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1 Introduction. 

There is no dearth of published literature on the design, implementation, 
analysis, or use of pseudo-random number generators or PRNGs. For ex­
ample, [6] [7] [14] and the references therein, provide a broad overview and 
firm grounding for the subject. This report complements and elaborates 
upon the work of McKeever [9], who investigated PRNGs constructed in a 
non-commutative setting with the target application being so-called cryp­
tographically secure PRNGs as discussed in [12] or [13]. Novel "solutions" 
to the problem of designing cryptographically secure PRNGS continue to 
be proposed [1] [2] [10] [15], so despite the caution and skepticism required, 
the area remains active. The concept elaborated upon here is computation 
in a finite non-commutative object which is more than a matrix ring over a 
finite field. Specifically, we consider computation in a homomorphic image 
of a maximal order of an ordinary quaternion algebra. In Section Two we 
develop the necessary algebraic machinery. In Section Three we consider 
PRNG design in this computational setting. In Section Four we attempt 
some preliminary analysis of the PRNGs described. In Section Five we offer 
some final remarks and conclusions. 

2 The Ring Hr 

Some of the material in this section is a more leisurely paced and more 
complete version of results which can be found in [4, Chapter 7]. Let U be 
the division ring of ordinary quaternions over the field of rational numbers 
Q, 

U ={a+ bi+ cj + dk: a,b,c,d E Q}, 

and consider the distinguished element ( E U given by 

(=~(l+i+j+k). 

Let Z be the ring of integers, and define 

H = {a( + bi + cj + dk : a, b, c, d E Z}. 

LEMMA 2.1. His a maximal order in U. 
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Proof. To see that H is a subring of U we need the relations: 

i( -( + i + k, 

j( -( + i + j, 
k( -( + j + k, 

and 
(i = j(, (j = k(, (k = i(, 

in addition to 

Next we observe: 

·2 ·2 k2 1 (2 ( . . k i =J = =-, =- +i+J+. 

1 = 2(- i- j - k, 

i 2(- 1- j - k, 

j = 2(-1- i - k, 

k 2(- 1- i -j. 

Now, if u E U is integral over Z, then mu E W = Z[i, i,j, k] for some 
m E Z, so the elements (,i,j,k,u are linearly dependent. This proves His 
a maximal order in U. 

We recall that if a = a + bi + cj + dk E U then the conjugate of a is 
a = a - bi - cj - dk and the norm of a is 

N (a) = aa = aa = a2 + b2 + c2 + d2• 

It is routine to verify that a/3 = lfa, and therefore N(a/3) = N(a)N(/3). It 
is equally obvious that conjugation is an involution. 

LEMMA 2.2. If a EH, then N(a) E Z. 
Proof. Write a= a(+ bi+ cj + dk, and compute 

N(a) (~)2+(2b+a)2 +(2c+a)2 +(2d+a)2 
2 2 2 2 

a2 + 4b2 + 4ab + a2 + 4c2 + 4ac + a2 + 4d2 + 4ad + a2 

4 
= a2 + b2 + c2 + d2 + a(b + c + d). 
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LEMMA 2.3. If a EH, then a EH. 
Proof. H is the disjoint union of the two sets W = {a + bi + cj + dk : 

a b c d E Z} and { 2a+l + 2b±l i + 2c+l J. + 2d±l k · a b c d E Z} each of 
' ' ' 2 2 2 2 • ' ' ' ' 

which is closed under the operation of conjugacy. 

For completeness, we include two additional lemmas which aid in our 
understanding of the structure of H. 

LEMMA 2.4. Let a EH. Then a is invertible if and only if N(a) = 1. 
Proof. If a is invertible, then af3 = 1 for some f3 E H, so N (a )N ({3) = 1. 

Since N(a) is a non-negative integer, N(a) = 1. If N(a) = 1, then aa = 1. 
By the previous lemma, a E H so a is invertible. 

The following lemma is a trivial consequence of the classification of the 
finite subgroups of U, but we include here an elementary proof based upon 
first principles. 

LEMMA 2.5. The invertible elements of Hare: ±1, ±i, ±j, ±k, ±l±iij±k. 

Proof. We again appeal to the realization of H as a union of sets of 
elements with either integer or "half-odd" integer coefficients. If a = a + 
bi+ cj + dk has integer coefficients and N(a) = a 2 + b2 + c2 + d2 = 1, 
then it is clear that a = ±1, ±i, ±j, ±k. If a = ~ + ~i + ~j + ~k where 
a,b,c,dare all odd integers and N(a) = 1, then a2 +b2 +c2 +d2 ~ 4 whence 
lal, lbl, lei, ldl ~ 2 and the remaining units are readily obtained. 

