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Common Cyclic Vectors for Normal Operators
WILLIAM T. ROSS & WARREN R. WOGEN

ABSTRACT. If µ is a finite compactly supported measure on C,
then the set Sµ of multiplication operators Mϕ : L2(µ)→ L2(µ),
Mϕf = ϕf , where ϕ ∈ L∞(µ) is injective on a set of full µ
measure, is the complete set of cyclic multiplication operators on
L2(µ). In this paper, we explore the question as to whether or
not Sµ has a common cyclic vector.

1. INTRODUCTION

A bounded linear operator S on a separable Hilbert space H is cyclic with cyclic
vector f if the closed linear span of {Snf : n = 0,1,2, . . . } is equal to H . For
many cyclic operators S, especially when S acts on a Hilbert space of functions,
the description of the cyclic vectors is well known. Some examples: When S is
the multiplication operator f → xf on L2[0,1], the cyclic vectors f are the L2

functions which are non-zero almost everywhere. When S is the forward shift
f → zf on the classical Hardy space H2, the cyclic vectors are the outer functions
[10, p. 114] (Beurling’s theorem). When S is the backward shift f → (f−f(0))/z
on H2, the cyclic vectors are the non-pseudocontinuable functions [9, 17].

For a collection S of operators on H , we say that S has a common cyclic vector
f , if f is a cyclic vector for every S ∈ S. Earlier work of the second author
[20] showed that the set of co-analytic Toeplitz operators Tϕ̄, with non-constant
symbolϕ, onH2 has a common cyclic vector. This line of research was pursued by
several others culminating in a result of Bourdon and Shapiro [4] which says that
for any reproducing kernel Hilbert space of analytic functions on a planar domainΩ (Bergman space, Dirichlet space, Hardy space, etc.), the set of adjoints M∗

ϕ of
multiplication operators, where ϕ is a non-constant multiplier, has a common
cyclic vector.
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1538 WILLIAM T. ROSS & WARREN R. WOGEN

In this paper, we will consider common cyclic vectors for normal multiplication
operators. To set this up, we first review some classical results about normal op-
erators. The interested reader can consult [6, 8] for further information. For our
separable Hilbert spaceH , let B(H ) denote the bounded linear operators on H .
The weak-operator topology on B(H ) (denoted by WOT) is the topology on
B(H ) given by the family of semi-norms

ρf,g(S) := |〈Sf , g〉|, f , g ∈H .

We say an algebra A ⊂ B(H ) is cyclic if there is a vector f ∈ H such that
{Af : A ∈ A} is dense inH . If N ∈ B(H ) is normal (N∗N = NN∗), letW(N)
denote the WOT closed linear span of {Nk : k = 0,1, . . . }. Note that N is cyclic
if and only if W(N) is cyclic. Let W∗(N) be the (abelian) von Neumann algebra
generated by N, i.e., W∗(N) is the WOT closed linear span of {NkN∗` : `, k =
0,1,2, . . . }. A normal operator N ∈ B(H ) is ∗-cyclic if the algebra W∗(N) is
cyclic. Finally, recall that {N}′ = {A ∈ B(H ) : AN = NA}, the ‘commutant’
of N, coincides with W∗(N)′ (the operators that commute with everything in
W∗(N)) and always contains W∗(N). The following theorem is standard in the
theory of normal operators.

Theorem 1.1. For a normal operator N ∈ B(H ), the following are equivalent.
(1) N is cyclic.
(2) N is ∗-cyclic.
(3) W∗(N) is maximal abelian, that is to say, W∗(N)′ = W∗(N).
(4) There is a finite, positive, Borel measure µ on the spectrum σ(N) so that N is

unitarily equivalent to Mz : L2(µ) → L2(µ), Mzf = zf .

