal Excel command strings are printed in courier type, while stalics
denote symbolic values (which will be replaced with cell references in Excel).

?Jackson and Staunton (2001) provides an excellent introduction to this material.

3 Sheet and workbook code modules are intended to store event procedures, that is,
code to be executed when particular events (such as mouse clicks and key presses) occur.

REFERENCES

Arnold T. and Crack, T.F. (2003) The Irrelevance of Risk-Adjusted Discount Rates in
Option Pricing (Risk Neutral Pricing Without Risk Neutral Hedging). Working
Paper.

Arnold T. and Henry, S.C. (2003) Visualizing the Stochastic Calculus of Option Pricing
with Excel and VBA. Journal of Applied Finance. 13(1) 56-65.

Black, F. and Scholes M. (1973) The Pricing of Options and Corporate Liabilities. Journal
of Political Economy. 81(3) 637-654.

Das, S.R. and R.K. Sundaram, R. K. (1999) Of Smiles and Smirks: A Term Structure
Perspective. Journal of Financial and Quantitative Analysis. 34(2) 211-239.

Hull, J. (2003) Options, Futures, and Other Derivatives. Upper Saddle River, NJ: Prentice
Hall.

Jackson, M., and Staunton, M. (2001) Advanced Modeling in Finance using Excel and
VBA. New York, NY: John Wiley & Sons

Johnson, H. and Shanno D. (1987) Option Pricing when the Variance is Changing.
Journal of Financial and Quantitative Analysis. 22(2) 143-151.

Johnstone, D. (2002) Risk-Neutral Option Pricing From EPV Without CAPM. Journal of
Financial Education. 28(Summer) 72-78.

Neftci, S.N. (2000) An Introduction to the Mathematics of Financial Derivatives. San
Diego,CA: Academic Press.

Spring 2005 97

	University of Richmond
	UR Scholarship Repository
	Spring 2005

	An Excel Application for Valuing European Options with Monte Carlo Analysis
	Tom Arnold
	Stephen C. Henry
	Recommended Citation

	An Excel Application for Valuing European Options with Monte Carl.pdf