DEFINITION 2.6. Let p be an odd prime. We define Hp = H/pH 
{a(+ bi+ cj + dk: a,b,c,d E Zp}· 

Observe that Hp is a finite non-commutative ring, whence it must have 
zero-divisors. Zero divisors are easily constructed by first writing 4p as a sum 
of four squares and then constructing a E Hp, with aa = N(a) = p = 0 
in Zp. For example, with p = 7, 28 = 4 · 7 = 32 + 32 + 32 + 12, gives 
a= ~ + ~i + V + ~k = 3( - k. The key result that follows shows that we 
are able to characterize all the zero divisors in Hp. 

PROPOSITION 2. 7. Let a E Hp· Then a is a zero divisor if and only if 
N(a) = 0 in Zp. 

Proof. If N(a) = 0 in Zp, then aa = 0 in Hp. Conversely, if a is a 
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zero divisor, let {3 satisfy {3a = 0. Suppose N(a)-::/:- 0. Then there exists an 
integer k > 0 such that N(a)k = 1 in Zp. We have 

which gives a contradiction and completes the proof. 

The reader will wonder, however, why we choose to work in Hp rather 
than the seemingly more "natural" ring Wp = {a + bi + cj + dk : a, b, c, d E 
Zp}· After all, while it seems instinctively better to work in a maximal 
object, reducing modulo p cannot change the size of the object. Indeed, an 
explicit bijection from Hp to Wp, which is just a change of representation, 
is obtained by defining the function 

0 : a(+ bi+ cj + dk i----+ a'+ b'i + c'j + d'k, 

where a' = av, b' = av+ b, c' = av+ c, d' = av+ b and vis the multiplicative 
inverse of two in Zp· The answer to the question we posed - and we cannot 
overstress this point - is that we want multiplication to appear as non­
linear as possible. The multiplicative relations on the basis(, i,j, k and the 
norm form on H will help "disguise" the computations considered in the 
next section. 

3 Generators over Hp. 

We recall that a cryptographically secure PRNG is one for which it is com­
putationally infeasible to predict the next random number based on obser­
vations made from previous random numbers in the sequence. Here, we 
will take this to mean that, knowing the method of generation, it is com­
putationally infeasible to determine the parameters that were selected to 
initialize the generator. Discovering these parameters constitutes one form 
of "breaking" the generator. A simple example will illustrate what we mean. 

EXAMPLE 3.1. Quaternionic Linear Congruence Generators (LCGs). 
The ordinary linear congruence generator over Zp is defined in terms of 

the parameters a, {3 E Zp by the recurrence 

Xn+l = O:Xn + {3. 
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From a seed xo E Zp we generate a pseudo-random sequence x1 , x 2 , ••• How­
ever, from any three consecutive outputs x, y, z we have z - y = a.(y - x) 
which allows us to determine first a and then f3 = y - ax. If we now take 
a, f3 E Hp, and a seed x0 from Hp, the algorithm just given will still break 
the generator provided y - x is invertible in Hp. We also remark that an 
easy induction shows that for all k > 0, 

k a.k - 1 
Xk = a xo + 1 (3, 

a.-

which shows that the period of the generator is the order of a in Zp (respec­
tively Hp)· 

Our design problem can now be more clearly stated: Using the Hp op­
erations of addition, multiplication, and conjugacy what potential ( crypto­
graphically secure) PRNGs might be constructed and studied? The reason 
it is necessary to ask which generators can be constructed is because there do 
not exist non-commutative analogs for those commutative generators which 
require exponentiation to be a binary operation on Hp i.e., those which 
would rely on a definition of a.!3 where a.,(3 E Hp· (A concrete example is 
given by the Blum-Micali generator Xn+I = gxn where g is a primitive root 
in Zp.) Another difficulty is that we must prohibit the use of logical bit 
string operators, for we would be hard pressed to define, for example, either 
(a OR (3) or (a AND (3) over Hp. With these caveats we shall establish four 
"direct" generalizations of commutative generators. 

• Quaternionic Polynomial Generators (QPGs). 

Fix m > 0 and a polynomial 
m 

s=O 

where as E Hp for s = 0, ... , m. Define the quaternionic polynomial 
generator using the recurrence Xn+I = F(xn)· Note that when m = 1 
this is the ordinary quaternionic linear congruence generator. 