Throughout this paper, all measures will be positive, finite, compactly sup-
ported, Borel measures on C. With this assumption, L2(µ) is a separable Hilbert
space. The equivalence of (2), (3), and (4) is part of the spectral theory for nor-
mal operators [6, Chapter 2]. The equivalence of (1) and (2) is an elegant the-
orem of Bram [5, p. 232]. In general, the cyclic vectors for a normal opera-
tor will be a proper subset of the ∗-cyclic vectors. However, if N is ‘reductive’
(W(N) = W∗(N)), then each ∗-cyclic vector will be cyclic.

Since (1) and (4) are equivalent in Theorem 1.1, we consider the algebra

Aµ := {Mϕ : L2(µ)→ L2(µ), Mϕf =ϕf :ϕ ∈ L∞(µ)},

where µ is a measure on C. Some basic facts about Mϕ and Aµ are as follows.

Proposition 1.2. For Mϕ ∈ Aµ,
(1) Mϕ is normal with M∗

ϕ =Mϕ̄.
(2) ‖Mϕ‖ = ‖ϕ‖∞.
(3) σ(Mϕ) is equal to

⋂{ϕ(A)− : A measurable, µ(Ac) = 0}, often called the
‘essential range’ of ϕ.
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(4) {Mz}′ = Aµ = W∗(Mz). Moreover, the map ϕ → Mϕ is an isomorphism and
a homeomorphism between (L∞(µ),weak-∗) and (Aµ,WOT).

Concerning ∗-cyclic vectors, we can use the above discussion to say the fol-
lowing.

Proposition 1.3. For ϕ ∈ L∞(µ), the following are equivalent:

(1) Mϕ is ∗-cyclic.
(2) ϕ is injective on a set of full measure.
(3) ϕ is a weak-∗ generator of L∞(µ) in the sense that the weak-∗ closed linear span

of {ϕnϕ̄k : k,n = 0,1, . . . } is L∞(µ).
(4) W∗(Mϕ) = Aµ.

Furthermore, f ∈ L2(µ) is ∗-cyclic forMϕ if and only if f 6= 0 µ-almost everywhere.

Let L∞i (µ) be the set of ϕ ∈ L∞(µ) that are injective on a set of full measure.
Also define Sµ := {Mϕ : ϕ ∈ L∞i (µ)} and note that Sµ has a common ∗-cyclic
vector (any f ∈ L2(µ) that is non-zero µ-almost everywhere will do) and in fact,
the common ∗-cyclic vectors are dense. Also observe that the set Srµ := {Mϕ :
ϕ ∈ L∞i (µ), W(Mϕ) = W∗(Mϕ)} has a common cyclic vector. Our common
cyclic vector problem, and the focus of this paper, is the following.

Question 1.4. Does Sµ have a common cyclic vector?

S. Seubert kindly informed us that the answer is yes when the measure µ
is atomic. In fact, results in a paper of Sibilev [18] ([15] has a related result)
essentially characterize the common cyclic vectors for Sµ when µ is atomic. We
outline a short proof of this result (Theorem 2.1) for completeness and to suggest
some further directions.

We will show, for a general measure µ, decomposed as µ = µd + µc , with µd
discrete and µc continuous [13, p. 334], that Sµ has a common cyclic vector only
when µc = 0 (Theorem 3.3). Using the theory of Lebesgue spaces, it is enough
to consider the measure µ = m, normalized Lebesgue measure on the unit circle
T. We will show that Sm has no common cyclic vectors (3.2) and thus one is
led to consider whether or not natural subsets of Sm have common cyclic vectors.
Theorem 4.1 is such a result.

2. ATOMIC MEASURES

Suppose µ is purely atomic, that is,

(2.1) dµ =
∞∑
n=1
anδzn,

where (an)ná1 is a summable sequence of positive numbers and δzn is the unit
point mass at zn. For ϕ ∈ L∞i (µ), observe that Mϕχzn = ϕ(zn)χzn , where



1540 WILLIAM T. ROSS & WARREN R. WOGEN

χzn is the characteristic function for the singleton {zn}. Thus the operator Mϕ
has a spanning set of eigenvectors {χzn : n = 1,2, . . . } corresponding to distinct
eigenvalues (since ϕ is injective). We claim that

(2.2) h :=
∞∑
n=1

2−nχzn

is a common cyclic vector for Sµ

Theorem 2.1. For a purely atomic measure µ, Sµ has a common cyclic vector.

The key to proving Theorem 2.1 is a function theory result of Beurling. The
set up is as follows: Suppose that (cn)ná1 is a sequence of complex numbers
satisfying

lim
n→∞

n
√
|cn| < 1,

and (an)ná1 is a bounded sequence of distinct complex numbers. Form the func-
tion

(2.3) f(z) :=
∞∑
n=1

cn
z − an

(functions of this type are often called ‘Borel series’ or sometimes ‘Denjoy-Wolff ’
series) and note that f is analytic off (an)−ná1. Note also that C \ (an)−ná1 might
be a disconnected set. The following is a consequence of a more general result of
Beurling [3, Théorème II] (see also [17]).

Lemma 2.2 (Beurling). If the function in equation (2.3) vanishes on an open
subset of C \ (an)−ná1, then cn = 0 for all n.

We are now ready for the proof of Theorem 2.1. With dµ and h defined
in equation (2.1) and equation (2.2), let ϕ ∈ L∞i (µ). If g ∈ L2(µ) satisfies
〈MNϕh,g〉 = 0 for every N = 0, 1, 2, . . . , then

0 =
∞∑
n=1

ϕ(zn)Nh(zn)g(zn)an

=
∞∑
n=1
ϕ(zn)N2−ng(zn)an, N = 0,1,2, . . . .

Notice that

∞∑
n=1

|g(zn)|an =
∫
|g|dµ à C

[∫
|g|2 dµ

]1/2
< ∞
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and so, in particular, (g(zn)an)ná1 is a bounded sequence.
For |z| > A := sup{|ϕ(zn)| : n = 1,2, . . . },

0 =
∞∑
N=0

1
zN

∞∑
n=1

ϕ(zn)N2−ng(zn)an,

which, after reversing the order to summation, yields

0 =
∞∑
n=1

2−ng(zn)an
∞∑
N=0

ϕ(zn)N

zN

=
∞∑
n=1

2−ng(zn)an
1−ϕ(zn)/z = 0, |z| > A.

Now appeal to Beurling’s result, 2.2 (note that

lim
n→∞

n
√
|2−ng(zn)an| à 1

2
,

and the ϕ(zn)’s are distinct, since ϕ is injective) to conclude that g(zn) = 0 for
all n and so, since g vanishes on a carrier of µ, g is the zero function. Since h
does not depend on ϕ ∈ L∞i (µ), h is a common cyclic vector for Sµ.

3. MEASURES WITH A CONTINUOUS PART

We will now show that Sµ does not have a common cyclic vector whenever µ has
a non-trivial continuous part. Before we do though, we recall Szegö’s theorem
[14, p. 49].

Theorem 3.1 (Szegö). For a positive measure µ on T with Lebesgue decomposi-
tion, with respect to normalized Lebesgue measurem on the circle, dµ = hdm+dσ ,
where h ∈ L1(m) and σ ⊥m,

inf
p∈P, p(0)=0

∫
|1− p|2 dµ = exp

[∫
T

loghdm
]
,

where P is the set of analytic polynomials.

We first consider the case when µ =m.

Proposition 3.2. Sm does not have a common cyclic vector.

Proof. Suppose that f ∈ L2(m) is cyclic forMz. As a consequence of Szegö’s
theorem (Theorem 3.1), ∫

T
log |f |dm = −∞.
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For n ∈ N, let

En :=
{
eiθ :

1
2n
< |f(eiθ)| à 1

2n−1

}
,

E0 := {eiθ : |f(eiθ)| > 1} .
We can assume, without loss of generality (perhaps multiplying by a constant,
which does not change cyclicity), that m(E0) > 0. On the set En note that
log |f(eiθ)| ≈ −n.