• Quaternionic Linear Recurrence Generators (LRGs). 

Let the seed consist of m > 0 elements xo, x1, ... , Xm-I E Hp. Fix 
as E Hp for s = 0, ... , m - 1. For n > 0, let 

m-1 

Xn+m = L fisXn+s • 
s=O 

6 



• Quaternionic Cellular Automata (CAs). 

The CA generators load m cells with initial values (the seed) x~, ... , x~. 
This represents stage zero. To compute the ( n + 1 )st stage from the 
nth stage, we consider two possible generators, one defined using the 
rule 

and the other using the rule 

The arithmetic on the subscripts takes place in Zm. Since the second 
rule uses fewer operations, it has efficiency advantages. Regardless of 
which rule is used, it is clear that the presence of zero in any cell would 
cause zero propagation, thus we further stipulate that the seed consist 
entirely of invertible elements. The output at each stage is the element 
of a fixed, but arbitrary, cell. 

• Quaternionic Linear Feedback Shift Registers (LFSRs). 

The LFSR generator associates coefficients ao, ... , am-1 in Hp to each 
of its m cells respectively. At stage zero the seed x8, x~, ... ,x~_1 is 
loaded into the cells. To pass from the nth stage to the ( n + 1 )st stage 
we set 

for s < m - 1, and 

The output at stage n + 1 is the the pseudo-random number x0. 

These families do not take full advantage of the rich computational envi­
ronment provided by non-commutativity. We introduce two mild variations 
obtained by "twisting." For convenience, we twist at the position of the zero 
subscripted coefficient. 

• Single Twist LFSRs. These generators use the recurrence relation 
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• Single Twist LRGs. These generators use the recurrence relation 

m-1 

Xn+m = Xnao + L ltaXn+s· 
s=l 

It is now a simple matter to initiate twisting at other locations by for­
mulating two-sided generators. For example, we could consider the family 
of Two Sided Quaternionic LRGs defined by 

m-1 

Xn+m = L ltaXn+af3a· 
a=O 

This leads naturally to the consideration of a generalized monomial of degree 
s which takes the form 

and the family of Generalized Quaternionic Polynomial PRNGs of 
degree m defined using the generalized polynomials 

m 

F(x) = Lfs(x), 
s=O 

where each / 8 is a generalized monomial of degree s, or the family of Gen­
eralized Homogeneous Quaternionic PRNGs defined by 

m 

G(x) = LYs(x), 
s=O 

where each g8 is a generalized monomial of fixed degree t. Finally, we can 
avail ourselves of the conjugacy operator by denoting a by r( a) and con­
structing, for example, Conjugate Quaternionic LRGs via 

m-1 

Xn+m = E aare•(xn+a)f3a, 
s=O 

where each € 8 is zero or one. Other variations and modifications may suggest 
themselves to the reader, but by now our point has been made: a plethora of 
available examples are to be found over Hp. It is time to turn our attention 
to their analysis. 
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4 On Breaking Quaternionic Generators. 

In this section we attempt to offer some insight into algorithms, and some in­
dication of the computational resources required, for breaking a sampling of 
the quaternionic generators introduced in the previous section. Generators 
whose coordinate functions are linear in the coordinates of their parameters 
- the quaternionic PGs, LRGs, LFSRs and the single twist generators -
can, of course, be broken by collecting enough observations to set up linear 
systems in the (, i,j and k coordinates of the parameters. Surprisingly, as 
demonstrated by the small order - those which minimize the number of 
adds and multiplies - examples below, elimination of variables may also be 
a viable technique. 

EXAMPLE 4.1. Consider the single twist LRG 

Assume we have three consecutive values, X8 , X8 +J, X8 +2· If x 8 +1 is invertible, 
then 

( (3) -1 -1 (3 -1 
a= Xs+2 - X8 X8 +1 = X8 +2X 8 +1 - X8 X8 +1· 

For each distinct trio of consecutive values, Xt, Xt+J, Xt+2 where t > s + 2, 
and Xt+i is invertible, 

Xt+2 = O:Xt+J + xtf3 

(xs+2x;i1 - X8 {3x;i1 )xt+l + Xtf3, 

which leads to the equation 

or 

If Xt is invertible, then 

Notice the key step in our reduction: we introduce extraneous constants to 
"balance" the variable beta so that it can be replaced by a (group-theoretic) 
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conjugate. Using constants from Hp ensures that this conjugate is still 
linear in the coordinates of beta. We shall make reference to this technique 
in subsequent examples. 

Returning to the derivation, setting 
-1 -1 -1 

llt Xt X8+2X8+l Xt+l - Xt Xt+2, 

b -1 -1 
t = Xt XsXs+l Xt+Ii 

-1 
Ct Xt+1Xs+1' 

the previous equation simplifies to 

llt - btCtf3Ct1 + (3 = 0. 

Switching to coordinates, we expand this last equation to 

o = ( at,c + f3c - fc(bii ci, (3))( 

+ (at,i + f3i - fi(bt,Ci,{3))i 

+ (at,j + {3j - fj(bt,Ct,f3))j 

+ (at,k + f3k - fk(bt,Ct,f3))k, 

where the coordinate functions J,,fi,fj,fk are linear in f3c,f3i,{3j,{3k. The 
strategy is now clear. We collect sufficient Xt, Xt+I, x + t + 2 trios to deter­
mine the coordinates for (3, and then solve for a. 

We should mention that in [9] the method for breaking the closely re­
lated quaternionic homogeneous generator Xn+I = axn + xnf3, by reverting 
to coordinates is outlined. Our second example points to the difficulty of 
scaling-up when using the previous technique. 

EXAMPLE 4.2. Consider the single twist LRG 

Xn+3 = aXn+2 + f3xn+l + Xn'Y · 

We shall not explicitly draw attention to the necessary invertibility assump­
tions on the subsequences of observations of length four that we will be 
working with. Start with four consecutive values, X8 , Xs+Ii X8 +2, Xs+3· Then 

a (xs+3 - f3xs+I - Xs"f)x;i2 
-1 (3 -1 = Xs+3Xs+2 - Xs+l - Xs"fXs+2· 
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From another quadruple Xt, Xt+i, Xt+2, Xt+3, 

Xt+3 = (xa+3x;~2 - f3xs+l - Xs')'X;~2 )xt+2 + f3xt+l + Xt'Y 

= Xs+3x;~2Xt+2 - Xa')'X;~2Xt+2 - {J(xa+iXt+2 - Xt+1) + Xt'Y' 

whence 

f3 = [xs+3x;~2Xt+2 - Xs')'X;~2Xt+2 + Xt'Y](xs+1Xt+2 - Xt+i)-1 . 

By introducing the appropriate balancing coefficients, this describes f3 as a 
linear equation in two conjugates of 'Y and back substitution allows us to 
rewrite a as a linear equation in three conjugates of 'Y. Any subsequent 
quadruple generated by the sequence say, Xu, Xu+1' Xu+2• xu+3• gives 

Xu+3 = UXu+2 + fJxu+l + Xu')' 

= (three -y-conjugates)xu+2 +(two -y-conjugates)xu+l +Xu')', 

and therefore expresses the zero element of HP as a linear equation in seven 
conjugates of 'Y. Reverting to coordinates yields a linear system to be solved 
for/, though several quadruples may be necessary to satisfy the invertibility 
requirements and to determine all coordinates. 

Though a complete, detailed solution appears awkward to describe, it 
seems clear that the "elimination methods" above can be used to break any 
single twist LRG. For our final examples, we turn our attention to a low 
order polynomial generator. 

EXAMPLE 4.3. Recall the quadratic quaternionic polynomial generator, 

Xn+i = ax! + f3xn + ')'. 
From an output pair x 8 , X 8+i with x 8 invertible, we obtain 

From a subsequent pair Xt, Xt+i we get 

Xt+i = (xs+l - {Jx 8 - -y)x;2x~ + f3xt + ')' 
which allows us to solve for beta, 
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As before, we can back substitute to find a in terms of 'Y and use additional 
pairs to solve for 'Y. 

EXAMPLE 4.4. To break the twisted quadratic quaternionic polynomial 
generator, 

Xn+l = O'.X~ + Xnf3 + "'f, 
first use x 8 , x s+l to get 

then Xt, Xt+i to find 

Therefore 

As in the previous example, back substitution into a, and additional output 
pairs, allow one to solve for (3. 

Some of the other small order generators can be easily transformed into 
generators that would succumb to the above methods. For example, for the 
purposes of recovering parameters, we observe that 

Xn+i = ax(J + 'Y, 

is equivalent to 

or 
(31 I + I Xn+I = O'. Xn "'f , 

where (3' = {J, a' = N((J)a, "'f 1 = 17J. The latter, when broken into compo­
nents, has linear coordinate functions. 