We will now construct our ϕ ∈ L∞i (m) for which f is not cyclic for Mϕ. To
make the construction conceptually easier, we will equate T with [0,2π] and m
with the Lebesgue measure on [0,2π]. For x ∈ E1, let

ϕ(x) =
∫ x

0
χE1
(s)ds

and note that

d(m ◦ϕ)
dm

∣∣∣∣E1 = 1,

F1 :=ϕ(E1) = [0,m(E1)].

For x ∈ E2, let

ϕ(x) =m(E1)+ 1
2

∫ x
0
χE2
(s)ds

and note that

d(m ◦ϕ)
dm

∣∣∣∣E2 = 1
2
,

and

F2 :=ϕ(E2) =
[
m(E1),m(E1)+ 1

2
m(E2)

]
.

In general, for x ∈ En, let

ϕ(x) =
n−1∑
j=1

1
j
m(Ej)+ 1

n

∫ x
0
χEn(s)ds

and note that

d(m ◦ϕ)
dm

∣∣∣∣En = 1
n
,

Fn :=ϕ(En) =
[n−1∑
j=1

1
j
m(Ej),

n∑
j=1

1
j
m(Ej)

]
.
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Finally, for x ∈ E0, let

ϕ(x) =
∞∑
n=1

1
n
m(En)+ 1

m(E0)

[
2π −

∞∑
n=1

1
n
m(En)

]∫ x
0
χE0
(s)ds

and so

F0 := ϕ(E0) =
[ ∞∑
n=1

1
n
m(En),2π

]
.

By construction, ϕ ∈ L∞i (m) and for n = 1, 2, . . . ,

d(m ◦ϕ)
dm

∣∣∣∣En = 1
n
,

d(m ◦ϕ−1)
dm

∣∣Fn = n.
Also note thatm andm ◦ϕ−1 are mutually absolutely continuous and so

Ug :=
√
d(m ◦ϕ−1)

dm
· (g ◦ϕ−1)

is a unitary map on L2(m) with UMϕU−1 = Mz.
Let us now argue that Uf is not cyclic for Mz. To do this, apply Szegö’s

theorem (Theorem 3.1) to the function

Uf =
√
d(m ◦ϕ−1)

dm
· (f ◦ϕ−1)

to get

∫ 2π

0
log
[√
d(m ◦ϕ−1)

dm
|f ◦ϕ−1|

]
dθ

=
∞∑
n=0

∫
Fn

[
log

√
d(m ◦ϕ−1)

dm
+ log |f ◦ϕ−1|

]
dθ.

On the set Fn, log |f ◦ϕ−1| ≈ −n and so

∞∑
n=1

∫
Fn

log |f ◦ϕ−1|dθ ≈
∞∑
n=1

−n
(

1
n
m(En)

)
,

which converges. Recall that,

d(m ◦ϕ−1)
dm

∣∣∣∣Fn = n
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and so

∞∑
n=1

∫
Fn

log

√
d(m ◦ϕ−1)

dm
dθ =

∞∑
n=1

(
1
2

logn
)
·
(

1
n
m(En)

)
,

which also converges. Thus Uf is log-integrable and so by Szegö’s theorem, Uf
is not a cyclic vector for Mz.

Finally notice, from the above argument and the identity UMϕU−1 = Mz,
that U−1Uf = f is not cyclic for Mϕ. ❐

Remark. The above proof in fact shows that Mϕ is unitarily equivalent to
Mz.

Theorem 3.3. If µc 6= 0, then Sµ does not have a common cyclic vector.