The use of conjugation does not have any significant effect on the exam­
ples and methods considered previously. In the simplest case, 
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it is routine to establish tha.t from a. suitably invertible recurrence triple 
x, y, zone ca.n solve a = (z - y)(y - x)-1, a.nd then recover (3. 

It would therefore seem tha.t the two simplest nonlinear genera.tors which 
our methods do not address are 

a.nd 
Xn+l = O!Xn/3 + "fXn8• 

The source of record concerning (generalized) polynomials over a. division 
ring [5] is concerned with their zeros, a.nd more recent work [3) ha.s focused 
on their factorization. We a.re not awa.re of a.ny significant results a.bout 
their reconstruction ba.sed on a. set of their values, or the properties of their 
iterates. 

5 Concluding Remarks. 

The ha.llmarks of a. "good" PRNG a.re that it exhibits the following three 
properties: 

1. All seeds should give rise to long sequences without repetition; 

2. Outputs should satisfy a.ccepta.ble sta.tistica.l or theoretical "random­
ness" criteria; 

3. Fa.st, efficient implementations should be possible. 

Regarding long sequences without repetition, or "loops," we have a.lrea.dy 
indicated tha.t the loop length of the ordinary quaternion LCG Xn+i = 
axn + f3 is determined by the order of a in Hp. Similarly, for the genera.tor 
Xn+i = axn + Xn/3, routine induction gives Xn = L::=o (;)an-sxo/3 8 , which 
shows that this generator too is sensitive to the orders of a a.nd f3 in Hp. 
In genera.I, iterates of the remaining non-commutative recurrence genera.tors 
seems difficult to eva.lua.te in this regard. 

This pa.per ha.s not investigated the randomness cha.ra.cteristics of a.ny 
of the genera.tors discussed. In [9) on the basis of da.ta. collected from the 
genera.tors Xn+l = axnf3 + 'Y, Xn+i = axn + Xn/3, a.nd a. five-cell qua.ternionic 
CA, it was suggested tha.t only qua.ternionic CAs held a.ny promise for ex­
hibiting a.ccepta.ble randomness. It is important to note, however, tha.t the 
data collected in those experiments consisted of "ta.ps" from our prescribed 

13 



outputs. This simply means that only a fixed coordinate of the output was 
recorded. The rationale for this is exquisite: While we may have methods 
for breaking (linear) generators given the normal (default) outputs, we are 
hopelessly stymied when we are confronted by nothing more that a sequence 
of "taps" from these outputs. 

There is some inherent efficiency to be gained from implementing mul­
tiplication in Hp through 4 X 4 matrix multiplication (see Appendix A be­
low). The standard speed-up for computing polynomial values over a field is 
Horner's Method. Here is a non-commutative variation, employing "twist­
ing" at each iteration according to a boolean array twist, whose conse­
quences we have not studied: 

F = alpha[n]} 
for s = n-1 downto 0 

if (left [s]) 
F = F * x + alpha[s] 

else 
F = x * F + alpha[s] 

The reader will no doubt think of other possibilities along these lines. 
There are no known "attacks" for breaking CAs with or without "taps." 

The CA loop structure also remains obscure, even in the commutative case 
[16]. Their chief drawback remains their excessive computational overhead. 
Given the fact that both loop length and randomness characteristics have 
been successfully determined for commutative LCGs [7], and the implemen­
tation issues for these LCGs have been carefully researched (14], we have 
every reason to believe that in the future more complete and equally satis­
factory results for non-commutative generators might be obtained. 

A The Group of Units of Hp. 

It was conjectured in [9] that the cardinality of the set of zero divisors in 
Hp is 

p3 + p2 - p- 1 (p3 - p) + (p2 - 1) 

p(p2 - 1) + (p2 - 1) 

(p + 1 )(p2 - 1) 

(p - 1 )(p + 1 )2 • 
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This would imply that the set of non-invertible elements - the zero divisors 
together with the zero element - has cardinality p3 + p2 - p, and therefore 
that the cardinality of the set of invertible elements is 

p4 - (p3 + p2 - p) p(p3 - p2 - p + 1) 

p(p2(p - 1) - (p - 1)) 

p(p2 - l)(p - 1) 

p(p + l)(p- 1)2 • 

This is significant for two reasons. First is predicts that for large p the 
number of invertible elements is effectively p4 • Second is suggests that the 
group of units of Hp might be isomorphic to the group GL(2,p), since the 
latter is known to be of this order [11, Theorem 8.13].1 

Recall that there is an isomorphic embedding U '---+ M2 ( Q( i)) given by 

. . ( a + bi c + di ) 
a+bi+cJ+dk~ +d· b". -c i a - i 

(Replacing the complex entries of this matrix by the 2 x 2 matrix equivalents 
with rational entries gives the embedding of U into M4(Q).) We will attempt 
to carry this construction over to Hp. 