Proof. Decompose the measure µ as µ = µd + µc , where µd is discrete and
µc is continuous in that µc({z}) = 0 for all z ∈ C [13, p. 334]. The measures µd
and µc are carried by the sets Ed and Ec respectively, which we can assume to be
disjoint. The mapping f → f | Ed + f | Ec defines a unitary map between L2(µ)
and L2(µd)⊕ L2(µc). If, for ϕ ∈ L∞(µ), (Mϕ,L2(µ)) is cyclic with cyclic vector
f , then a routine observation yields that both (Mϕ,L2(µd)) and (Mϕ,L2(µc))
must also be cyclic with cyclic vectors f | Ed and f | Ec respectively. We will
complete the proof by showing that Sµc does not have a common cyclic vector.

To this end, assume that µ = µc and let X be the support of µ. Note that
we can also assume that ‖µ‖ = 1. From a classical theorem on Lebesgue spaces
appearing in [12] (see also [6, p. 292]), there are Borel sets ∆1 ⊂ X, ∆2 ⊂ T and a
bijection τ : ∆1 → ∆2 such that

(i) µ(X \∆1) = 0 =m(T \∆2);
(ii) A subset ∆ ⊂ ∆1, is µ-measurable if and only if τ(∆) is Lebesgue measurable;

(iii) µ(∆) =m(τ(∆)), i.e., τ is measure preserving.

One can check that Uf := f ◦ τ defines a unitary operator from L2(m) to
L2(µ) and that for each ϕ ∈ L∞(m),

U(Mϕ,L2(m))U−1 = (Mϕ◦τ, L2(µ)).

This makes the map Mϕ → UMϕU−1 a spatial isomorphism between Am and
Aµ. Since Sm does not have a common cyclic vector (3.2), Sµ does not have a
common cyclic vector. ❐

Remark.
(1) We mention that using Lebesgue spaces, one can give an alternate construc-

tion of the map ϕ in the proof of Proposition 3.2. The details are left to the
interested reader.



Common Cyclic Vectors for Normal Operators 1545

(2) In the proof of Theorem 3.3, we used the fact that if f is cyclic for (Mϕ,L2(µ)),
then f | Ed is cyclic for (Mϕ,L2(µd)) and f | Ec is cyclic for (Mϕ,L2(µc)).
The converse of this is not true, in that the sum of a cyclic vector for Mϕ on
L2(µd) and a cyclic vector for Mϕ on L2(µc) may not be cyclic for Mϕ on
L2(µ) (see [1, Ex. 9])

4. A POSITIVE COMMON CYCLIC VECTOR RESULT

Let C be the set of ϕ ∈ C1+ε(T), for some ε > 0, such that ϕ is injective, except
possibly for a finite number of points, and such that

d
dθ
ϕ(eiθ) 6= 0,

for all eiθ. Let us abuse notation slightly and let

ϕ′(eiθ) := d
dθ
ϕ(eiθ).

Our common cyclic vector for {(Mϕ,L2(m)) : ϕ ∈ C} will be any vector f ∈
L2(m) that is non-zerom-a.e. and which also satisfies∫

J
log |f |dm = −∞,

for every arc J ⊂ T. An example of such a function is the following: For a sequence
(an)ná1 of points that are dense in T, define

f(eiθ) := exp
(
−

∞∑
n=1

2−n

|eiθ − an|
)
,

and note that f is bounded, non-zero almost everywhere, and not log-integrable
on any arc of the circle.

Theorem 4.1. A function f ∈ L2(m) is cyclic for everyMϕ,ϕ ∈ C, if and only
if f is non-zero m-a.e. and f is not log-integrable on any arc of the circle.

For a measure µ, let P2(µ) be the closure of the analytic polynomials in L2(µ).
The proof of our positive cyclic vector result (Theorem 4.1) needs a few prelimi-
naries.

Proposition 4.2. For a measure µ, let g ∈ L2(µ) be non-zero µ-a.e. If P2(ν) =
L2(ν), where dν = |g|2 dµ, then g is a cyclic vector for (Mz, L2(µ)).