Set v = (p + 1)/2 in Zp, so 2v = 1 in Zp, and let y be a "symbol" 
satisfying y2 = -1 in Zp. Of course, if p = 1 (mod 4), we must take 
y = g(p-l)/4 where g is a generator for the group of mon-zero elements in 
Zp· Define '11 : Hp'---+ M2(Zp[y]) via 

a(+ bi+ c. + dk ~ ( av+ (av+ b)y (av+ c) +(av+ d)y ) . 
J -(av+c)+(av+d)y av-(av+b)y 

The map \[I' "unpacks" a( + bi + cj + dk to ( a/2) + ( a/2 + b )i + ( a/2 + 
c)j + (a/2 + d)k and then uses v in place of 2, and y in place of i, so 
that the new embedding is well-defined. It is trivial to prove that '1F(h1 + 
h2) = \[I' ( h1) + \[I' ( h2) and that '11 is one-to-one. It is harder to check that 
'1F(h1h2) = '11(hi)'11(h2). Now, if p = 1 (mod 4), then Zp[Y] = Zp, so '11 
is onto and we have established an isomorphism between the units of Hp 
and GL(2,p). But, if p = 3 (mod 4), then Zp[Y] '.:::::'. GF(p2 ), and we have 
established an isomorphism from Hp into a subgroup of GL(2, GF(p2 )). We 
are unable to determine the image of the map \[I' in this case. 

1 I thank Dan Frohardt-Lane for reminding me of this fact. 

15 



References 

[1] L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo­
random number generator, SIAM Journal of Computing, Volume 15, 
Number 2, May 1986, 364-383. 

[2] D. Coppersmith, H. Krawczyk and Y. Mansour, The shrinking gener­
ator, in Advances in Cryptology - CRYPTO '93, 13th Annual Cryp­
tology Conference Santa Barbara, California, USA, August 22-26 1993 
Proceedings, D. Stinson (ed), Springer-Verlag, 1994. 

[3] D. Haile and L. Rowen, Factorizations of polynomials over division 
algebras, Algebra Colloquium, Volume 2, Number 2, 1995, 145-156. 

[4] I. Herstein, Topics in Algebra 2nd edition, Xerox Corporation, 1975. 

[5] B. Gordon and T. Motzkin, On the zeros of polynomials over division 
rings, Transactions of the American Mathematical Society, Volume 116, 
1965, 218-226; correction Volume 122, 1966, 547. 

[6] P. L'Ecuyer, Random numbers for simulation, Communications of the 
ACM, Volume 33, Number 10, October 1990, 85-97. 

[7] D. Knuth, The Art of Computer Programming Volume 2 Seminumerical 
Algorithms, Addison-Wesley, 1981. 

[8] G. Marsaglia, Remarks on choosing and implementing random number 
generators, Communications of the ACM, Volume 36, Number 7, July 
1993, 105-110. 

[9] B. McKeever, The Use of Non-Commutative Algebra in Cryptographi­
cally Secure Pseudo-Random Number Generators, Honors thesis, Uni­
versity of Richmond, 1996. 

[10] D. Mitchell, Nonlinear key generators, Cryptologia, Volume 14, Number 
4, October 1990, 350-354. 

[11] J. Rotman, The Theory of Groups, Allyn and Bacon, 1965. 

[12] R. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 
Berlin, 1986. 

[13] B. Schneier, Applied Cryptography : protocols, algorithms, and source 
code in C, Wiley, 1994. 

16 



[14] S. Park and K. Miller, Random number genera.tors : Good ones a.re 
ha.rd to find, Communications of the ACM, Volume 31, Number 10, 
October 1988, 1192-1201. 

[15] K. Zeng et al, Pseudora.ndom bit genera.tors in stream-cipher cryptog­
raphy, IEEE Computer, February 1991, 8-17. 

[16] S. Wolfram, Cellular automata and complexity 
Stephen Wolfram, Addison-Wesley, 1994. 

17 

collected papers 


	University of Richmond
	UR Scholarship Repository
	5-1996

	On Quaternionic Pseudo-Random Number Generators
	Gary R. Greenfield
	Recommended Citation


	tmp.1444242907.pdf.ZnaKD