Proof. Let V denote the closed linear span of {Mnz g : n = 0,1,2, . . . }. The
equality P2(ν) = L2(ν) implies that fg ∈ V for all functions f that are continu-
ous on the support of µ. If h ∈ L2(µ) such that∫

fgh̄dµ = 0
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for all such continuous f , then gh̄dµ is the zero measure. But since g is non-zero
µ-a.e., this means that h is zero µ-a.e. and so V = L2(µ). ❐

For fixed ϕ ∈ C, the set ϕ(T) := Γ is a C1+ε planar curve which intersects itself a
finite number of times. The operator

(4.1) Uh = |ϕ′ ◦ϕ−1|−1/2 · (h ◦ϕ−1)

is a unitary operator from L2(m) to L2(Γ , ds), where ds denotes arc length mea-
sure on Γ , with

U∗(Mz, L2(Γ , ds))U = (Mϕ,L2(m)).

Also needed here are the following two generalizations of Szegö’s theorem.
The first is obtained from the classical version of Szegö’s theorem (Theorem 3.1)
by a conformal mapping.

Theorem 4.3. Let Ω be a Jordan domain and µ a measure supported in ∂Ω. If
µ = µa + µs is the Lebesgue decomposition of µ with respect to ωΩ, i.e., µa � ωΩ,
µs ⊥ωΩ, then P2(µ) = L2(µ) if and only if

∫
∂Ω log

(
dµa
dωΩ

)
dωΩ = −∞.

The second version is due to Akeroyd [1,2] (see [19] for a related result) which
we state verbatim.

Proposition 4.4. Let K be a compact, connected, subset of C, and let γ be a Jor-
dan arc that (except for its end points which are in K) lies in the unbounded component
of Kc and let µ be a measure supported in γ∪K. Let Ω be the bounded component of
(γ ∪ K)c whose boundary contains γ, and let

dµ | γ = hdωΩ + dµs
be the Lebesgue decomposition of µ | γ, with respect to ωΩ on γ. If∫

γ
loghdωΩ = −∞,

then χγ ∈ P2(µ).

Let us say a few words about these two results. First,ωΩ is harmonic measure
on ∂Ω evaluated at some point in Ω. Secondly, in our application of this theorem
(see below), we will be taking Ω to be one of the bounded components of Γ c
(where Γ =ϕ(T), ϕ ∈ C), in which case ∂Ω is a piecewise smooth curve.

Lemma 4.5. If J is a closed C1+ε sub-arc of ∂Ω which does not contain any of
the ’crossing points’ of Ω =ϕ(T), and µ is a measure on J, then



Common Cyclic Vectors for Normal Operators 1547

(1) the function ds/dωΩ is bounded above and below on J,
(2) there are c1, c2 > 0 so that

c1ωΩ(A) à s(A) à c2ωΩ(A)
for all Borel subsets A of J,

(3) ∫
J

log
(
dµ
dωΩ

)
dωΩ = −∞

if and only if ∫
J

log
(
dµ
ds

)
ds = −∞.

Proof. Ifψ : D→ Ω is the Riemann map withψ(0) = a (where a ∈ Ω is the
evaluation point of ωΩ) and ψ′(0) > 0, then θ → ψ(eiθ) is a parameterization
of ∂Ω. Moreover, if J is any smooth arc of ∂Ω, then, by using the hypothesis
that J is in fact C1+ε, we obtain that ψ′ extends to be a continuous function on
ψ−1(J) [16, p. 48] (actually, one proves a local version of the theorem stated in
the reference by means of a conformal mapping). From this, we conclude that
|ψ′| is bounded above and below onψ−1(J). It is a standard fact (see for example
[7, p. 302]) that the arc-length measure of a set A ⊂ ∂Ω is

∫
ψ−1(A)

|ψ′(eiθ)|dθ,

and the harmonic measure of A is

ωΩ(A) =
∫
ψ−1(A)

dθ
2π
.

Thus, for subsets A of J, ωΩ(A) is comparable to the arc length measure on J
and moreover, on J,

ds
dωΩ =

1
2π

|ψ′(ψ−1)|.

This proves statements (1) and (2) of the lemma.
Finally, notice that

∫
J

log
(
dµ
dωΩ

)
dωΩ =

∫
J

log
(
dµ
ds

ds
dωΩ

)
dωΩ.

Combine this with the first two statements of the lemma, to prove state-
ment (3). ❐
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Proof of Theorem 4.1. One direction of Theorem 4.1 is relatively easy to prove.
Indeed, if f is cyclic for every operator in {Mϕ : ϕ ∈ C}, then certainly f is cyclic
forMz on L2(m) and so f is non-zerom-a.e. To show that f is not log-integrable
on every arc J of the circle, we let ϕ ∈ C map the arc J onto a smooth closed
curve Γ1 and such that ϕ(T) intersects itself only once (at the endpoints of Γ1).
We let Γ2 = ϕ(T \ J) and notice that the map F → F | Γ1 + F | Γ2 is unitary from
L2(Γ1 ∪ Γ2, ds) to L2(Γ1, ds)⊕ L2(Γ2, ds), that makes

(Mz, L2(Γ1 ∪ Γ2, ds)) � (Mz, L2(Γ1, ds))⊕ (Mz, L2(Γ2, ds)).
Since f must be cyclic for this particular Mϕ, then g = Uf (recall the definition
of U from equation (4.1)) must be cyclic for (Mz, L2(Γ1∪Γ2, ds)) and hence g | Γ1
must be cyclic for (Mz, L2(Γ1, ds)). But then P2(|g|2 ds) = L2(|g|2 ds) and so,
by Theorems 4.3 and 4.5, ∫

Γ1 log |g|ds = −∞.

However, after a change of variables and 4.5, this integral is comparable to∫
J

log |f |dm.

To prove the converse, we will show, for every f ∈ L2(m) which is non-zero
almost everywhere and is not log-integrable on any arc of the circle, that for everyΓ = ϕ(T), the vector g = Uf is cyclic for (Mz, L2(Γ , ds)). By 4.2, it suffices to
show that P2(ν) = L2(ν), where dν = |g|2 ds. Notice that g is non-zero ds-a.e.
and that for any arc γ ⊂ Γ , ∫

γ
log |g|ds = −∞.

To see that P2(ν) = L2(ν), let γ be a closed sub-arc of Γ that is part of the
boundary of the unbounded component of Γ c and which does not contain any of
the intersection points of Γ . Apply 4.4 with K = Γ \ γ and µ = ν (along with
4.5) to see that χγ ∈ P2(ν). But since this arc γ was arbitrary, we obtain the
decomposition

P2(ν) = L2(ν | Γ0)⊕ P2(ν | (Γ \ Γ0)),
where Γ0 is the portion of Γ which is the boundary of the unbounded component
of Γ c . Now apply the same argument to P2(ν | (Γ \Γ0)) and so on (a finite number
of times) to see that P2(ν) = L2(ν). ❐

Remark. The same proof, with the obvious changes, shows that Theorem 4.1
is still true if C is replaced with the larger class C′, where the condition ‘ϕ ∈ C1+ε’
is relaxed to ‘ϕ is piecewise C1+ε’. In addition, it is not hard to see that the set of
common cyclic vectors for {Mϕ : ϕ ∈ C′} is norm dense in L2(m).
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If µ is a measure for which µc is not zero, then Sµ does not have a common
cyclic vector. What are some natural subclasses of Sµ with common cyclic vectors?
Can one identify a maximal subclass of Sµ with a common cyclic vector? Note
that such a maximal subclass must contain Srµ . This maximal question is open
even for Sm.
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